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ABSTRACT

This paper studies a discrete-time utility maximization problem of an
infinitely-lived quasi-geometric consumer whose labour income is
subject to uninsurable idiosyncratic productivity shocks. We restrict
attention to a first-order Markov recursive solution. We show that
under the assumption of the exponential utility function, the problem
of the quasi-geometric consumer admits a closed-form solution.
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A large body of recent literature investigates the consumption-savings
behaviour of agents under the assumption of quasi-geometric (quasi-
hyperbolic) discounting, e.g., Laibson (1997), Barro (1999), Harris and
Laibson (2001), Krusell, Kuruşçu and Smith (2002), Krusell and Smith
(2003), Luttmer and Mariotti (2003). Krusell and Smith (2003) incorporate
quasi-geometric discounting into a deterministic version of the standard
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infinite-horizon neoclassical growth model. In particular, they show that
under the assumptions of logarithmic utility function, Cobb-Douglas pro-
duction function and full depreciation of capital, the model allows for a
closed-form solution.

This paper describes another model with quasi-geometric discounting
that can be solved analytically. We study a discrete-time utility max-
imization problem of an infinitely-lived quasi-geometric consumer whose
labour income is subject to uninsurable idiosyncratic productivity shocks.
We restrict attention to a first-order Markov recursive solution. We show
that under the assumption of the exponential utility function, the problem
of such a consumer admits a closed-form solution. Our results can be
viewed as an extension of the work of Caballero (1990), who derived a
closed-form solution for the standard geometric-discounting case.

At each date t 2 {0, 1, 2,. . .}, an agent solves the following problem

max
{c� ;a�þ1}

1
�¼t

uðctÞ þ Et

X1
�¼t

���þ1�tuðc�þ1Þ
( )

ð1Þ

subject to

c� þ a�þ1 ¼ ws� þ 1þ rð Þa� ; ð2Þ

where initial condition (at,st) is given. Here, �> 0 and � 2 (0,1) are the
discounting parameters; c� and a� are consumption and asset holdings,
respectively; s� is an idiosyncratic productivity shock following a
first-order Markov process; r and w are the interest rate and wage
per unit of efficiency labour, respectively; E� is the expectation, con-
ditional on all information about the agent’s idiosyncratic shocks
available at � .

It is typically assumed in the literature on quasi-geometric discounting
that a discount factor, applied between today and tomorrow, is lower
than the one, used on all dates advanced further in the future, � < 1. This
leads to the following form of time-inconsistency in preferences: the
agent systematically plans to be patient (to save a lot) tomorrow, but as
tomorrow arrives, she always changes her mind and behaves impatiently
(saves little) relative to what she would have committed to if commit-
ment had been available. One can also consider the opposite case, �> 1,
when the agent always behaves more patiently than she would have
committed to in the past. The parameterization �¼ 1 corresponds to
the standard geometric-discounting case, when the agent is equally
patient in both the shortrun and the longrun.

We consider a recursive Markov solution to the problem (1), (2), such
that in all periods, the agent decides on consumption according to the
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same decision rule ct¼C (at,st). Then, without time subscripts, the
recursive formulation of the individual problem is as follows:

W a; sð Þ ¼ max
c

u cð Þ þ ��E V a0; s0ð Þ j s½ �f g; ð3Þ

where given a, s, the value function V solves the functional equation

V a; sð Þ ¼ u C a; sð Þ½ � þ �E V wsþ 1þ rð Þa� C a; sð Þ; s0½ � j sf g ð4Þ

subject to the budget constraint

a0 ¼ wsþ 1þ rð Þa� c: ð5Þ

The problem (3)–(5) is to be solved for the unknown value functions
W(a,s), V(a,s) and the decision rule C(a,s).
We shall assume that the agent has the exponential momentary utility

function

u ctð Þ ¼ � 1

�
exp ��ctð Þ; � > 0: ð6Þ

As shown in Caballero (1990), under the assumption of standard geo-
metric discounting (�¼ 1) and with some additional restrictions on the
process for labour income shocks, the utility parametrization (6) leads to
a closed-form solution. In particular, a closed-form solution exists under
a first-order autoregressive process

stþ1 ¼ �st þ "tþ1; with � 2 0; 1½ � and "tþ1 � N 0; �2
� �

: ð7Þ

With the following proposition, we establish the existence of a closed-
form solution under the assumption of quasi-geometric discounting.

Proposition 1: Under (6), (7), the value functions V and W that solve the
problem (3)–(5) are given by

V a; sð Þ ¼ � 1þ �r

��r
� exp ��cð Þ; W a; sð Þ ¼ � 1þ r

�r
� exp ��cð Þ; ð8Þ

where c¼C(a,s) is given by
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c ¼ r � aþ rw

1þ r� �
� s� 1

�r
ln � 1þ �rð Þ½ � � �rw2�2

2 1þ r� �ð Þ2
: ð9Þ

Proof: See Appendix.
The consumption function (9) and budget constraint (5) yield the

following decision rule for asset holdings:

a0 ¼ aþ 1� �ð Þw
1þ r� �

� sþ 1

�r
ln � 1þ �rð Þ½ � þ �rw2�2

2 1þ r� �ð Þ2
: ð10Þ

Equation (10) implies that individual asset holdings follow a random walk.
In our example, the properties of the optimal value functions V, W and

the decision rules C, A are similar to those of the corresponding functions in
the standard geometric discounting case. Specifically, all of the functions V,
W, C and A are continuously differentiable, strictly increasing and concave
(C and A are not strictly concave, however). We shall also notice that our
solution is interior, i.e., it satisfies the corresponding Euler equation.

The features of the solution (9) and (10) are as follows: for a given
interest rate, the effect of the assumption of quasi-geometric discounting
on the optimal allocations is reflected in the value of the term

ð1/�rÞ ln ½� ð1þ �rÞ�:

Since this term increases in �, a larger value of the parameter � implies a
higher amount of savings. Therefore, among two agents, who are iden-
tical in all respects, except for the discounting parameter �, the agent
with a larger � will always choose to hold more assets than the one with
a smaller �. Further, the role of the discounting parameters � and � in
the individual consumption-savings behaviour is indistinguishable: the
decisions of a quasi-geometric consumer with the parameters � and � 6¼ 1
are identical to those of a standard geometric consumer, e�� ¼ 1, with the
parameter e�� ¼ � 1þ �rð Þ=ð1þ rÞ. Finally, the assumption of quasi-
geometric discounting does not affect the amount of savings for pre-
cautionary motives. (Precautionary savings are defined as the difference
between the agent’s asset holdings with and without uncertainty.)
Indeed, according to (10), precautionary savings are given by the term

�rw2�2

2 1þ r� �ð Þ2
;

which is independent of the discounting parameter �.
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APPENDIX

Proof of Proposition 1: Suppose that the value function V has the
following functional form

V a0; s0ð Þ ¼ �0 exp �1a
0 þ �2s

0 þ �3ð Þ; ð11Þ

where �0, �1, �2, �3 are some constant coefficients. Substitution of (5)
and (11) into equation (3) and the updated version of (4) yields

W a; sð Þ ¼ max
a0

� 1

�
exp �� 1þ rð Þaþ ws� a0ð Þ½ �

�
þ ��E �0 exp �1a

0 þ �2s
0 þ �3ð Þ½ �

�
ð12Þ

and

V a0; s0ð Þ ¼ � 1

�
exp �� 1þ rð Þa0 þ ws0 � a00ð Þ½ �

þ �E �0 exp �1a
00 þ �2s

00 þ �3ð Þ½ �: ð13Þ
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In order to compute the expectations in (12) and (13), we take advantage
of the fact that under the assumption of labour productivity shocks (7),
E [exp (��	0)] can be computed analytically:

E exp ��"0ð Þ½ � ¼
Z

exp ��"0ð Þ � 1

�2
ffiffiffiffiffiffi
2


p exp � "0ð Þ2

2�2

 !
d"0 ¼ exp

�2�2

2

� �
;

where � is a constant.
The first-order condition of (12) with respect to a0 is

a0 ¼ � 1þ rð Þ
���1

� aþ �wþ�2�

���1
� sþ 1

���1
� ln ���0�1ð Þþ�3þ

�2
2�

2

2

� �
: ð14Þ

After updating (14) and substituting it in (13), we obtain

Vða0; s0Þ ¼ � 1

�
þ 1

��1

� �
:

exp
�1� 1þ rð Þa0

�� �1
þ �1wþ �2�ð Þ�s0

�� �1
þ
� ln ���0�1ð Þ þ �3 þ �2

2
�2

2

� 	
�� �1

8<:
9=;:

The coefficients �0, �1, �2, �3 are to be such that the functional form of
the above function is the same as (11):

�0 ¼ � 1

�
þ 1

��1
; �1 ¼

�1� 1þ rð Þ
�� �1

; �2 ¼
�1�wþ �2��

�� �1
;

�3 ¼
�

�� �1
� ln ���0�1ð Þ þ �3 þ

�2
2�

2

2

� �
:

Solving the system of four equations with respect to four unknowns �0,
�1, �2, �3 and substituting the solution into (11), we obtain the formula
for the optimal value function V in the main text. Finally, by substituting
�0, �1, �2, �3 and a0 given by formula (14) into (12), we get the optimal
value function W. &
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