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Abstract. The standard neoclassical growth model with quasi-geometric discounting is shown
elsewhere (Krusell, P. and Smith, A., CEPR Discussion Paper No. 2651, 2000) to have multiple
solutions. As a result, value-iterative methods fail to converge. The set of equilibria is however re-
duced if we restrict our attention to the interior (satisfying the Euler equation) solution. We study
the performance of a grid-based Euler-equation methods in the given context. We find that such
a method converges to an interior solution in a wide range of parameter values, not only in the
“test” model with the closed-form solution but also in more general settings, including those with
uncertainty.
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1. Introduction

In the recent literature, much attention has been paid to studying the implications
of models with quasi-geometric (hyperbolic) discounting, e.g., Laibson (1997),
Harris and Laibson (2001), Krusell and Smith (2000, 2003), Krusell, Kuruşçu
and Smith (2002), Maliar and Maliar (in press), Judd (2004). Under such dis-
counting, the short-run discount factor (applied between today and tomorrow)
differs from the long-run discount factor (applied between tomorrow and the
day after tomorrow, and onwards). This assumption leads to time-inconsistent
preferences.

Krusell and Smith (2000) incorporate quasi-geometric discounting into the de-
terministic version of the standard neoclassical growth. They find that in addition
to the standard interior (satisfying the Euler equation) solution, the model has mul-
tiple step-function equilibria. As a result, value-iterative methods fail to converge.
The set of equilibria is however reduced if we restrict our attention to the interior
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solution, however, it remains unknown whether such a solution is unique. In par-
ticular, Krusell et al. (2002) and Judd (2004) solve the same model with different
variants of perturbation method and reach different conclusions: the former paper
finds that an interior solution is unique while the latter paper finds multiple solu-
tions. A possible explanation for the difference in the results of the two papers is
that the programming problem in question may be non-concave. Even if there were
a unique interior maximum, there might exist other interior non-maximum critical
points. As a result, different numerical methods can converge to different solutions
or can fail to converge at all. It is therefore of interest to investigate the performance
of other Euler-equation methods in the given context.1

In this paper, we study the performance of an algorithm that solves the Euler
equation on a grid of prespecified points, and we find that such a method leads
to a unique interior solution. We first applied the method to the deterministic ver-
sion of the neoclassical growth model. We find that the algorithm converges in a
wide range of parameter values, provided that the grid is not very fine and that
the decision rules are updated slowly enough. The solutions delivered by our grid
method proved to be identical to those found by the perturbation method devel-
oped in Krusell et al. (2002). We next employ our method to solve for equilibria
in the stochastic version of the neoclassical growth model. (To our knowledge, this
version of the model has not been studied in the literature yet). Once again we
observe that if the short-run discount factor is not very different from the long-run
one, and if the algorithm’s parameters (the number of grid points and the updat-
ing parameter) are appropriately chosen, our algorithm converges to the interior
solution.

2. The Model

We consider a neoclassical economy populated by one quasi-geometric agent,
see Laibson (1997) and Krusell and Smith (2000). Time is discrete and in-
finite, t ∈ {0, 1, 2, . . .}. On each date t , the agent chooses a contingency
plan for consumption {ct

t , ct
t+1, ct

t+2, . . .} and for capital {kt
t+1, kt+1

t+2, kt+2
t+3, . . .},

where time superscript and time subscript indicate, respectively, the periods in
which and for which consumption and capital are chosen (e.g., consumption
ct

t+1 is chosen in period t for period t + 1) subject to the capital-accumulation
constraint:

max
{ct

τ ,k
t
τ+1}∞τ=t

{
u
(
ct

t

) + Et

∞∑
τ=t

βδτ+1−t u
(
ct
τ+1

)}
(1)

s.t. ct
τ + kt

τ+1 = (1 − d)kt−1
τ + θτ f

(
kt−1
τ

)
, (2)

where (kt−1
t , θt ) is given. Here, θτ is the technology shock, u is the period util-

ity function, f is the production function, Et is the operator of the conditional
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expectation, d ∈ (0, 1] is the depreciation rate of capital, and β > 0 and δ ∈ (0, 1)
are the discounting parameters. We assume that u and f are strictly increasing,
strictly concave, continuously differentiable and satisfy the Inada conditions and
that the random variable ln θt+1 follows AR(1) process, ln θt+1 = ρ ln θt + εt+1

with ρ ∈ [0, 1) and εt+1 ∼ N (0, v2).
The standard case of geometric discounting corresponds to β = 1. If β > 1

(β < 1), then the short-run discount factor, βδ, is higher (lower) than the long-run
one, δ; such discounting is called quasi-geometric (hyperbolic). The assumption
of quasi-geometric discounting leads to time-inconsistency in preferences in the
sense that the relative value of consumption in any two adjacent periods t and
t + 1 depends on the date on which the evaluation is performed. We assume that
the agent is fully aware of her preference inconsistency and also, that she can-
not commit herself to fulfilling her plans. In the presence of time-inconsistency,
consumption chosen at t, ct

t+1, is not equal to the one chosen at t + 1, ct+1
t+1. The

“true” consumption at t + 1 is ct+1
t+1. Therefore, the “true” lifetime stream of con-

sumption is {c0
0, c1

1, . . .} ≡ {c0, c1, . . .}. Similarly, the “true” sequence of capital is
given by {k0

1, k1
2, . . .} ≡ {k1, k2, . . .}. Note that if commitment was possible at any

time t , then a sequence {ct
t , ct

t+1, ct
t+2, . . .} solving (1), (2) at t would be the “true”

one.
We restrict our attention to the recursive first-order Markov equilibrium. We

assume that the agent chooses the next period’s capital stock kt+1 according to a
time-invariant policy function, kt+1 = g(kt , θt ). If such a solution exists and is
interior, then it satisfies the Euler equation,

u′(ct )=δEt

{
u′(ct+1)

(
β(1 − d + θt+1 f ′(kt+1))+(1 − β)

∂g(kt+1, θt+1)

∂kt+1

)}
. (3)

A distinctive feature of the Euler Equation (3), compared to the standard one, is the
appearance of the last term on the right-hand side: it contains the derivative of the
unknown decision rule, ∂g(kt+1,θt+1)

∂kt+1
. The deterministic steady state in such a model

satisfies

1 = δ

(
β(1 − d + f ′(k̄)) + (1 − β)

∂g(k̄, 1)

∂k

)
, (4)

where k̄ denotes the steady-state level of capital. In the standard model (β = 1),
Equation (4) delivers k̄ straightforwardly. With quasi-geometric discounting (β �=
1), however, this is not the case. Here, we have only one equation but two unknowns:
the steady-state level of the function g (since k̄ = g(k̄) by definition) and its first
derivative, ∂g(k̄,1)

∂k , at this point. The consequence of this fact is that we cannot
compute the steady state without solving for the function g.
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3. The Model with a Closed-Form Solution

Let us assume that the period utility function is logarithmic, u(c) = ln (c), that the
production function is Cobb–Douglas, f (k) = kα with α ∈ (0, 1) and that capital
depreciates fully in each period, d = 1. Then, the model admits a closed-form
solution

kt+1 = βδα

1 − δα + βδα
θt k

α
t . (5)

Krusell and Smith (2000) study the deterministic version of the model (θt = 1
for all t) and find that numerical algorithms iterating on value function fail to
converge to the closed-form solution. They explain the failure of the value-iterative
approach by the fact that the model has multiple solutions. “The multiplicity takes
two forms. First, there is a continuum of stationary points for the consumer’s asset
holdings. Second, for each stationary point, there is a continuum of paths leading
into this stationary point” (Krusell and Smith, 2000, p. 17). The interval of possible
stationary points (steady states) for the capital stock is given by

k̄ ∈
(

( f ′)−1

(
1

βδ

)
, ( f ′)−1

(
1 − δ(1 − β)

βδ

))
. (6)

The paths leading to each steady state are discontinuous (they take the form of step
functions).

Krusell et al. (2002) argue that the closed-form solution is a unique interior
solution to the model because all discontinuous solutions are ruled out by the as-
sumption that the equilibrium is interior (i.e., satisfies the Euler equation). However,
the numerical results in Judd (2004) indicate that multiple solutions are still present.
It is therefore of interest to investigate whether other numerical algorithms iterating
on the Euler equation yield a unique interior solution.

4. Euler-Equation Method

In this section, we investigate the performance of a grid-based Euler-equation pro-
jection method under quasi-geometric discounting. We restrict the domain of the
capital stock to the interval [kmin, kmax] = [0.25k̄∗, 4k̄∗], where k̄∗ is the steady-state
value of capital in the model with standard geometric discounting. We consider an
equally spaced grid of N points. To evaluate the policy function outside the grid,
we use Matlab’s cubic polynomial interpolation, which cubically interpolates four
points to find the maximum value. To solve the stochastic version of the model, we
approximate the autoregressive process for the logarithms of shocks by a Markov
chain with seven states, 	 ≡ {0, ± 5v

3 , ± 5v
2 , ±5v}, as in Tauchen (1986). For each

state ln θ ∈ 	, we parametrize the next period’s capital stock as a function of the
current capital stock.
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By substituting consumption from the Euler Equation (3) in budget constraint
(2), we obtain

g̃(k, θ ) ≡ k ′ = (1 − d)k + θkα

−
{

δ
∑

ln θ ′∈	

[
β(1 − d + θ ′αg(k, θ )α−1) + (1 − β)(∂g(g(k, θ ), θ ′))/(∂g(k, θ ))

((1 − d)g(k, θ ) + θ ′g(k, θ )α − g(g(k, θ ), θ ′))σ

]
π (θ ′ | θ )

}−1/σ

,

where π (θ ′ | θ ) is the probability of θ ′ conditional on θ.

We implement the following iterative procedure: Fix some policy function on the
grid, g(k, θ ), and use it to re-calculate g̃(k, θ ) in each point of the grid. Compute the
policy function for the next iteration by using updating, ηg̃(k, θ )+ (1 − η)g(k, θ ),
where η ∈ (0, 1]. Iterate until g̃(k, θ ) = g(k, θ ) with a given precision.

For all numerical experiments, we assume the constant relative risk aversion
(CRRA) utility function, u(c) = c1−σ −1

1−σ
, where σ > 0, and the Cobb–Douglas

production function, f (k) = kα, and we fix δ = 0.95, α = 0.36. In the stochastic
case, we parameterize the process for shock by ρ = 0.95 and v = 0.01. If σ = 1
and d = 1, we obtain the model with the closed-form solution.

We begin by presenting the numerical results obtained for the model with
the closed-form solution, and we then discuss the results obtained for more gen-
eral variants of the model and compare them to those presented in Krusell et al.
(2002).

4.1. NUMERICAL RESULTS UNDER THE CLOSED-FORM SOLUTION

We find that whether the algorithm converges to the closed-form solution or not
depends on specific values of the model’s and the algorithms’ parameters, such as
the number of grid points for capital, N , and the value of β. We shall also mention
that in order to ensure convergence, the policy function should be updated much
more slowly than in the usual geometric discounting case, e.g., η = 0.01.

In the deterministic case, for example, if N = 100, the algorithm converges
to the closed-form solution under β ∈ [0.4, 1.6]. When the grid is refined, the
range of values of β leading to convergence narrows down: if N = 300, the
algorithm converges under β ∈ [0.8, 1.2]; if N = 1000, the convergence range
is β ∈ [0.95, 1.05] and, finally, if N = 10, 000, the algorithm diverges even
under β ∈ [0.99, 1.01].2 In the first panel of Table I, we compare the exact and
approximate solutions for the steady-state value of the capital stock under N =
100 and β ∈ {0.8, 0.9, 1.0, 1.1, 1.2}. We observe that the algorithm delivers a
relatively high degree of precision, even when the number of nodes is not very
large.

In the stochastic case, the performance of the grid algorithm is similar. The
range of β, under which the algorithm converges to the closed-form solution for
each particular N , is however somewhat larger. For example, if N = 100, the
convergence is achieved under β ∈ [0.3, 2.0].
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Table I. The steady-state value of capital in the deterministic model.

β 0.8 0.9 1 1.1 1.2

The model with the closed-form solution (d = 1, σ = 1)

Exact solution .147426 .167507 .187032 .205955 .224254

approximation .147405 .167492 .187025 .205955 .224254

The model with d = 0.1

σ = 0.5 1.9986 2.8734 (2.87)a 3.8219 4.8013 5.7838

σ = 1 2.3900 3.0902 (3.09)a 3.8219 4.5690 5.3205

σ = 2 2.6960 3.2536 (3.25)a 3.8219 4.3943 4.9667

σ = 3 2.8373 3.3282 (3.33)a 3.8219 4.3149 4.8049

σ = 4 2.9226 3.3729 (3.37)a 3.8219 4.2672 4.7076

σ = 5 2.9810 3.4035 (3.40)a 3.8219 4.2345 4.6411

σ = 6 3.0240 3.4260 (3.43)a 3.8219 4.2106 4.5922

σ = 7 3.0574 3.4435 (3.44)a 3.8219 4.1919 4.5543

Note. Parameter values: α = 0.36, δ = 0.95, N = 100.
aThe numbers in parenthesis correspond to the solution reported by Krusell et
al. (2002).

The results in Krusell and Smith (2003) allow us to gain intuition on why the
model’s and the algorithms’ parameters can affect the convergence in the quasi-
geometric discounting case. This paper specifically shows that the multiple dis-
continuous solutions described in Krusell and Smith (2000) satisfy a difference
(non-differentiable) analogue of the Euler Equation (3). The consequence is that
within the multiplicity interval, the numerical methods fail to distinguish the true
(closed-form) solution to the Euler equation from a bunch of nearby discontinuous
“pseudo solutions”.

Why does the number of grid points affect the convergence? Given our choice of
cubic interpolation, decreasing the number of grid points imposes more structure on
the solution candidate. That is, solving the functional Equation (3) on a coarse grid
is close to solving this equation subject to an additional constraint that the decision
function g(·) is close to a smooth cubic function. As the number of grid points
increases, the solution candidate g(·) is allowed to have more curvature parameters
and diverges from a cubic function. This may reinstate the multiplicity inherent to
the functional Equation (3), leading to divergence.

The role of the value of β in the convergence is as follows. If β is not very
different from one, then the multiplicity interval is relatively small, and there are
few nodes in this interval. In such a case, our smooth cubic interpolating function
converges to a closed-form solution. When the value of β deviates significantly
from one, the multiplicity interval increases, and so does the number of nodes in
this interval. When the number of nodes lying in the multiplicity interval becomes
large, the algorithm fails to converge.3
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4.2. NUMERICAL RESULTS FOR A GENERAL CASE

The convergence properties of our computational method in the general model
with σ �= 1 and d �= 1 proved to be very similar to those in the model with the
closed-form solution. Specifically, our grid algorithm converges to a unique interior
solution provided that the value of β is not very different from one and that the
policy function is updated slowly enough. To achieve the convergence under the
grid algorithm, we should use the grid which is not very fine.

Krusell et al. (2002) compute the solution to the deterministic version of the
model under β = 0.9, d = 0.1, and σ ∈ {0.5, 1, 2, 3, 4, 5, 6, 7}. We consider the
same values of the parameters d and σ , and explore several values of β, namely,
β ∈ {0.8, 0.9, 1.0, 1.1, 1.2}. In Table I, we report the steady-state values of the
capital stock computed by our grid algorithm for the deterministic model. For the

Figure 1. The grid algorith: the policy function in the deterministic model.
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Figure 2. The grid algorith: the policy function in the stochastic model.

sake of comparison, we also provide the results obtained by Krusell et al. (2002). The
main thing to be noted here is that our solutions are identical to those computed
by the perturbation method in Krusell et al. (2002). Regarding the properties of
the solutions, we can observe the following tendencies: The steady-state value of
capital increases (decreases) with σ for a given value of β when β < 1 (β > 1),
and it increases with β for a given value of σ . The latter tendency is illustrated in
Figure 1, where we plot the computed decision rules and the corresponding steady
states under β ∈ {0.8, 1.0, 1.2} and σ = 3.

We finally investigate the properties of the solutions to the stochastic version
of the neoclassical growth model with σ �= 1 and d �= 1. (This model was not
studied in the literature yet.) We report the results under β ∈ {0.8, 1.0, 1.2} and
σ = 3. In Figure 2, we plot the policy functions computed by the grid algo-
rithm. The noteworthy finding in the figures is that the solutions under all three
values of β are very similar. The main difference is that an agent with β > 1
(β < 1) holds more (less) capital than the one with β = 1, i.e., the short-
run patient (impatient) agent tends to over-save (under-save) relative to the one
with β = 1.4
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5. Conclusion

This paper studies the possibility of using non-linear Euler-equation methods for
computing equilibrium in the neoclassical growth model with quasi-geometric
discounting. Our method systematically converges to a unique interior solution
although its performance is not entirely satisfactory. First, for a model with a
closed-form solution, the considered method allows us to find the solution for only
a limited range of values of the discounting parameter β, even though the solution
exists for any nonnegative value of this parameter. Secondly, we cannot achieve an
arbitrary accuracy by refining the grid, because the method fails to converge when
the grid becomes too fine. Finally, to enforce convergence, we have to update the
decision rules very slowly (much more slowly than in the usual geometric discount-
ing case). It is possible that the above numerical problems are a consequence of
multiplicity of equilibrium encountered in Judd (2004). Thus, alternative methods
for solving models with quasi-geometric discounting should be developed. Yet,
the Euler-equation methods, like one we studied here, can be a simple and useful
alternative in many empirical applications, in spite of all their limitations. Indeed,
we have been able to find the solution to the model in a wide range of parameter
values. This is not only true for the “test” model with the closed-form solution but
also for more general settings.
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Notes

1Judd (2004) provides an extensive review of numerical methods proposed in the literature for the
problems with time-inconsistency.

2The fact that the accuracy of approximation can affect the convergence is also observed by Krusell
and Smith (2000) for value-iterative methods: “The algorithm may converge if g is approximated with
very low accuracy (with few grid points, or with an inflexible functional form)”.

3This suggests the following modification of the algorithm. Construct the grid so that all nodes are
placed outside the multiplicity interval and compute the decision rules in the multiplicity interval by
using interpolation. We find that this method performs very well if β is not very different from one,
e.g., β ∈ [0.4, 1.6], however it also fails when β differs from one significantly, and the multiplicity
interval is very large.

4We also find that the simulation-based parameterized expectation algorithm by den-Hann and
Marcet (1990) also converges to a unique interior solution in the stochastic version of the model, see
Maliar and Maliar (2003).



172 L. MALIAR AND S. MALIAR

References

Harris, C. and Laibson, D. (2001). Dynamic choices of hyperbolic consumers. Econometrica, 69(4),
935–959.

Judd, K. (2004). Existence, uniqueness, and computational theory for time consistent equilibria: A
hyperbolic discounting example, manuscript.

Krusell, P. and Smith, A. (2000). Consumption-Savings Decisions with Quasi-Geometric Discounting.
CEPR Discussion Paper No. 2651.

Krusell, P. and Smith, A. (2003). Consumption-savings decisions with quasi-geometric discounting.
Econometrica, 71, 365–375.
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