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Abstract

We perform a comparison of Matlab, Python and Julia as programming languages to be used for im-
plementing global nonlinear solution techniques. We consider two popular applications: a neoclassical
growth model and a new Keynesian model. The goal of our analysis is twofold: First, it is aimed at help-
ing researchers in economics to choose the programming language that is best suited to their applications
and, if needed, help them transit from one programming language to another. Second, our collections
of routines can be viewed as a toolbox with a special emphasis on techniques for dealing with high di-
mensional economic problems. We provide the routines in the three languages for constructing random
and quasi-random grids, low-cost monomial integration, various global solution methods, routines for
checking the accuracy of the solutions, etc. Our global solution methods are not only accurate but also
fast. Solving a new Keynesian model with eight state variables only takes a few seconds, even in the
presence of active zero lower bound on nominal interest rates. This speed is important because it then
allows the model to be solved repeatedly as one would require in order to do estimation.
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1 Introduction

There is a growing interest among economists in global nonlinear solution methods. Value function dis-
cretization is the most well-known example of a global nonlinear solution method, but there are a variety
of other iterative and Euler-equation based methods that differ in the way they approximate, interpolate, in-
tegrate and construct nonlinear solutions. These methods solve economic models on grids of points that
cover a relevant area of the state space, and they generally produce more accurate solutions than perturba-
tion methods which typically build approximations around a single point.1 Also, global methods are useful
for solving some models in which perturbation methods are either not applicable or their applications are
limited.2 Finally, the recent developments of numerical techniques for dealing with high-dimensional data
has greatly extended the class of models that can be studied with global solution methods. In particular, it is
now possible to construct global nonlinear solutions to economic models with dozens of state variables that
are intractable with conventional global solution methods (such as value-function discretization) due to the
curse of dimensionality.3

However, global nonlinear solution methods are more difficult to automate than perturbation methods,
and their implementation requires more substantial programming from researchers. In particular, there is still
no consensus in the profession on what software to use for implementing global solution methods, unlike
for perturbation methods where a common choice is the Dynare or IRIS platforms. Because of this, an
important aspect of the implementation of a global solution method is the choice of programming language
to use. Traditionally, Matlab is used in economics, although some researchers have also used Fortan and C.
Recently, Python and Julia have begun to see a more widespread use in the economics literature.4

In this paper, we pursue two goals: First, we provide a comparison between solution methods imple-
mented in Matlab, Python and Julia in the context of two popular applications: a neoclassical growth model
and a new Keynesian model. Our goal is to help economic researchers choose the programming language
that is best suited to their own situation, and, if needed, help them transition from one programming language
to another. The readers can see and compare how the same algorithm is implemented in different languages
and, as a result, will understand some of the unique aspects of each language and choose the one which
best fits their needs.5 The implementation, structure and number of lines of code are similar across all three
languages.

Second, we provide a carefully documented collection of routines for Matlab, Python and Julia that can be
used for constructing global nonlinear solutions with a special emphasis on modern techniques for problems
with high dimensionality. In particular, our code includes routines for constructing random and quasi-random
grids, low-cost monomial integration methods, approximating functions using complete polynomials, as well
as routines for computing the numerical accuracy of solutions. Much of this code is generic in a way which
allows it to be easily portable to other applications including problems with kinks and occasionally binding

1 The accuracy of local perturbation solutions can decrease rapidly away from steady state even in relatively smooth models;
see Kollmann et al. (2011). In models with stronger nonlinearities, such as new Keynesian models, approximation errors can reach
hundreds of percent under empirically relevant parameterizations; see Judd et al. (2017). In models of labor search, a global solution
is important for accurate capturing even first moments of equilibrium dynamics; see Petrosky-Nadeau and Zhang (Forthcoming)

2 For example, perturbation methods are not well suitable for analyzing sovereign default problems (e.g., Arellano (2008))
and portfolio choice problems (e.g., Hasanhodzic and Kotlikoff (2013)). There are perturbation-based methods that can deal with
occasionally binding constraints but they are limited to the first-order approximation. For example, see Laséen and Svensson (2011)
and Guerrieri and Iacoviello (2015).

3 See Maliar and Maliar (2014) for a survey of numerical techniques that are tractable in problems with high dimensionality and
see Lepetyuk et al. (2017) for an example of constructing a global nonlinear solution to a large-scale projection model of the Bank
of Canada.

4 For example, Python and Julia are used in the Quantitative economics lecture site of Tom Sargent and John Stachurski. Python
is used to produce the Heterogeneous Agents Resources and toolKit (HARK) by the team led by Christopher Carroll.

5 Additionally, we provide carefully elaborated notebooks with a description of our code and algorithms on the QuantEcon
Notebook site (http://notes.quantecon.org)
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constraints. Our examples are solved using a variety of solution techniques including: conventional policy
function iteration, conventional value function iteration, an Euler equation method, the endogenous grid
method of Carroll (2006), and several variants of the envelope condition method of Maliar and Maliar (2015).

Aruoba and Fernández-Villaverde (2015) is closely related to our work. In their paper, the authors com-
pare 18 different programming languages by implementing the same algorithm – value-function discretiza-
tion – to solve the stochastic neoclassical growth model and by reporting the CPU time needed to solve the
model. They find that the choice of a programming language plays an important role in computation time:
the fastest language in their study (C++) solves the model over 450 times faster than the slowest language (R).
The present work extends Aruoba and Fernández-Villaverde (2015) by analyzing a variety of algorithms and
also by solving a larger (in terms of the number of state variables) model. Similar to Aruoba and Fernández-
Villaverde (2015), we find that the choice of a programming language may have important effects in terms of
speed, however, we do not observe such huge differences across the three languages considered. In addition
to speed comparisons, we also discuss the key features of each language that might be useful for economists.

We build on the existing Matlab codes accompanying Arellano et al. (2016) and Maliar and Maliar (2015).
We improve on these codes, and provide new routines that have not been analyzed previously in the literature.
First, for the neoclassical growth model, we implement seven different methods in all three programming
languages, whereas Arellano et al. (2016) is limited to Matlab implementation of the envelope condition
method. Furthermore, for the new Keynesian model, we modify the method proposed in Maliar and Maliar
(2015) to operate on random and quasi-random grids covering a fixed hypercube, instead of operating on the
high probability area of the state space. The Matlab code developed in the present paper achieves an almost
a 60-time speed up over the original code in Maliar and Maliar (2015), while still producing highly accurate
solutions. Our code is sufficiently fast to be used for the estimation of a moderately-large new Keynesian
model with 8 state variables. It takes us just a few seconds to construct the solution, including the model
with active zero lower bound on the nominal interest rate.

Our overall experience with each language was comparable, though it is useful to recognize that each
language has it specific strengths. Both Julia and Python are open-source which facilitates transparency and
reproducibility. For reasons to be discussed later, Julia outperforms both Matlab and Python in algorithms
that require numerical solvers or optimizers. Python benefits from an active community and strong package
ecosystem which makes finding the right tools easy. Finally, Matlab benefits from extensive documenta-
tion, technical support, and various built in toolboxes. Ultimately, the best choice of programming language
depends on various features including: model size, solution complexity, ease of writing, and co-author pref-
erences. Regardless of the programming language chosen, our experience shows that transitioning between
each of the three languages we consider should not require a substantial learning effort.

The rest of the paper is organized as follows. In Section 2, we describe the three languages, Matlab,
Python and Julia. In Section 3, we outline seven algorithms we implement to solve a variant of the standard
neoclassical stochastic growth model. In Section 4, we present an algorithm for solving a medium-scale new
Keynesian model with a zero lower bound on nominal interest rates and describe the results of our analysis.
Finally, in Section 5 we conclude.

2 Programming languages in economics

In this section, we provide a brief description of the three programming languages discussed in this paper,
MATLAB, Python and Julia. We provide step-by-step instructions of how to install Julia and Python and a
description of the accompanying software in our corresponding notebooks; see QuantEcon Notebook Site
(http://notes.quantecon.org).
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2.1 Matlab

In our experience, Matlab is the programming language that most economists currently use. The most com-
pelling reason for this is that it is a “batteries included”solution. What we mean by “batteries included”is
that Matlab provides a code editing and execution environment, plotting capabilities, and a vast catalog of
pre-written numerical routines. For example, in this project, we were able to leverage built-in routines to
construct Sobol sequences (quasi-Monte Carlo grids) and for doing numerical optimization. Another benefit
is that, because so many other economists already use Matlab, collaborating on research code with others is
efficient. There are two main examples of this. The first is that Dynare, which is mostly used via it’s Matlab
interface, has become widely used across academia and policy institutions facilitating communication and
sharing of models. The second is that because many algorithms and routines have been previously written
in Matlab, it should be easy for researchers to adapt these pieces of code to new projects.

Matlab, however, is not a perfect language for economists. Some of its downsides are:

• Commercial. As a commercial product, in order to use Matlab users must first obtain a non-free license.
This can be costly if an institution does not already have a license available for use.

• Closed source. Users cannot look at the Matlab source code to study (or change) the implementation
of built-in routines.

• Restricted parallel programming possibilities (due to limited license availability). As computer hard-
ware becomes more powerful and computer resources in the cloud become more accessible, economists
are increasingly implementing parallel versions of their algorithms. While basic parallelism is conve-
nient in Matlab, running code at scale requires one license per process. This increases the cost of large
scale computations. 6

• Limited notion of community packages. Apart from the official Matlab toolboxes, Matlab does not
have a well-developed system of add-on packages.7 Using external libraries requires users to download
and place the files in the same directory as the scripts they are running or to manage the path Matlab
searches when calling functions. Although not insurmountable, this friction discourages good software
development by making it difficult to build and reuse modular libraries.

• Mainly a numerical programming language. Tasks outside of this purview can be more difficult than
in a more general programming language.

2.2 Python

While Matlab has long been widely used in economics, Python has been steadily gaining users in economics
during recent years. Some of Python’s most compelling selling points are as follows:

• A mature and rich package ecosystem. At the time of writing, Python has 112,232 registered packages
that perform a variety of tasks and can be easily downloaded and installed.

6 As an example, if one wanted to run a Matlab program on 16 optimized processors on the Amazon Compute Cloud, then in
addition to paying $0.80/hour for the processor time, it would cost an additional $0.20/hour per processor to license each processor
bringing the total from $0.80/hour to $4.00/hour. For details see https://www.mathworks.com/products/parallel-computing/parallel-
computing-on-the-cloud/distriben-ec2-pricing.html and https://aws.amazon.com/ec2/pricing/on-demand/.

7Matlab does however host an open file exchange called Matlab Central. Matlab Central has 365,000 current contributors and
code that is available to do many tasks that are not included in the base Matlab package, but they do not provide the same package
management services that are available within Python or Julia.
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• Advanced data manipulation and numerics libraries. For example, pandas is a very powerful library
containing data structures and algorithms for doing data analysis. numpy and scipy are the base
of array-based numerical computing in Python and provide linear algebra, optimization, and other
foundational numerical algorithms. matplotlib is the main plotting library.

• Many users and ample learning resources. Python is one of the top five most widely used program-
ming languages in the world. This large user base is beneficial to economists because of the libraries
mentioned above and the sheer volume of learning materials and resources available online for learning
Python. As one point of data, at the time of writing there are 696,984 questions tagged with Python
on http://stackoverflow.com8, while there are only 68,403 for Matlab and 2,659 for Julia.

• Wide adoption in the private sector. This is beneficial because industry resources are being applied to
enhance the language and create powerful tools economists can leverage in their computational code.

• Open source. This means that the source code is publicly available on the internet and it is 100 percent
free to view, install, distribute and use.

Python is not perfect, however. Some of its shortcomings are:

• External libraries. External libraries are needed for efficient numerical computation. This means that
users need to identify which libraries to use, know how to install them properly, and load them into
their codes. Fortunately this is not as difficult as it sounds thanks to scientific python distributions like
Anaconda (https://www.continuum.io/downloads) that come with Python and all the most common
scientific packages installed and pre-configured.

• Slower than other languages for certain types of algorithms. This can often be circumvented by vec-
torizing operations (as in Matlab) or by leveraging tools such as numba (http://numba.pydata.org) or
cython (http://cython.org) to compile Python code into a fast and efficient machine code. In many
cases this is a suitable approach, but it does require extra effort on behalf of the programmer. In other
cases, it is difficult or impossible to express only the slower parts of an algorithm using these tools.

2.3 Julia

The most recently released language of the three is Julia. While Julia has not yet reached a stable 1.0 release,
many enthusiastic economists are starting to pick it up because of the benefits that it offers. The list of Julia’s
strengths is extensive and includes the following:

• All of Julia is based around just-in-time (JIT) compilation9. Since all Julia code is compiled before it
is executed, Julia has the potential to run at the same speed as languages like C or Fortran.10 11

• Most of Julia is written in Julia. This offers at least two main benefits: (1) core language features and
constructs are written and defined using the same tools available to user code; (2) users can look to
the implementation of Julia itself to see best practices and tips to make their own code better. One
consequence of this that is often surprising to Matlab or Python users is that a Julia user can write
a routine in Julia that performs as well, or often better, than implementations in common libraries.

8 This is a popular question-and-answer website for programming.
9Just-in-time compilation means that a function is compiled the first time it is called and all subsequent calls to that function are

calls to faster.
10 See https://julialang.org/benchmarks/ for some example benchmarks.
11 There has been work to add just-in-time compilation to both Matlab and Python, but, because it isn’t native to either language,

it does not work as generically as it does in Julia.
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In other words, Julia users do not need to reach to a library for every operation, because writing the
subroutine in Julia can be at least as performant.

• Flexibility. Of the three languages that we analyze, Julia is the most expressive and flexible. It features
advanced computer science concepts such as meta-programming (see below) and multiple dispatch (a
choice of which method to execute when a function is applied; such a choice is made using all of a
function’s arguments, not just the first one).

• Similarity to Matlab. Julia’s syntax is intentionally similar to that of Matlab. In fact, in many instances,
copying and pasting Matlab code produces the same result in Julia as in Matlab. This was an intentional
decision intended to allow Matlab users to transition seamlessly from Matlab to Julia.

• Built in parallel and multi-threaded programming constructs. Having support at the language level for
both distributed and shared memory parallel processing means running code in serial or in parallel is
often a one word change to the user’s code. Also, because Julia is open source like Python, its programs
can scale up to run on arbitrarily many processes without incurring the additional costs from licensing.

• Meta-programming. One relatively advanced and compelling feature that is unique to Julia (amongst
the languages considered here) is meta-programming. A language that allows meta-programming
treats the code that is executed as data that can be manipulated by the program itself. This means
users can write code that writes the code that will be run. The most complete example of how we
leveraged this feature for this project was in implementing routines to compute basis functions for
complete polynomial. In Python and Matlab, our implementation was quite naive. We allow for a
complete polynomial of degree between two and five and write out one for loop for each degree. The
structure of each loop is identical. In contrast, the Julia’s version of this routine allows an arbitrary
degree complete polynomial. To achieve this, we leverage Julia’s meta-programming capabilities,
receive the desired degree of complete polynomial from the user and then instruct Julia to emit code
that contains that many for loops – each having the same structure as the hand-written loops in our
Python and Matlab versions. This results in the complete polynomial Julia routines having less code
written by us and being more flexible and generic.

Despite many promising features, there are still some shortcomings to Julia. These include:

• Lack of stability. Julia is still very young, it was first made public in 2011 and has not reached a stable
1.0 release.12

• Slow compile times. Because the JIT compiler aggressively optimizes the machine code for each func-
tion that is executed, it can feel sluggish when doing rapid iterative development (make a change, run
code, make a change, run code, etc. . . ) because you pay the fixed compile cost after each edit.

• Julia must be able to infer a type for each variable in a function in order to emit fast code. This is not
usually a problem, but sometimes if you are careless then the code will run slower than it should —
though, even in the worst case, it is still often as fast as Matlab or Python.

• The package system is still emerging. Many of the packages throughout the Julia community are sur-
prisingly advanced given that Julia has still not reached a stable release, but they are usually not as
polished as what you would find in the Matlab sponsored toolboxes or the best Python packages. That
being said, we have not found package availability to be prohibitive for our work.13

12 The Julia team anticipates releasing version 1.0 in Q2 2018.
13 When routines are not available, it often isn’t much extra work to code up an implementation by hand; see the discussion above.
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• Lack of tooling. Unlike the more mature languages Matlab and Python, Julia currently lacks polished
developer tools like an integrated development environment (IDE) or debugger. These are actively
being worked on and will hopefully emerge soon after the Julia 1.0 release.

2.4 Syntax comparison

Julia and Matlab have many syntax elements in common. For example, if one wants to perform matrix
multiplication of two matrices A and B then one can simply write A*B, but if one wants to perform element
wise multiplication then one writes A.*B. Additionally, blocks are started with the same words (for, if,
while) and terminated with the word end. These similarities make it very easy to translate code from
Matlab to Julia and vice-versa. The one major difference between Julia and Matlab is that Julia uses square
brackets to index into arrays (A[i, j]) while Matlab uses parenthesis (A(i, j)).

On the other hand, Python differs slightly in its conventions. In Python A*B represents element-wise
multiplication between matrices while A@B represents matrix multiplications.14 Additionally, rather than
depend on end to denote the end of blocks, Python forces each new block to be indented four spaces from
the previous one. Despite these differences, we found that syntax differences did not present a large obstacle
for writing code in all three languages.

3 Comparison using a neoclassical growth model

The neoclassical growth model is often used as a benchmark to measure the effectiveness of a solution
method. We keep with this tradition and analyze the stochastic neoclassical growth model with seven alter-
native solution methods, which are outlined in Arellano et al. (2016). Each method is implemented in Julia,
Matlab, and Python which allows us to see how the performance of different solution methods may vary by
programming language.

3.1 The model

We consider a dynamic programming problem of finding the value function, V , that solves the Bellman
equation,

V (k, z) = max
c,k′

u (c) + βE
[
V
(
k′, z′

)]
(1)

s.t. k′ = (1− δ) k + zf (k)− c (2)
ln z′ = ρ ln z + ε′, ε′ ∼ N

(
0, σ2

)
, (3)

where k, c and z are capital, consumption and productivity level, respectively; β ∈ (0, 1); δ ∈ (0, 1]
; ρ ∈ (−1, 1); σ ≥ 0; the utility and production functions, u and f , respectively, are strictly increasing,
continuously differentiable and strictly concave. The primes on variables denote next-period values, and
E [V (k′, z′)] is an expectation conditional on state (k, z).

Optimality conditions. The first order condition (FOC) and envelope condition (EC) of the problem (1)-
(3), respectively, are

u′ (c) = βE
[
V1

(
k′, z′

)]
(4)

14 The use of @ for matrix multiplication was added in Python version 3.5. Readers who have seen or written Python code written
for Python versions earlier than version 3.5 might have come across A.dot(B) or np.dot(A, B) instead.
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V1 (k, z) = u′ (c)
[
1− δ + zf ′ (k)

]
. (5)

By combining (4) and (5), we obtain the Euler equation

u′ (c) = βE
[
u′
(
c′
) [

1− δ + z′f ′
(
k′
)]]

. (6)

Parameterization and implementation details. We parameterize the model (1)-(3) by using a Constant
Relative Risk Aversion (CRRA) utility function, u (c) = c1−γ−1

1−γ , and a Cobb-Douglas production function,
f (k) = Akα. We choose parameters to be set at A = 1/β−(1−δ)

α , α = 1/3, β = 0.99, δ = 0.025, ρ = 0.95
and σ = 0.01. As a solution domain, we use a rectangular, uniformly spaced grid of 10 × 10 points for
capital and productivity between 0.9 and 1.1 for both variables.

We integrate by using a 10-node Gauss-Hermite quadrature rule and approximate the policy and value
functions by using complete ordinary polynomials up to degree 5. As an initial guess, we use a linear ap-
proximation to the capital policy function. To solve for polynomial coefficients, we use fixed-point iteration.

All computations are performed using Julia v0.6.0, Matlab version 9.2.0 (R2017a), and Python 3.6 on a
MacBook Pro with a 2.7 GHz Intel Core i7 processor and 16 GB of RAM. For Julia and Python, the particular
package versions can be found in the corresponding notebooks submitted on QuantEcon’s Notebook site15.

3.2 Value iterative methods

We analyze three value iterative algorithms for solving the model: (1) conventional value function itera-
tion method analyzed in e.g., Aruoba and Fernández-Villaverde (2015) ; (2) a variant of envelope condition
method (ECM) of Maliar and Maliar (2013) that finds a solution to Bellman equation by iterating on value
function; and (3) endogenous grid method (EGM) of Carroll (2006). We present a brief description of each
algorithm below. A detailed description of each algorithm is included in Appendix A.

3.2.1 Conventional Value Function Iteration

Conventional VFI constructs the policy rule for consumption by combining FOC (4) and budget constraint
(2):

Algorithm 1. Conventional VFI
Given V , for each point (k, z), define the following recursion:

i). Numerically solve for c satisfying u′ (c) = βE [V1 ((1− δ) k + zf (k)− c, z′)].
ii). Find k′ = (1− δ) k + zf (k)− c.
iii). Find V̂ (k, z) = u (c) + βE [V (k′, z′)].

Iterate on i)-iii) until convergence V̂ = V .

3.2.2 Envelope Condition Method

ECM, proposed in Maliar and Maliar (2013), finds consumption from envelope condition (5) and budget
constraint (2). In this specific model, the consumption function can be constructed analytically:

15The Matlab notebook (http://notes.quantecon.org/submission/5b5f71779cd7f00015be6350),
Python notebook (http://notes.quantecon.org/submission/5b5f70db9cd7f00015be634e), Julia notebook
(http://notes.quantecon.org/submission/5b5f711d9cd7f00015be634f)
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Algorithm 2. ECM-VF
Given V , for each point (k, z), define the following recursion:

i). Find c = u′−1
[

V1(k,z)
1−δ+zf ′(k)

]
.

ii). Find k′ = (1− δ) k + zf (k)− c.
iii). Find V̂ (k, z) = u (c) + βE [V (k′, z′)].

Iterate on i)-iii) until convergence V̂ = V .

3.2.3 Endogenous Grid Method

Finally, EGM of Carroll (2006) constructs a grid on (k′, z) by fixing the future endogenous state variable
k′ and by treating the current endogenous state variable k as unknown; see also Barillas and Fernández-
Villaverde (2007) for a discussion of the EGM method. Since k′ is fixed, EGM computes E [V1 (k′, z′)]
up-front and thus can avoid costly interpolation and approximation of expectation in a root finding procedure.

Algorithm 3. EGM of Carroll (2005)
Given V , for each point (k′, z), define the following recursion:

i). Find c = u′−1 {βE [V1 (k′, z′)]}.
ii). Solve for k satisfying k′ = (1− δ) k + zf (k)− c.
iii). Find V̂ (k, z) = u (c) + βE [V (k′, z′)].

Iterate on i)-iii) until convergence V̂ = V .

In Step ii) of EGM, we still need to find k numerically. However, for the studied model, Carroll (2006)
shows a change of variables that makes it possible to avoid finding k numerically on each iteration (except
of the very last iteration). In order to streamline our code, we do not use this change of variables so the
running time of our version of the EGM method will be considerably larger than for the version of the
method in Carroll (2006). However, this fact does not distort our comparison analysis since we use the same
implementation in all three languages.

3.2.4 Comparison results of Matlab, Python and Julia for value iterative methods

The results from our comparison of the three iterative methods are in Table 1. Conventional VFI is the most
time consuming in all three languages because it requires us to find the root of (4) for each (k, z). Given (k, z),
each evaluation of equation (4) requires the computer to compute conditional expectation by interpolating
over the t+ 1 values. Numerical root finders must do this repeatedly. The reason EGM performs better than
VFI is that it is easier to solve equation (4) with respect to c given (k′, z) than to solve it with respect to c
given (k, z) because we only need to evaluate conditional expectation once if we know k′. The ECM method
requires no numerical solver which is why it is so efficient relative to the other two methods.16

Julia produces solutions between 5 and 50 times faster than Matlab and Python for VFI and EGM. The
reasons Julia performs so much better on these two algorithms is because the entire language is built on
JIT compilation. This means that the repeated calls to the Julia objective function are cheap (relative to an
interpreted language like Matlab or Python) because these subsequent function calls execute already compiled
machine code.

Our results for the ECM show similar performance for all three languages. The main reason for this is that
the method does not require a non-linear solver to compute the policy for consumption and computations can

16A version of the envelope condition argument is used in Achdou et al. (2017) to construct a new class of fast and efficient
numerical methods for solving dynamic economic models in continuous time.
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be vectorized. The vectorization puts the languages on more similar footing because they all end up calling
out to the same high performant BLAS routines implemented in C or Fortran.

Table 1: Accuracy and speed of value iterative methods

Degree L1 L∞ Julia CPU (s) Matlab CPU (s) Python CPU (s)

Conventional VFI (VFI)
2nd -3.83 -2.76 2.06 74.02 11.20
3rd -4.97 -3.32 1.79 49.87 6.83
4th -6.06 -4.03 1.88 43.08 6.06
5th -7.00 -4.70 3.28 32.48 4.61

Envelope condition method (ECM)
2nd -3.83 -2.76 0.56 0.38 0.34
3rd -4.97 -3.32 0.35 0.21 0.24
4th -6.06 -4.03 0.57 0.22 0.27
5th -7.00 -4.70 0.63 0.11 0.15

Endogenous grid method (EGM)
2nd -3.81 -2.76 1.03 59.89 4.11
3rd -4.95 -3.34 0.76 46.19 2.82
4th -6.06 -4.05 0.91 34.89 2.51
5th -7.04 -4.73 0.99 27.05 1.89

a L1 and L∞ are, respectively, the average and maximum of absolute residuals
across optimality conditions and test points (in log 10) units on a stochastic sim-
ulation of 10,000 observations. CPU is the time necessary for computing a so-
lution (in seconds)

3.3 Policy iterating methods

We analyze four algorithms that construct policy functions for the standard neoclassical stochastic growth
model: Algorithm 4 is a conventional policy iteration (PI) method, e.g., Santos and Rust (2004); Algorithm
5 is a variant of ECM that implements policy iteration; Algorithm 6 is a version of ECM that solve for
derivative of value function instead of value function itself; Algorithm 7 an Euler equation algorithm. Again
we give a brief description of each algorithm but a more detailed description of these algorithms is provided
in Appendix A.

3.3.1 Conventional Policy Iteration

Conventional policy iteration constructs a solution to the Bellman equation by iterating on the consumption
function using FOC (4).

Algorithm 4. Conventional PI
Given C, for each point (k, z), define the following recursion:

i). Find K (k, z) = (1− δ) k + zf (k)− C (k, z)
ii). Solve for V satisfying V (k, z) = u (C (k, z)) + βE [V (K (k, z) , z′)]

iii). Find Ĉ satisfying u′
(
Ĉ (k, z)

)
= βE

[
V1

(
(1− δ) k + zf (k)− Ĉ (k, z) , z′

)]
Iterate on i)-iii) until convergence Ĉ = C.
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3.3.2 ECM Policy Iteration

ECM-PI the variant of ECM that performs PI instead of VFI. It constructs a solution to the Bellman equation
by iterating on the consumption function using EC (5).

Algorithm 5. ECM-PI
Given C, for each point (k, z), define the following recursion:

i). Find K (k, z) = (1− δ) k + zf (k)− C (k, z)
ii). Solve for V satisfying V (k, z) = u (C (k, z)) + βE [V (K (k, z) , z′)]

iii). Find Ĉ (k, z) = u′−1
[

V1(k,z)
1−δ+zf ′(k)

]
Iterate on i)-iii) until convergence Ĉ = C.

3.3.3 Derivative Policy Iteration

The ECM analysis also suggests a useful recursion for the derivative of value function. We first construct
consumption function C (k, z) satisfying FOC (4) under the current value function

βE
[
V1

(
k′, z′

)]
= u′ (C (k, z)) , (7)

and we then use (5) to obtain the derivative of value function for next iteration. This leads to a solution
method that we call ECM-DVF.

The main difference between ECM-DVF from the previously studied ECM-VF consists in that we iterate
on V1 without computing V on each iteration. We only compute V at the very end, when both V1 and the
optimal policy functions are constructed. Again, neither numerical maximization nor a numerical solver is
necessary under ECM-DVF but only direct calculations. Similarly to PI methods, Euler equation methods
do not solve for value function but only for decision (policy) functions. One possible decision function is
a derivative of value function. Thus, the ECM-DVF recursion (7) can be also viewed as an Euler equation
written in terms of the derivative of value function.

Algorithm 6. ECM-DVF
Given V1 for each point (k, z), define the following recursion:

i). Find c = u′−1
[

V1(k,z)
1−δ+zfprime(k)

]
ii). Find k′ = (1− δ) k + zf (k)− c
iii). Find V̂1 (k, z) = β [1− δ + zf ′ (k)]E [V1 (k′, z′)]

Iterate on i)-iii) until convergence V̂1 = V1

Given the converged policy functions, find V satisfying V (k, z) = u (c) + βE [V (k′, z′)]

3.3.4 Euler Equation Methods

Policy iteration has similarity to Euler equation methods; see Judd (1998), Santos (1999) for a general discus-
sion of such methods. Euler equation methods approximate policy functions for consumption c = C (k, z),
capital k′ = K (k, z) (or other policy functions) to satisfy (2), (3) and (6). Below, we provide an example of
Euler equation method (many other recursions for such methods are possible).

Algorithm 7. Euler equation algorithms
Given C (k, z), for each point (k, z), define the following recursion:

i). Find K (k, z) = (1− δ) k + zf (k)− C (k, z)
ii). Find c′ = C (K (k, z) , z′)

iii). Find Ĉ (k, z) = u′−1 {βE [u′ (c′) (1− δ + z′f ′ (k′))]}
Iterate on i)-iii) until convergence Ĉ = C.
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3.3.5 Comparison results of Matlab, Python and Julia for policy iterative methods

Table 2: Accuracy and speed of policy iterative methods

Degree L1 L∞ Julia CPU (s) Matlab CPU (s) Python CPU (s)

Conventional PI
2nd -3.81 -2.76 0.37 47.13 5.66
3rd -4.95 -3.34 1.58 39.30 5.07
4th -6.06 -4.05 2.06 41.83 5.75
5th -7.04 -4.73 3.28 32.54 4.44

Envelope condition method iterrating on policy functions (ECM-PI)
2nd -3.81 -2.76 0.32 0.38 0.42
3rd -4.95 -3.34 0.37 0.15 0.34
4th -6.06 -4.05 0.55 0.24 0.41
5th -7.04 -4.73 0.64 0.11 0.27

Envelope condition method iterating on derivative of value function (ECM-DVF)
2nd -3.81 -2.76 0.74 0.68 0.61
3rd -4.95 -3.34 1.12 0.66 0.65
4th -6.06 -4.05 1.62 0.69 0.75
5th -7.04 -4.73 4.05 0.73 0.81

Euler equation method
2nd -3.81 -2.76 0.40 0.46 0.38
3rd -4.95 -3.34 0.37 0.28 0.27
4th -6.06 -4.05 0.53 0.24 0.25
5th -7.04 -4.73 0.77 0.11 0.12

a L1 and L∞ are, respectively, the average and maximum of absolute residuals
across optimality conditions and test points (in log 10) units on a stochastic simu-
lation of 10,000 observations. CPU is the time necessary for computing a solution
(in seconds)

We see that conventional PI performs the worst because it relies on a numerical solver, but, as with the
value iterative methods, this reliance is less problematic for Julia than for Matlab or Python.

Overall, we found that the speed of most algorithms was comparable across all three languages. The
exception was that Julia performed significantly better than the other programs whenever there was any
numerical optimization or root-finding involved. However, these speedups came at the cost of spending a
(relatively small) amount of extra time being careful about how the code was written to ensure that the Julia
compiler is able to infer the type of each variable in the most time-intensive parts of the program.

4 Comparison using a new Keynesian model

In this section, we solve a stylized medium-scale Keynesian model using equivalent codes implemented in
Julia, Matlab, and Python. The model was previously analyzed in Maliar and Maliar (2015). It features
Calvo-type price frictions and a Taylor rule with a zero lower bound on the nominal interest rate.

4.1 The model

To save on space, we present the model in Appendix B.
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First-order conditions. Here, we summarize the model by showing the set of optimality conditions used
to construct the numerical solutions:

St =
exp (ηu,t + ηL,t)

exp (ηa,t)
Lϑt Yt + βθEt

{
πεt+1St+1

}
, (8)

Ft = exp (ηu,t)C
−γ
t Yt + βθEt

{
πε−1
t+1Ft+1

}
, (9)

St
Ft

=

[
1− θπε−1

t

1− θ

] 1
1−ε

, (10)

∆t =

[
(1− θ)

[
1− θπε−1

t

1− θ

] ε
ε−1

+ θ
πεt

∆t−1

]−1

, (11)

C−γt = β
exp (ηB,t)

exp (ηu,t)
RtEt

[
C−γt+1 exp (ηu,t+1)

πt+1

]
, (12)

Yt = exp (ηa,t)Lt∆t (13)

Ct =

(
1− G

exp (ηG,t)

)
Yt (14)

Rt = max

1, R∗

(
Rt−1

R∗

)µ [(πt
π∗

)φπ ( Yt
YN,t

)φy]1−µ

exp (ηR,t)

 , (15)

where St and Ft are supplementary variables reflecting profit maximizing conditions of firms; ∆t is a
measure of price dispersion across firms; Ct, Yt, Lt are consumption, output and labor, respectively; πt and
Rt are inflation and interest rate, respectively; π∗ and R∗ = π∗

β are the inflation target and the steady state

interest rate, respectively; YN,t =

[
exp(ηa,t)

1+ϑ

[exp(ηG,t)]
−γ

exp(ηL,t)

] 1
ϑ+γ

is the natural level of output. The parameters

are β (discount factor), θ (fraction of non-reoptimizing firms), ε (inverse of the elasticity of substitution in the
final-good production), ϑ and γ (utility-function parameters), G (steady-state government spending), and µ,
φy and φπ (Taylor-rule parameters). Each exogenous variable ηz,t ∈ {ηu,t, ηL,t, ηa,t, ηu,t, ηB,t, ηG,t} follows
an AR(1) process ηz,t+1 = ρzηz,t + εz,t+1 with εz,t+1 ∼ N

(
0, σ2

z

)
, σz > 0 and ρz ∈ (−1, 1).

Parameterization and implementation details. We parameterize the model by β = 0.99, γ = 1, ϑ =
2.09, ε = 4.45, θ = 0.83 and G = 0.23. The autocorrelation coefficients in six exogenous variables are
ρa = 0.95 , ρB = 0.22, ρR = 0.15, ρu = 0.92, ρG = 0.95, ρL = 0.25, and the corresponding standard
deviations are σu = 0.54%, σG = 0.38%, σL = 18.21% σa = 0.45%, σB = 0.23% and σR = 0.28%. The
parameters in the Taylor rule are φy = 0.07, φπ = 2.21, and µ = 0.82 . These values are used in Maliar and
Maliar (2015) and are in line with the estimates in Del Negro et al. (2007) and Smets and Wouters (2007).

As a solution domain, we use random and quasi-random grids constructed inside an 8-dimensional hy-
percube; we describe the grid construction in Section 4.2. To approximate the equilibrium policy rules, we
use a family of ordinary polynomials up to degree 5. To compute conditional expectations in Euler equations
(8), (9) and (12), we use a monomial integration rule (either a formula with 2N nodes or the one with 2N2+1
nodes); see Judd et al. (2011) for a detailed description of the monomial integration formulas. To solve for
the polynomial coefficients, we use fixed point iteration. Again, Julia, Matlab, and Python software can be
found in the corresponding notebooks submitted on QuantEcon17.

17 Matlab notebook (http://notes.quantecon.org/submission/5b53cd9117fb4900153deafe), Python
notebook (http://notes.quantecon.org/submission/5b53cdaf17fb4900153deaff), Julia notebook
(http://notes.quantecon.org/submission/5b53cd6917fb4900153deafd)
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Computational method. We now outline the Euler equation algorithm used to solve the neoclassical
model. An extended description of this algorithm is provided in Appendix B.

Algorithm 8. Euler equation algorithms for the new Keynesian model.
Given S (∆, R, ηz), F (∆, R, ηz) and C (∆, R, ηz) for each point (∆, R, ηz), define the following recursion:

i). Find π from S
F =

[
1−θπε−1

1−θ

] 1
1−ε and ∆′=

[
(1− θ)

[
1−θπε−1

1−θ

] ε
ε−1

+θ π
ε

∆

]−1

;

– Y =
(

1− G
exp(ηG)

)−1
C, and L = Y [exp (ηa) ∆′]−1;

– YN =
[

exp(ηa)1+ϑ

[exp(ηG)]−γexp(ηL)

] 1
ϑ+γ ;

– R′ = max

{
1, R∗

(
R
R∗

)µ [(
π
π∗

)φπ (
Y
YN

)φy]1−µ
exp (ηR)

}
.

ii). Find S (∆′, R′, ηz
′), F (∆′, R′, ηz

′) and C (∆′, R′, ηz
′);

iii). Find π′ from S′

F ′=

[
1−θ

(
π
′)ε−1

1−θ

] 1
1−ε

;

– Ŝ (∆, R, ηz) = exp(ηu+ηL)
exp(ηa) LϑY + βθE {(π′)ε S′} ;

– F̂ (∆, R, ηz) = exp (ηu)C−γY + βθE

{(
π
′
)ε−1

F ′
}

;

– Ĉ (∆, R, ηz) =
{
β exp(ηB)R′

exp(ηu) E
[

(C′)−γexp(η′u)
π′

]}−1/γ
.

Iterate on i)-iii) until convergence F̂ = F , Ŝ = S, Ĉ = C.

4.2 Grid techniques for high dimensional applications

Tensor product grids can be successfully used for analyzing small-scale applications but their cost increases
exponentially with the number of the state variables (curse of dimensionality). In particular, tensor prod-
uct grid are expensive even for moderately-large models like our model with 8 state variables. There is a
number of alternative grid techniques that do not rely on tensor products and that ameliorate the curse of
dimensionality; see Maliar and Maliar (2014) for a survey.

To solve the model (8)-(15), Maliar and Maliar (2015) construct the grid on the high-probability area
of the state space which is approximated by stochastic simulation. However, crude simulated points are not
uniformly spaced, in particular, many simulated points are situated close to one another and are redundant
for the purpose of the grid construction. Maliar and Maliar (2015) introduce two techniques for selecting
a roughly uniformly-spaced subset of simulated points. One technique is clustering analysis: the simulated
points are grouped into clusters and the centers of the clusters are used as a grid. Another technique is an
ε-distinguishable set (EDS) method that selects a subset of points situated at the distance of at least ε from
one another. As an example, in Figure 1 we show a stochastic-simulation grid and epsilon-distinguishable
set grid.

Maliar and Maliar (2015) construct the EDS or cluster grids iteratively. In particular, they (i) guess policy
functions and use them to simulate the time series solution; (ii) build an EDS or cluster grid; (iii) solve the
model on this grid; (iv) then use the new solution to form a new grid. This procedure is repeated until the
solution and grid both remain constant on successive iterations. The advantage of this approach is that it
focuses on the right area of the state space – a high probability set. However, it requires to have initial guess
for the solution (the paper uses linearization solution from Dynare) and it reconstructs the EDS or cluster
grid iteratively, which leads to larger running times. Finally, the code is more complicated.
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Figure 1a. Stochastic simulation of the model
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Figure 1b. Epsilon-distinguishable set

Figure 1: Stochastic-simulation grid and epsilon-distinguishable set grid.

In the present paper, we modify the grid construction relative to the method in Maliar and Maliar (2015).
We specifically replace the EDS and cluster grids with random and quasi-random grids covering a fixed

multi-dimensional hypercube. To construct the hypercube, we choose the interval
[
− 2σz√

1−ρ2z
, 2σz√

1−ρ2z

]
for

each of six exogenous variable ηz ∈ {ηu, ηL, ηa, ηu, ηB, ηG}, where σz and ρz are standard deviation and
auto-correlation coefficient. For endogenous state variables R and ∆, we chose intervals that cover the high
probability set, ∆ ∈ [0.95, 1] and R ∈ [1, 1.05].

We consider two alternative grid techniques in the constructed fixed hypercube. One is a random grid
obtained by drawing an 8-dimensional set of random uncorrelated uniformly distributed points. The other is
quasi-random grids (also known as quasi-Monte Carlo sequence or low discrepancy sequence). Uniformly
distributed random draws converge to an evenly spaced grid as a number of draws increases but the conver-
gence rate is low; in turn, low disrepancy sequences are constructed to be evenly spaced and their convergence
rate is much faster; see Maliar and Maliar (2015) for a discussion. We use Sobol low discrepancy sequence
for constructing the grid but there are a variety of other low discrepancy sequences that can be used for this
purpose; see Niederreiter (1992). The random and quasi-random grids are shown in Figure 2.

Using random grids has its advantages and disadvantages. Unlike the EDS and cluster grids used in
Maliar and Maliar (2015), the random and quasi-random grids operate on a fixed hypercube and do not
benefit from the domain reduction. However, the random and quasi-random grids are much faster and easier
to construct than the EDS and cluster grids. By constructing grids on predefined intervals, we did not have
to write our own rough solution routine or rely on external software like Dynare to construct a preliminary
solution to the model as we would with cluster grid or EDS techniques and we do not need to re-construct the
grids iteratively. The MATLAB code accompanying the present paper achieves an almost a 60-time speed
up over the original code in Maliar and Maliar (2015), while still producing highly accurate solutions.

4.2.1 Numerical results

We have provided an implementation of this algorithm in the Matlab, Python, and Julia programming lan-
guages. In this section we discuss our experience with the three languages.
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Figure 2a. Uniform random draws
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Figure 2b. Sobol sequence

Figure 2: Uniformly-spaced random grid and quasi-Monte Carlo grid.

We report the solution for two parameterizations that are previously analyzed in Maliar and Maliar (2015).
To save on space, we report the solution only for the quasi-random (Sobol) grid. The solution for the random
grid is similar (although slightly less accurate). Our two parameterizations differ in the value of the inflation
target π∗. In our first experiment, we use π∗ = 1.0598, which corresponds to long term average as estimated
in Del Negro et al. (2007), while in the second experiment, we use π∗ = 1. For the second experiment, we
report results when we solve the model both when the ZLB is and is not imposed (in the first experiment,
ZLB is never active).

The computational cost increases rapidly with a polynomial degree. The number of points in the grid
must be at least as large as the number of the polynomial coefficients to identify such coefficients. In par-
ticular, for the polynomial degrees 1, 2, 3, 4 and 5, we construct 20,100, 300, 1000 and 2000 grid points
respectively to identify 9, 45, 165, 495 and 1287 coefficients (we use about 50 percent more of grid points
than the polynomial coefficients to enhance the numerical stability of the algorithm). The cost of second-
order polynomial approximations is about 1-3 seconds depending on specific parameterization used. It is
fast enough to repeatedly solve the model inside an estimation procedure.

Concerning the accuracy, in our first experiment, the inflation target is relatively high and the probability
of reaching a zero lower bound (ZLB) on nominal interest rates is so low that it is never observed in finite
simulation (unless we use the initial condition that leads to ZLB). In the absence of binding ZLB, the accuracy
of our numerical solutions increases considerably with the degree of polynomial, in particular, the maximum
residuals across the model’s equations decrease from −1.94 to −5.47 when the polynomial order increases
from 1 to 5 respectively. The accuracy of the solutions is surprisingly high given that we assume very large
volatility of labor shock of 18%. If we reduce the size of the labor shock to 5%, the residuals in the table
decrease by nearly 2 orders of magnitude and the accuracy levels will be comparable to those we obtained
for the neoclassical growth model.

In our second experiment, the inflation target is low and the probability of reaching the ZLB increases
to about 2%. When we do not impose the ZLB, the accuracy of the solution looks very similar to our first
parameter set. However, with the ZLB imposed, the results are different. Relatively small average residuals
indicate that the solution is sufficiently accurate in most of the domain and large maximum residuals show
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Table 3: Accuracy and speed of a projection method for solving new Keynesian
model

Degree L1 L∞ Julia CPU (s) Python CPU (s) Matlab CPU (s)

Inflation target π∗ = 1.0598

1st -3.41 -1.94 0.74 0.96 0.79
2nd -4.71 -3.13 3.28 2.24 2.65
3rd -6.07 -4.25 14.30 9.18 7.49
4th -6.73 -4.65 54.84 94.26 55.57
5th -7.00 -5.47 902.95 1879.04 1120.17

Inflation target π∗ = 1

1st -3.12 -1.73 0.39 0.50 0.47
2nd -4.40 -2.77 1.45 0.98 1.09
3rd -5.71 -3.54 6.06 3.81 3.08
4th -6.82 -4.89 23.62 38.44 22.45
5th -7.01 -5.12 375.57 798.46 461.46

Inflation target π∗ = 1 with ZLB
1st -3.12 -1.73 0.41 0.45 0.50
2nd -4.40 -2.16 1.45 0.87 1.06
3rd -5.60 -2.15 5.86 3.70 2.95
4th -6.17 -2.15 23.87 39.73 22.98
5th -6.20 -2.15 347.89 822.97 455.39

a L1 and L∞ are, respectively, the average and maximum of absolute residuals
across optimality conditions and test points (in log 10) units on a stochastic sim-
ulation of 10,000 observations. CPU is the time necessary for computing a so-
lution (in seconds)
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that the accuracy declines sharply in the ZLB area. As this example shows, even the global solution methods
might still be insufficiently accurate in the presence of active ZLB because smooth polynomials functions are
not well suitable for approximating the ZLB kink. Aruoba et al. (2017) and Maliar and Maliar (2015) show
that the accuracy can be slightly increased by using piecewise linear and locally adaptive approximations,
respectively, but these extensions lie beyond the scope of our analysis.

5 Conclusion

We have described and implemented seven algorithms to solve the stochastic neoclassical growth model, and
we have described and analyzed a modification of an algorithm that has been previously used to globally solve
new Keynesian models. The implementation has provided us a “laboratory” to explore some of the strengths
and weaknesses of the three languages we consider. One insight we gained was that for some algorithms, the
choice of programming language has little effect on performance, but for others, there are important speedups
that can be obtained. In particular, if an algorithm depends heavily on numerical optimization or root-finding
then it is likely that Julia will provide significant speedups, but may come at the cost of ensuring that your
code provides enough information to the compiler.

We hope we have brought some clarity in the trade-off between these three programming languages which
will first, provide information to economists who are thinking about which language is the best fit for them;
and second, provide a clear description, examples, and tools which can facilitate other researchers implement
similar algorithms for their own models.
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Appendix A: Bellman and Euler equation algorithms for solving a neoclassical
growth model

In Appendices A1-A7, we provide a description of Bellman and Euler equation algorithms, which we use
to solve the neoclassical stochastic growth model with inelastic labor supply described in Section 2 including
i) envelope condition method iterating on value function (ECM-VF); ii) conventional value function interation
(VFI); iii) endogenous grid method (EGM); iv) policy function iteration via envelope condition (ECM-PI);
v) conventional policy function iteration via FOC (PI); vi) envelope condition method iterating on derivative
of value function (ECM-DVF); vii) conventional Euler equation method (EE).

A1: Envelope condition method (ECM).

Algorithm 1. ECM.
Initialization.

a. Choose an approximating function V̂ (·; b) ≈ V .
b. Choose integration nodes, εj , and weights, ωj , j = 1, ..., J .
c. Construct grid Γ = {km, zm}Mm=1.
d. Make an initial guess on b(1).

Iterative cycle. Computation of a solution.
At iteration i, perform the following steps:

Step 1. Computation of values of V on the grid.
For m = 1, ...,M,

a. Use b(i) to compute V̂1

(
km, zm; b(i)

)
.

b. Compute the corresponding values of cm using

cm = u′−1

[
V̂1(km,zm;b(i))
1−δ+zmf ′(km)

]
.

c. Find k′m using
k′m = (1− δ)km + zmf (km)− cm.
d. Find value function on the grid
v̂m ≡ u (cm) + β

∑J
j=1 ωj V̂

(
k′m, z

ρ
m exp (εj) ; b(i)

)
.

Step 2. Computation of b that fits the value function on the grid.
Run a regression to find b̂ :

b̂ = arg min
b

∑M
m=1 ‖v̂m − V̂ (km, zm; b)‖.

Step 3. Convergence check and fixed-point iteration.
a. Check for convergence for i ≥ 2: end Step 2 if
1

M

∑M
m=1

∣∣∣∣ (k′m)(i) − (k′m)(i−1)

(k′m)(i−1)

∣∣∣∣ < 10−9.

b. Use damping with ξ = 1 to compute b(i+1) = (1− ξ)b(i) + ξb̂.
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A2: Value function iteration (VFI).

Algorithm 2. VFI.
Initialization.

a. Choose an approximating function V̂ (·; b) ≈ V .
b. Choose integration nodes, εj , and weights, ωj , j = 1, ..., J .
c. Construct a grid Γ = {km, zm}Mm=1.
d. Make an initial guess on b(1).

Iterative cycle. Computation of a solution.
At iteration i, perform the following steps:

Step 1. Computation of values of V on the grid.
For m = 1, ...,M ,
a. Solve for k′m satisfying
u′ ((1− δ)km + zmf (km)− k′m) = β

∑J
j=1 ωj V̂1

(
k′m, z

ρ
m exp (εj) ; b(i)

)
.

b. Find cm satisfying
cm = (1− δ)km + zmf (km)− k′m.
c. Find value function on the grid
v̂m ≡ u (cm) + β

∑J
j=1 ωj V̂

(
k′m, z

ρ
m exp (εj) ; b(i)

)
.

Step 2. Computation of b that fits value function on the grid.
Run a regression to find b̂ :

b̂ = arg min
b

∑M
m=1 ‖v̂m − V̂ (km, zm; b)‖.

Step 3. Convergence check and fixed-point iteration.
a. Check for convergence for i ≥ 2: end Step 2 if
1

M

∑M
m=1

∣∣∣∣ (k′m)(i) − (k′m)(i−1)

(k′m)(i−1)

∣∣∣∣ < 10−9.

b. Use damping with ξ = 1 to compute b(i+1) = (1− ξ)b(i) + ξb̂.
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A3: Endogenous grid method (EGM).

Algorithm 3. EGM.
Initialization.

a. Choose an approximating function V̂ (·; b) ≈ V .
b. Choose integration nodes, εj , and weights, ωj , j = 1, ..., J .
c. Construct grid Γ = {k′m, zm}Mm=1.
d. Make an initial guess on b(1).

Iterative cycle. Computation of a solution.
At iteration i, perform the following steps:

Step 1. Computation of values of V on the grid.
For m = 1, ...,M ,
a. Compute Ŵ

(
k′m, zm; b(i)

)
≡
∑J
j=1 ωj V̂

(
k′m, z

ρ
m exp (εj) ; b(i)

)
and Ŵ1

(
k′m, zm; b(i)

)
≡
∑J
j=1 ωj V̂1

(
k′m, z

ρ
m exp (εj) ; b(i)

)
.

b. Find cm = u′−1
[
βŴ1

(
k′m, zm; b(i)

)]
.

c. Use a solver to find km satisfying
(1− δ)km + zmf (km) = cm + k′m.
d. Find value function on the grid
v̂m ≡ u(cm) + βŴ

(
k′m, zm; b(i)

)
.

Step 2. Computation of b that fits value function on the grid.
Run a regression to find b̂ :

b̂ = arg min
b

∑M
m=1 ‖v̂m − V̂ (km, zm; b)‖.

Step 3. Convergence check and fixed-point iteration.
a. Check for convergence for i ≥ 2: end Step 2 if
1

M

∑M
m=1

∣∣∣∣ (km)(i) − (km)(i−1)

(km)(i−1)

∣∣∣∣ < 10−9.

b. Use damping with ξ = 1 to compute b(i+1) = (1− ξ)b(i) + ξb̂.
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A4: Policy function iteration using envelope condition (PI-ECM)

Algorithm 4. PI-ECM.
Initialization.

a. Choose an approximating function V̂ (·; b) ≈ V and K̂(·; v) ≈ K.
b. Choose integration nodes, εj , and weights, ωj , j = 1, ..., J .
c. Construct grid Γ = {km, zm}Mm=1.
d. Make an initial guess on v(1) and b(1).

Iterative cycle. Computation of a solution.
At iteration i, perform the following steps:

Step 1. Computation of values of V on the grid.
For m = 1, ...,M,

a. Use v(i) to compute k′m = K̂
(
km, zm; v(i)

)
.

b. Compute the corresponding values of k′m using
cm = (1− δ)km + zmf (km)− k′m.
c. Iterate on b(i) to find an approximate solution to
V̂
(
km, zm; b(i)

)
= u (cm) + β

∑J
j=1 ωj V̂

(
k′m, z

ρ
m exp (εj) ; b(i)

)
.

d. Find policy function on the grid

k̂′m = (1− δ)km + zmf (km)− u′−1

[
V̂1(km,zm;b(i))
1−δ+zmf ′(km)

]
.

Step 2. Computation of v that fits the value function on the grid.
Run a regression to find v̂ :

v̂ = arg min
v

∑M
m=1 ‖k̂′m − K̂(km, zm; v)‖.

Step 3. Convergence check and fixed-point iteration.
a. Check for convergence for i ≥ 2: end Step 2 if
1

M

∑M
m=1

∣∣∣∣ (k′m)(i) − (k′m)(i−1)

(k′m)(i−1)

∣∣∣∣ < 10−9.

b. Use damping with ξ = 1 to compute v(i+1) = (1− ξ)v(i) + ξv̂.
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A5: Policy function iteration using first-order condition (PI-FOC)

Algorithm 5. PI-FOC.
Initialization.

a. Choose an approximating function V̂ (·; b) ≈ V and K̂(·; v) ≈ K.
b. Choose integration nodes, εj , and weights, ωj , j = 1, ..., J .
c. Construct grid Γ = {km, zm}Mm=1.
d. Make an initial guess on v(1) and b(1).

Iterative cycle. Computation of a solution.
At iteration i, perform the following steps:

Step 1. Computation of values of V on the grid.
For m = 1, ...,M,

a. Use v(i) to compute k′m = K̂
(
km, zm; v(i)

)
.

b. Compute the corresponding values of k′m using
cm = (1− δ)km + zmf (km)− k′m.
c. Iterate on b(i) to find an approximate solution to
V̂
(
km, zm; b(i)

)
= u (cm) + β

∑J
j=1 ωj V̂

(
k′m, z

ρ
m exp (εj) ; b(i)

)
.

d. Find policy function on the grid
u′
(

(1− δ)km + zmf (km)− k̂′m
)

= β
∑J
j=1 ωj V̂1

(
k̂′m, z

ρ
m exp (εj) ; b(i)

)
.

Step 2. Computation of v that fits the value function on the grid.
Run a regression to find v̂ :

v̂ = arg min
v

∑M
m=1 ‖k̂′m − K̂(km, zm; v)‖.

Step 3. Convergence check and fixed-point iteration.
a. Check for convergence for i ≥ 2: end Step 2 if
1

M

∑M
m=1

∣∣∣∣ (k′m)(i) − (k′m)(i−1)

(k′m)(i−1)

∣∣∣∣ < 10−9.

b. Use damping with ξ = 1 to compute v(i+1) = (1− ξ)v(i) + ξv̂.
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A6: Euler equation algorithm parameterizing Q.
Algorithm 6. Euler equation algorithm parameterizing V1.
Initialization.

a. Choose an approximating function V̂1(·; b) ≈ V1.
b. Choose integration nodes, εj , and weights, ωj , j = 1, ..., J .
c. Construct grid Γ = {km, zm}Mm=1.
d. Make an initial guess on b(1).

Iterative cycle. Computation of a solution.
At iteration i, perform the following steps:

Step 1. Computation of values of V1 on the grid.
For m = 1, ...,M,

a. Use b(i) to compute V̂1

(
km, zm; b(i)

)
.

b. Find k′m using

k′m = (1− δ) km + zmf (km)− u′−1

(
V̂1(km,zm;b(i))
1−δ+zmf(km)

)
c. Find the values of vm on the grid
v̂1,m ≡ β [1− δ + zf ′ (km)]

∑J
j=1 ωj V̂1

(
k′m, z

ρ
m exp (εj) ; b(i)

)
.

Step 2. Computation of b that fits the V1 function on the grid.
Run a regression to find b̂ :

b̂ = arg min
b

∑M
m=1 ‖v̂1,m − V̂1(km, zm; b)‖.

Step 3. Convergence check and fixed-point iteration.
a. Check for convergence for i ≥ 2: end Step 2 if
1

M

∑M
m=1

∣∣∣∣ (k′m)(i) − (k′m)(i−1)

(k′m)(i−1)

∣∣∣∣ < 10−9.

b. Use damping with ξ = 1 to compute b(i+1) = (1− ξ)b(i) + ξb̂.
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A7. Euler equation algorithm parameterizing K
Algorithm 7. Euler equation algorithm parameterizing K.
Initialization.

a. Choose approximating functions K̂(·; v) ≈ K.
b. Choose integration nodes, εj , and weights, ωj , j = 1, ..., J .
c. Construct grid Γ = {km, zm}Mm=1.
d. Make an initial guess on v(1).

Step 1. Computation of values of k̂′ on the grid.
For m = 1, ...,M ,
a. Use v(i) to compute K̂

(
km, zm; v(i)

)
and

k′′m,j = K̂
(
K̂
(
km, zm; v(i)

)
, zρm exp (εj) ; v(i)

)
, j = 1, ..., J .

b. Find c′m,j using
c′m,j = (1− δ)K̂

(
km, zm; v(i)

)
+ zmf

(
K̂
(
km, zm; v(i)

))
− k′′m,j .

c. Find the values of cm on the grid
u′ (cm) = β

∑J
j=1 ωju

′ (c′m,j) [1− δ + zρm exp (εj) f
′
(
K̂
(
km, zm; v(i)

))]
.

d. Find the values of k′m on the grid
k̂′m = (1− δ)km + zmf (km)− cm.

Step 2. Computation of v that fits the capital function on the grid.
a. Run a regression to find v̂ :

v̂ = arg min
v

∑M
m=1 ‖k̂′m − K̂

(
km, zm; v(i)

)
‖.

b. Use damping with ξ = 1 to compute v(i+1) = (1− ξ)v(i) + ξv̂.
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Appendix B: An Euler equation algorithm for solving a new Keynesian model
We consider a new Keynesian model studied in Maliar and Maliar (2015). This is a stylized new Keyne-

sian model with Calvo-type price frictions and a Taylor (1993) rule.

The model. The economy is populated by households, final-good firms, intermediate-good firms, monetary
authority and government.

Households. The representative household solves

max
{Ct,Lt,Bt}t=0,...,∞

E0

∞∑
t=0

βt exp (ηu,t)

[
C1−γ
t − 1

1− γ
− exp (ηL,t)

L1+ϑ
t − 1

1 + ϑ

]
(16)

s.t. PtCt +
Bt

exp (ηB,t)Rt
+ Tt = Bt−1 +WtLt + Πt, (17)

where (B0, ηu,0, ηL,0, ηB,0) is given; Ct, Lt, and Bt are consumption, labor and nominal bond holdings,
respectively; Pt, Wt and Rt are the commodity price, nominal wage and (gross) nominal interest rate, re-
spectively; ηu,t and ηL,t are exogenous preference shocks to the overall momentary utility and disutility of
labor, respectively; ηB,t is an exogenous premium in the return to bonds; Tt is lump-sum taxes; Πt is the
profit of intermediate-good firms; β ∈ (0, 1) is the discount factor; γ > 0 and ϑ > 0 are the utility-function
parameters. The processes for shocks are

ηu,t+1 = ρuηu,t + εu,t+1, εu,t+1 ∼ N
(
0, σ2

u

)
, (18)

ηL,t+1 = ρLηL,t + εL,t+1, εL,t+1 ∼ N
(
0, σ2

L

)
, (19)

ηB,t+1 = ρBηB,t + εB,t+1, εB,t+1 ∼ N
(
0, σ2

B

)
, (20)

where ρu, ρL, ρB are the autocorrelation coefficients, and σu, σL, σB are the standard deviations of
disturbances.

Final-good firms. Perfectly competitive final-good firms produce final goods using intermediate goods.
A final-good firm buys Yt (i) of an intermediate good i ∈ [0, 1] at price Pt (i) and sells Yt of the final good
at price Pt in a perfectly competitive market. The profit-maximization problem is

max
Yt(i)

PtYt −
∫ 1

0
Pt (i)Yt (i) di (21)

s.t. Yt =

(∫ 1

0
Yt (i)

ε−1
ε di

) ε
ε−1

, (22)

where (22) is a Dixit-Stiglitz aggregator function with ε ≥ 1.
Intermediate-good firms. Monopolistic intermediate-good firms produce intermediate goods using labor

and are subject to sticky prices. The firm i produces the intermediate good i. To choose labor in each period
t, the firm i minimizes the nominal total cost, TC (net of government subsidy v),

min
Lt(i)

TC (Yt (i)) = (1− v)WtLt (i) (23)

s.t. Yt (i) = exp (ηa,t)Lt (i) , (24)
ηa,t+1 = ρaηa,t + εa,t+1, εa,t+1 ∼ N

(
0, σ2

a

)
, (25)
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where Lt (i) is the labor input; exp (ηa,t) is the productivity level; ρa is the autocorrelation coefficient;
and σa is the standard deviation of the disturbance. The firms are subject to Calvo-type price setting: a
fraction 1−θ of the firms sets prices optimally, Pt (i) = P̃t, for i ∈ [0, 1], and the fraction θ is not allowed to
change the price and maintains the same price as in the previous period, Pt (i) = Pt−1 (i), for i ∈ [0, 1]. A
reoptimizing firm i ∈ [0, 1] maximizes the current value of the profit over the time when P̃t remains effective,

max
P̃t

∞∑
j=0

βjθjEt

{
Λt+j

[
P̃tYt+j (i)− Pt+jmct+jYt+j (i)

]}
(26)

s.t. Yt (i) = Yt

(
Pt (i)

Pt

)−ε
, (27)

where (27) is the demand for an intermediate good i following from (21), (22); Λt+j is the Lagrange
multiplier on the household’s budget constraint (17); mct+j is the real marginal cost of output at time t+ j
(which is identical across the firms).

Government. Government finances a stochastic stream of public consumption by levying lump-sum taxes
and by issuing nominal debt. The government budget constraint is

Tt +
Bt

exp (ηB,t)Rt
= Pt

GYt
exp (ηG,t)

+Bt−1 + vWtLt, (28)

where GYt
exp(ηG,t)

= Gt is government spending, vWtLt is the subsidy to the intermediate-good firms, and
ηG,t is a government-spending shock,

ηG,t+1 = ρGηG,t + εG,t+1, εG,t+1 ∼ N
(
0, σ2

G

)
, (29)

where ρR is the autocorrelation coefficient, and σR is the standard deviation of disturbance.
Monetary authority. The monetary authority follows a Taylor rule with a zero lower bound (ZLB) on the

nominal interest rate:

Rt = max

R∗
(
Rt−1

R∗

)µ [(πt
π∗

)φπ ( Yt
YN,t

)φy]1−µ

exp (ηR,t) , 1

 , (30)

where R∗ is the long-run value of the gross nominal interest rate; π∗ is the target inflation; YN,t is the
natural level of output; and ηR,t is a monetary shock,

ηR,t+1 = ρRηR,t + εR,t+1, εR,t+1 ∼ N
(
0, σ2

R

)
, (31)

where ρR is the autocorrelation coefficient, and σR is the standard deviation of disturbance.
Natural level of output. The natural level of output YN,t is the level of output in an otherwise identical

economy but without distortions. It is a solution to the following planner’s problem

max
{Ct,Lt}t=0,...,∞

E0

∞∑
t=0

βt exp (ηu,t)

[
C1−γ
t − 1

1− γ
− exp (ηL,t)

L1+ϑ
t − 1

1 + ϑ

]
(32)

s.t. Ct = exp (ηa,t)Lt −Gt, (33)

where Gt = GYt
exp(ηG,t)

is given, and ηu,t+1, ηL,t+1, ηa,t+1, and ηG,t follow the processes (18), (19), (25),
and (29), respectively.
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Parameterization and implementation details Most of the parameters are calibrated using the estimates
of Del Negro et al. (2007, Table 1, column ”DSGE posterior”); namely, we assume γ = 1 and ϑ = 2.09
in the utility function (16); φy = 0.07, φπ = 2.21, and µ = 0.82 in the Taylor rule (30); ε = 4.45 in
the production function of the final-good firm (22); θ = 0.83 (the fraction of the intermediate-good firms
affected by price stickiness);G = 0.23 in the government budget constraint (28); and ρu = 0.92, ρG = 0.95,
ρL = 0.25, σu = 0.54%, σG = 0.38%, σL = 18.21% (the latter is a lower estimate of Del Negro et al., 2007,
Table 1, column ”DSGE posterior”), and σL = 40.54% (an average estimate of Del Negro et al., 2007) in the
processes for shocks (18), (29) and (19). From Smets and Wouters (2007), we take the values of ρa = 0.95,
ρB = 0.22, ρR = 0.15, σa = 0.45%, σB = 0.23% and σR = 0.28% in the processes for shocks ( 25),
(20) and (31). We set the discount factor at β = 0.99. To parameterize the Taylor rule (30), we use the
steady-state interest rate R∗ = π∗

β , and we consider two alternative values of the target inflation, π∗ = 1 (a
zero net inflation target) and π∗ = 1.0598 (this estimate comes from Del Negro et al., 2007).

To approximate the equilibrium policy rules, we use a family of ordinary polynomials. To compute
conditional expectations in Euler equations (8), (9) and (12), we use a monomial integration rule (either a
formula with 2N nodes or the one with 2N2+1 nodes); see Judd, Maliar and Maliar (Quantitative Economics,
2011) for a detailed description of the monomial integration formulas. To compute a solution, we use two
alternative grids: one is a random grid composed of uniformely distributed points (i.e., we make independent
random draws for all variables in the grid within the given range), and the other is a quasi-Monte Carlo grid
(namely, a Sobol grid that fills in a given multidimensional hypercube). In Step 2b, the damping parameter
is set at ξ = 0.1, and the convergence parameter is set at $ = 10−7. The solution algorithm is described in
Appendix.

Computational method In Appendix B, we describe an Euler equation algorithm, which we use to solve
the new Keynesian model described in Section 3.
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An algorithm iterating on the Euler equation
Step 1. Initialization.

a. Choose
(
∆−1, R−1, ηu,0, ηL,0, ηB,0, ηa,0, ηR,0, ηG,0

)
and T .

b. Draw
{
εu,t+1, εL,t+1, εB,t+1, εa,t+1, εR,t+1, εG,t+1

}
t=0,...,T−1

.
Compute and fix

{
ηu,t+1, ηL,t+1, ηB,t+1, ηa,t+1, ηR,t+1, ηG,t+1

}
t=0,...,T−1

.

c. Choose approximating functions S ≈Ŝ
(
·; bS

)
, F ≈F̂

(
·; bF

)
, MU≈M̂U

(
·; bMU

)
.

d. Make initial guesses on bS , bF , bMU.
e. Choose integration nodes,

{
εu,j , εL,j , εB,j , εa,j , εR,j , εG,j

}
j=1,...,J

and weights, {ωj}j=1,...,J .
f. Constuct a grid Γ =

{
∆m, Rm, ηu,m, ηL,m, ηB,m, ηa,m, ηR,m, ηG,m

}
m=1,...,M

≡ {xm}m=1,...,M

Step 2. Computation of a solution for S, F , MU.
a. At iteration i, for m = 1, ...,M , compute

– Sm = Ŝ
(
xm; bS

)
, Fm = F̂

(
xm; bF

)
, Cm =

[
M̂U

(
xm; bMU

)]−1/γ

;

– πm from Sm
Fm

=
[

1−θπε−1
m

1−θ

] 1
1−ε

and ∆′m=

[
(1− θ)

[
1−θπε−1

m

1−θ

] ε
ε−1

+θ
πεm
∆m

]−1

;

– Ym =
(

1− G
exp(ηG,m)

)−1

Cm, and Lm = Ym [exp (ηa,m) ∆′m]
−1 ;

– YN,m =
[

exp(ηa,m)1+ϑ

[exp(ηG,m)]−γexp(ηL,m)

] 1
ϑ+γ

;

– R′m = max {1, Φm}, Φm= R∗

(
Rm
R∗

)µ [(
πm
π∗

)φπ (
Ym
YN,m

)φy]1−µ

exp (ηR,m);

– x′m,j =
(
∆′m, R

′
m, η

′
u,m,j , η

′
L,m,j , η

′
B,m,j , η

′
a,m,j , η

′
R,m,j , η

′
G,m,j

)
for all j;

– S′m,j=Ŝ
(
x′m,j ; b

S
)

, F ′m,j = F̂
(
x′m,j ; b

F
)

, C ′m,j=
[
M̂U

(
x′m,j ; b

MU
)]−1/γ

;

– π′m,j from S′m,j
F ′m,j

=

[
1−θ

(
π
′
m,j

)ε−1

1−θ

] 1
1−ε

;

– Ŝm=
exp(ηu,m+ηL,m)

exp(ηa,m) LϑmYm+βθ
J∑
j=1

ωj ·
{(
π′m,j

)ε
S′m,j

}
,

– F̂m = exp (ηu,m)C−γm Ym+βθ
J∑
j=1

ωj ·
{(

π
′

m,j

)ε−1

F ′m,j

}
,

– Ĉ−γm =
β exp(ηB,m)R′m

exp(ηu,m)

J∑
j=1

ωj ·
[

(C′m,j)
−γ

exp(η′u,m,j)
π′m,j

]
.

b. Find bS , bF , bMU that solve the system in Step 2a.
– Get: b̂S ≡ argmin

bS

∑M
m=1

∥∥∥Ŝm − Ŝ (xm; bS
)∥∥∥. Similarly, get b̂F and b̂MU.

– Use damping to compute b(i+1) = (1− ξ) b(i)+ξb̂, where b ≡
(
b̂S , b̂F , b̂MU

)
.

– Check for convergence: end Step 2 if

1
Mmax

{
M∑
m=1

∣∣∣ (Sm)(i+1)−(Sm)(i)

(Sm)(i)

∣∣∣ , M∑
m=1

∣∣∣ (Fm)(i+1)−(Fm)(i)

(Fm)(i)

∣∣∣ , M∑
m=1

∣∣∣ (MUm)(i+1)−(MUm)(i)

(MUm)(i)

∣∣∣}< $.

Iterate on Step 2 until convergence.
We compute residuals on a stochastic simulation of 10, 200 observations (we eliminate the first 200

observations). In the test, we use a monomial ruleM2 with 2 · 62 + 1 nodes which is more accurate than the
other monomial rule M1.
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