
CHAPTER SEVEN

Numerical Methods for Large-Scale
Dynamic Economic Models
Lilia Maliar and Serguei Maliar∗
T24, Hoover Institution, Stanford, CA, USA

Contents

1. Introduction 327
2. Literature Review 332
3. The Chapter at a Glance 340
4. Nonproduct Approaches to Representing, Approximating, and Interpolating Functions 353

4.1 Smolyak’s (1963) Sparse Grid Method 354
4.1.1 HowDoes the Smolyak MethodWork? 355
4.1.2 The Automated Smolyak Method 360
4.1.3 Conventional Interpolation Formula with Repetitions of Elements Is Inefficient 363

4.2 Generalized Stochastic Simulation Algorithm 363
4.2.1 A Grid of Simulated Points 364
4.2.2 An Approximating Function 364
4.2.3 Finding the Polynomial Coefficients byWay of Regression 364
4.2.4 Advantages of the Stochastic Simulation Approach 365
4.2.5 Marcet’s (1988) Parameterized Expectations Algorithm 366
4.2.6 Generalized Stochastic Simulation Algorithm by Judd et al. (2011b) 367
4.2.7 Numerical Illustrationof the Importance of theApproximating FunctionandFittingMethod 373

4.3 ε -Distinguishable Set and Cluster Grid Algorithms 374
4.3.1 Eliminating Simulated Points Outside the High-Probability Set 375
4.3.2 Constructing an ε-Distinguishable Set of Points 376
4.3.3 Other Grids on the Ergodic Set 378
4.3.4 Numerical Illustration of the Accuracy of the Smolyak Method 379

5. Approximation of Integrals 380
5.1 Gauss-Hermite Product Quadrature Rules 380
5.2 Monomial Rules 382

5.2.1 Monomial Rule M1with 2N Nodes 383
5.2.2 Monomial Rule M2with 2N2 + 1Nodes 383

5.3 Monte Carlo Integration Method 384
5.4 Quasi-Monte Carlo Integration Methods 385
5.5 Nonparametric Kernel-Density Methods 386
5.6 Approximating a Markov Process Using a Markov Chain 387
5.7 Correlated Shocks and Cholesky Decomposition 387
5.8 Numerical Illustration of the Importance of the Integration Method 388

∗ Chapter prepared for Handbook of Computational Economics,Volume 3, edited by Karl Schmedders
and Kenneth L. Judd.

Handbook of Computational Economics, Volume 3 © 2014 Elsevier B.V.
ISSN 1574-0021, http://dx.doi.org/10.1016/B978-0-444-52980-0.00007-4 All rights reserved. 325

http://dx.doi.org/10.1016/B978-0-444-52980-0.00007-4

326 Lilia Maliar and Serguei Maliar

5.8.1 Monte Carlo Integration 388
5.8.2 Nonparametric Kernel-Density IntegrationMethod 389

6. Derivative-Free Optimization Methods 390
6.1 Separation of Intertemporal and Intratemporal Choices 391

6.1.1 Intratemporal Choice FOCs 391
6.1.2 Intertemporal Choice FOCs 392
6.1.3 A Global Euler EquationMethod with a Separation of Intertemporal and

Intratemporal Choices 392
6.2 The Intratemporal Choice Quantities 392
6.3 The Intertemporal Choice Functions 394
6.4 Coordination Between the Intratemporal and Intertemporal Choices 396
6.5 Numerical Illustration of the Importance of Coordination 397

7. Dynamic Programming Methods for
High-Dimensional Problems 398
7.1 Conventional Value Function Iteration 398
7.2 Reducing the Cost of Dynamic Programming Methods 400

7.2.1 Endogenous Grid Method 400
7.2.2 Envelope ConditionMethod 401
7.2.3 Shall We Use the Envelope Condition with Endogenous Grid? 402
7.2.4 EGM and ECM in aModel with Elastic Labor Supply 402

7.3 Increasing the Accuracy of Dynamic Programming Methods 403
7.4 Numerical Illustration of Dynamic Programming Methods 404

8. Precomputation Techniques 405
8.1 Precomputation of Integrals 405

8.1.1 Precomputation of Expectations for Polynomial Functions 405
8.1.2 Precomputation of the Expectation in the Euler Equation 406
8.1.3 Precomputation of the Expectation in the Bellman Equation 407
8.1.4 Relation of Precomputation of Integrals to the Literature 408
8.1.5 Numerical Illustration of the Precomputation Methods 409

8.2 Precomputation of Intratemporal Choice Manifolds 409
8.3 Precomputation of Aggregate Decision Rules 411

9. Local (Perturbation) Methods 412
9.1 Plain Perturbation Method 412
9.2 Advantages and Shortcomings of Perturbation Methods 416
9.3 Change of Variables 417

9.3.1 An Example of the Change of Variables Technique 417
9.3.2 Numerical Illustration of the Change of Variables Technique 419

9.4 Hybrid of Local and Global Solutions 419
9.4.1 Description of the Hybrid Method 420
9.4.2 Numerical Illustration of the Hybrid Method 421

9.5 Numerical Instability of High-Order Perturbation
Solutions in Simulation 421

10. Parallel Computation 422
10.1 Serial Versus Parallel Computation 423

10.1.1 Applications with Independent Tasks 423
10.1.2 Applications with Dependent Tasks 424
10.1.3 Speedup and Efficiency of Parallelization 424

Numerical Methods for Large-Scale Dynamic Economic Models 327

10.2 Parallel Computation on a Desktop Using MATLAB 425

10.2.1 Numerical Example of GPU Computation UsingMATLAB 427

10.3 Parallel Computation on Supercomputers 428

10.3.1 Numerical Example of Parallel Computation Using a Blacklight
Supercomputer 430

11. Numerical Analysis of a High-Dimensional Model 431

11.1 The Model 431

11.2 Methods Participating in the JEDC Project 432

11.3 Global Euler Equation Methods 434

11.3.1 First-Order Conditions 436

11.3.2 Separating the Intertemporal and Intratemporal Choices 436

11.3.3 Smolyak Method with Iteration-on-Allocation and FPI 437

11.3.4 Generalized Stochastic Simulation Algorithm 439

11.3.5 ε-Distingishable Set Algorithm 441

11.4 Dynamic Programming Methods 443

11.4.1 Bellman Equation, FOCs, and Envelope Condition 443

11.4.2 Separating the Intertemporal and Intratemporal Choices 445

11.4.3 Envelope ConditionMethod Iterating on Value Function 446

11.4.4 Envelope ConditionMethod Solving for Derivatives of Value Function 447

11.5 Hybrid of Local and Global Solutions 448

11.6 Solving for Consumption and Labor Using Iteration-on-Allocation 449

11.7 Accuracy Measures 451

11.8 Explicit Versus Implicit Solutions 452

12. Numerical Results for the Multicountry Model 453

12.1 Projection Methods 453

12.2 Generalized Stochastic Simulation Methods 456

12.3 Dynamic Programming Methods 459

12.4 Local Solution Methods 461

12.4.1 The Importance of the Change of Variables 462

12.4.2 The Benefits of Hybrid Solutions 463

12.5 Speeding up Computations in MATLAB 465

12.6 Practical Recommendations About Solving High-Dimensional Problems: Summary 466

13. Conclusion 469

Acknowledgments 469

References 470

1. INTRODUCTION

The economic literature is moving to richer and more complex dynamic mod-
els. Heterogeneous-agents models may have a large number of agents that differ in one
or several dimensions, and models of firm behavior may have a large number of het-

328 Lilia Maliar and Serguei Maliar

erogeneous firms and different production sectors.1 Asset-pricing models may have a
large number of assets; life-cycle models have at least as many state variables as the
number of periods (years); and international trade models may have state variables of
both domestic and foreign countries.2 New Keynesian models may have a large num-
ber of state variables and kinks in decision functions due to a zero lower bound on
nominal interest rates.3 Introducing new features into economic models increases their
complexity and dimensionality even further.4 Moreover, in some applications, dynamic
economic models must be solved a large number of times under different parameters
vectors.5

Dynamic economic models do not typically admit closed-form solutions. More-
over, conventional numerical solution methods—perturbation, projection, and stochastic
simulation—become intractable (i.e., either infeasible or inaccurate) if the number of
state variables is large. First, projection methods build on tensor-product rules; they are
accurate and fast in models with few state variables but their cost grows rapidly as the
number of state variables increases; see, e.g., a projection method of Judd (1992). Second,
stochastic simulation methods rely on Monte Carlo integration and least-squares learning;
they are feasible in high-dimensional problems but their accuracy is severely limited by
the low accuracy of Monte Carlo integration; also, least-squares learning is often numer-
ically unstable, see, e.g., a parameterized expectation algorithm of Marcet (1988). Finally,
perturbation methods solve models in a steady state usingTaylor expansions of the mod-
els’ equations.They are also practical for solving large-scale models but the range of their

1 Heterogeneous agents models are studied in, e.g., Gaspar and Judd (1997), Krusell and Smith (1998),
Kabourov and Manovskii (2009), Heathcote et al. (2009), Guvenen (2011), Guerrieri and Loren-
zoni (2011), Michelacci and Pijoan-Mas (2012), Bai et al. (2012), Dmitriev and Roberts (2012),
Cogley et al. (2013). Examples of models with multiple sectors and heterogeneous firms are Krusell
et al. (1997), Altig et al. (2004), Klenow and Kryvtsov (2008), Gertler and Leahy (2008), Bloom (2009).

2 Asset-pricing models are studied in, e.g., Kocherlakota and Pistaferri (2009), Duffie (2010), Borovička
and Hansen (2012), Piazzesi and Schneider (2012); life-cycle models are studied in, e.g., Krueger and
Kubler (2004, 2006), Gomes et al. (2008), Glover et al. (2011), Menzio et al. (2012), Guibaud et al.
(forthcoming), Hasanhodzic and Kotlikoff (2013); international trade models are studied in, e.g., Caselli
et al. (2011), Manova (2013), Heathcote and Perri (2013).

3 New Keynesian models are studied in, e.g., Smets and Wouters (2003, 2007), Christiano et al. (2005,
2011),Del Negro et al. (2007),Chari et al. (2009),Woodford (2011),Mertens and Ravn (2011),Ravenna
and Walsh (2011), Hall (2012), Cogan et al. (2013).

4 Some examples from recent literature are climate change models (Cai et al.,2012),models of information
and forecasts (Coibion and Gorodnichenko, 2008; Graham and Wright, 2009; Amador and Weil, 2010;
Attanasio and Pavoni, 2011; Ellison and Sargent, 2012); fiscal policy models (Golosov et al., 2011;
Golosov and Sargent, 2012; Evans et al., 2012); models with a risk of consumer default (Chatterjee et al.,
2007); housing and mortgage models (Nakajima and Telyukova, 2011); resource war models (Acemoglu
et al., 2011); political economy models (Song et al., 2012); financial crises models (Mendoza and Bianchi,
2011; Gertler et al., 2011).

5 One example is a nested fixed-point estimation in econometrics, see, e.g., Fernández-Villaverde and
Rubio-Ramírez (2007),Winschel and Krätzig (2010), Su and Judd (2012).

Numerical Methods for Large-Scale Dynamic Economic Models 329

accuracy is uncertain, particularly in the presence of strong nonlinearities and kinks in
decision functions; see, e.g., a perturbation method of Judd and Guu (1993).

In this chapter, we show how to re-design conventional projection, stochastic simu-
lation, and perturbation methods to make them tractable (i.e., both feasible and accurate)
in broad and empirically relevant classes of dynamic economic models with finite large
numbers of continuous state variables.6

Let us highlight four key ideas. First, to reduce the cost of projection methods,
Krueger and Kubler (2004) replace an expensive tensor-product grid with a low-cost,
nonproduct Smolyak sparse grid. Second, Judd et al. (2011b) introduce a generalized
stochastic simulation algorithm in which inaccurate Monte Carlo integration is replaced
with accurate deterministic integration and in which unstable least-squares learning is
replaced with numerically stable regression methods. Third, Judd et al. (2012) propose
a ε-distinguishable set method that merges stochastic simulation and projection: it uses
stochastic simulation to identify a high-probability area of the state space and it uses
projection-style analysis to accurately solve the model in this area. Fourth, to increase the
accuracy of perturbation methods, we describe two techniques. One is a change of vari-
ables of Judd (2003): it constructs many locally equivalentTaylor expansions and chooses
the one that is most accurate globally. The other is a hybrid of local and global solutions
by Maliar et al. (2013) that combines local solutions produced by a perturbation method
with global solutions constructed to satisfy the model’s equation exactly.

Other ingredients that help us to reduce the cost of solution methods in high-
dimensional problems are efficient nonproduct techniques for representing, interpolat-
ing, and approximating functions; accurate, low-cost monomial integration formulas; and
derivative-free solvers. Also, we describe an endogenous grid method of Carroll (2005)
and an envelope condition method of Maliar and Maliar (2013) that simplify rootfinding
in the Bellman equation, thus reducing dramatically the cost of value function iteration.
Furthermore,we show precomputation techniques that save on cost by constructing solu-
tion manifolds outside the main iterative cycle, namely, precomputation of intratemporal
choice by Maliar and Maliar (2005a), precomputation of integrals by Judd et al. (2011d),
and imperfect aggregation by Maliar and Maliar (2001).

Finally, we argue that parallel computation can bring us a further considerable reduc-
tion in computational expense. Parallel computation arises naturally on recent computers,

6 Krusell and Smith (1998) focus on a related but mathematically different problem. They assume a con-
tinuum of agents distributed in the interval [0, 1] while we consider a finitely large number of agents N .
The framework of Krusell and Smith (1998) is designed for modeling the aggregate behavior of a very
large number of agents that are identical in fundamentals (e.g., consumers or firms) while our framework
allows for combinations of any agents (consumers, firms, government, monetary authority) as long as
their total number is not too large.The computational approach of Krusell and Smith (1998) also differs
from ours in that they replace the true state space (a joint distribution of individual state variables) with
a reduced state space (moments of such a distribution) while we operate with the true state space.

330 Lilia Maliar and Serguei Maliar

which are equipped with multiple central processing units (CPUs) and graphics process-
ing units (GPUs). It is reasonable to expect capacities for parallel computation will con-
tinue to grow in the future.Therefore,we complement our survey of numerical methods
with a discussion of parallel computation tools that may reduce the cost of solving large-
scale dynamic economic models. First,we revisit the surveyed numerical methods and we
distinguish those methods that are suitable for parallelizing. Second,we review MATLAB
tools that are useful for parallel computation, including parallel computing toolboxes for
multiple CPUs and GPUs, a deployment tool for creating executable files and a mex
tool for incorporating routines from other programming languages such as C or Fortran.
Finally, we discuss how to solve large-scale applications using supercomputers; in partic-
ular, we provide illustrative examples on Blacklight supercomputer from the Pittsburgh
Supercomputing Center.

The numerical techniques surveyed in this chapter proved to be remarkably successful
in applications. Krueger and Kubler (2004) solve life-cycle models with 20–30 periods
using a Smolyak method. Judd et al. (2011b) compute accurate quadratic solutions to
a multiagent optimal growth model with up to 40 state variables using GSSA . Hasan-
hodzic and Kotlikoff (2013) used GSSA to solve life-cycle models with up to 80 periods.
Kollmann et al. (2011b) compare the performance of six state-of-the-art methods in the
context of real business cycle models of international trade with up to 20 state variables.
Maliar et al. (2013) show hybrids of perturbation and global solutions that take just a
few seconds to construct but that are nearly as accurate as the most sophisticated global
solutions. Furthermore, the techniques described in the chapter can solve problems with
kinks and strong nonlinearities; in particular, a few recent papers solve moderately large
new Keynesian models with a zero lower bound on nominal interest rates: see Judd
et al. (2011d, 2012), Fernández-Villaverde et al. (2012), and Aruoba and Schorfheide
(2012). Also, the surveyed techniques can be used in the context of large-scale dynamic
programming problems: see Maliar and Maliar (2012a,b). Finally, Aldrich et al. (2011),
Valero et al. (2012), Maliar (2013), and Cai et al. (2013a,b) demonstrate that a significant
reduction in cost can be achieved using parallel computation techniques and more pow-
erful hardware and software.7

An important question is how to evaluate the quality of numerical approximations. In
the context of complex large-scale models, it is typically hard to prove convergence the-
orems and to derive error bounds analytically. As an alternative, we control the quality of
approximations numerically using a two-stage procedure outlined in Judd et al. (2011b).

7 Codes are available from the authors’ web sites. In particular, a Fortran code for the Smolyak method
is available at http://economics.sas.upenn.edu/∼dkrueger/research.php; a MATLAB code for GSSA
method is available at http://www.stanford.edu/∼maliarl;C++ / DYNARE code for the perturbation-
based hybrid solution methods is available at http://www.dynare.org/sebastien/; a C++/CUDA code
for a value function iteration method is available at http://www.parallelecon.com.

http://economics.sas.upenn.edu/{\sim }dkrueger/research.php
http://www.stanford.edu/{\sim }maliarl
http://www.dynare.org/sebastien/
http://www.parallelecon.com

Numerical Methods for Large-Scale Dynamic Economic Models 331

In Stage 1, we attempt to compute a candidate solution. If the convergence is achieved,
we proceed to Stage 2, in which we subject a candidate solution to a tight accuracy check.
Specifically, we construct a new set of points on which we want a numerical solution to
be accurate (typically, we use a set of points produced by stochastic simulation) and we
compute unit-free residuals in the model’s equations in all such points. If the economic
significance of the approximation errors is small, we accept a candidate solution. Other-
wise, we tighten up Stage 1; for example, we use a larger number of grid points, a more
flexible approximating function, a more demanding convergence criterion, etc.

We assess the performance of the surveyed numerical solution methods in the context
of a canonical optimal growth model with heterogeneous agents studied in Kollmann
et al. (2011b).We implement six solution methods: three global Euler equation methods
(a version of the Smolyak method in line with Judd et al. (2013), a generalized stochastic
simulation algorithm of Judd et al. (2011b), and an ε-distinguishable set algorithm of
Judd et al. (2012)); two global dynamic programming methods (specifically, two versions
of the envelope condition method of Maliar and Maliar (2012b,2013),one that solves for
value function and the other that solves for derivatives of value function); and a hybrid of
the perturbation and global solutions methods of Maliar et al. (2013). In our examples,
we compute polynomial approximations of degrees up to 3, while the solution methods
studied in Kollmann et al. (2011b) are limited to polynomials of degrees 2.

The surveyed methods proved to be tractable, accurate, and reliable. In our experi-
ments, unit-free residuals in the model’s equation are less than 0.001% on a stochastic
simulation of 10,000 observations for most accurate methods. Our main message is that
all three classes of methods considered can produce highly accurate solutions if properly
implemented. Stochastic simulation methods become as accurate as projection methods
if they build on accurate deterministic integration methods and numerically stable regres-
sion methods. Perturbation methods can deliver high accuracy levels if their local solu-
tions are combined with global solutions using a hybrid style of analysis. Finally, dynamic
programming methods are as accurate as Euler equation methods if they approximate the
derivatives of value function instead of, or in addition to, value function itself.

In our numerical analysis, we explore a variety of interpolation, integration, opti-
mization, fitting, and other computational techniques, and we evaluate the role of these
techniques in accuracy and cost of the numerical solutions methods. At the end of this
numerical exploration,we provide a detailed list of practical recommendations and tips on
how computational techniques can be combined, coordinated, and implemented more
efficiently in the context of large-scale applications.

The rest of the paper is organized as follows: in Section 2, we discuss the related
literature. In Section 3, we provide a roadmap of the chapter. Through Sections (4)–
(9), we introduce computational techniques that are tractable in problems with high
dimensionality. In Section 10,we focus on parallel computation techniques. In Sections 11

332 Lilia Maliar and Serguei Maliar

and 12, we assess the performance of the surveyed numerical solution methods in the
context of multiagent models. Finally, in Section 13, we conclude.

2. LITERATURE REVIEW

There is a variety of numerical methods in the literature for solving dynamic
economic models; for reviews, see Taylor and Uhlig (1990), Rust (1996), Gaspar and
Judd (1997), Judd (1998), Marimon and Scott (1999), Santos (1999), Christiano and
Fisher (2000), Miranda and Fackler (2002), Adda and Cooper (2003), Aruoba et al.
(2006), Kendrik et al. (2006), Heer and Maußner (2008, 2010), Lim and McNelis (2008),
Stachursky (2009), Canova (2007), Den Haan (2010), Kollmann et al. (2011b). However,
many of the existing methods are subject to the “curse of dimensionality”—that is, their
computational expense grows exponentially with the dimensionality of state space.8

High-dimensional dynamic economic models represent three main challenges to
numerical methods. First, the number of arguments in decision functions increases with
the dimensionality of the problem and such functions become increasingly costly to
approximate numerically (also, we may have more functions to approximate). Second,
the cost of integration increases as the number of exogenous random variables increases
(also, we may have more integrals to approximate). Finally, larger models are normally
characterized by larger and more complex systems of equations,which are more expensive
to solve numerically.

Three classes of numerical solution methods in the literature are projection, perturba-
tion, and stochastic simulation. Projection methods are used in, e.g., Judd (1992), Gaspar
and Judd (1997), Christiano and Fisher (2000),Aruoba et al. (2006), and Anderson et al.
(2010). Conventional projection methods are accurate and fast in models with few state
variables;however, they become intractable even in medium-scale models.This is because,
first,they use expensive tensor-product rules both for interpolating decision functions and
for approximating integrals and, second, because they use expensive Newton’s methods
for solving nonlinear systems of equations.

Perturbation methods are introduced to economics in Judd and Guu (1993) and
become a popular tool in the literature. For examples of applications of perturbation
methods, see Gaspar and Judd (1997), Judd (1998), Collard and Juillard (2001, 2011), Jin
and Judd (2002),Judd (2003),Schmitt-Grohé and Uribe (2004),Fernández-Villaverde and
Rubio-Ramírez (2007), Aruoba et al. (2006), Swanson et al. (2006), Kim et al. (2008),
Chen and Zadrozny (2009), Reiter (2009), Lombardo (2010), Adjemian et al. (2011),
Gomme and Klein (2011), Maliar and Maliar (2011), Maliar et al. (2013), Den Haan and
De Wind (2012), Mertens and Judd (2013), and Guerrieri and Iacoviello (2013) among
others. Perturbation methods are practical for problems with very high dimensionality;

8 The term curse of dimensionality was originally used by Richard Bellman (1961) to refer to an exponential
increase in volume associated with adding extra dimensions to a mathematical space.

Numerical Methods for Large-Scale Dynamic Economic Models 333

however, the accuracy of local solutions may deteriorate dramatically away from the
steady-state point in which such solutions are computed, especially in the presence of
strong nonlinearities and kinks in decision functions.

Finally, simulation-based solution methods are introduced to the literature by Fair and
Taylor (1983) and Marcet (1988).The former paper presents an extended path method for
solving deterministic models while the latter paper proposes a parameterized expectation
algorithm (PEA) for solving economic models with uncertainty. Simulation techniques
are used in the context of many other solution methods,e.g.,Smith (1991,1993),Aiyagari
(1994), Rust (1997), Krusell and Smith (1998), and Maliar and Maliar (2005a), as well
as in the context of learning methods: see, e.g., Marcet and Sargent (1989), Tsitsiklis
(1994),Bertsekas andTsitsiklis (1996),Pakes and McGuire (2001),Evans and Honkapohja
(2001), Weintraub et al. (2008), Powell (2011), Jirnyi and Lepetyuk (2011); see Birge
and Louveaux (1997) for a review of stochastic programming methods and see also
Fudenberg and Levine (1993) and Cho and Sargent (2008) for a related concept of self-
conforming equilibria. Simulation and learning methods are feasible in problems with
high dimensionality. However,Monte Carlo integration has a low rate of convergence—
a square root of the number of observations—which considerably limits the accuracy
of such methods since an infeasibly long simulation is needed to attain high accuracy
levels. Moreover, least-squares learning is numerically unstable in the context of stochastic
simulation.9

The above discussion raises three questions: first, how can one reduce the cost of con-
ventional projection methods in high-dimensional problems (while maintaining their
high accuracy levels)? Second, how can one increase the accuracy of perturbation meth-
ods (while maintaining their low computational expense)? Finally, how can one enhance
their numerical stability of stochastic simulation methods and increase the accuracy
(while maintaining a feasible simulation length)? These questions were addressed in the
literature, and we survey the findings of this literature below.

To make projection methods tractable in large-scale problems, Krueger and Kubler
(2004) introduce to the economic literature a Smolyak sparse grid technique; see also
Malin et al. (2011). The sparse grid technique, introduced to the literature by Smolyak
(1963), selects only a small subset of tensor-product grid elements that are most important
for the quality of approximation.The Smolyak grid reduces the cost of projection methods
dramatically without a significant accuracy loss. Winschel and Krätzig (2010) apply the
Smolyak method for developing state-space filters that are tractable in problems with
high dimensionality. Fernández-Villaverde et al. (2012) use the Smolyak method to solve
a new Keynesian model. Finally, Judd et al. (2013) modify and generalize the Smolyak
method in various dimensions to improve its performance in economic applications.

9 Den Haan and Marcet (1990) find that the implementation of PEA that uses least-squares learning
becomes problematic even for a second-degree polynomial. Specifically, a cross term in a polynomial
function is highly correlated with other terms and must be removed from a regression.

334 Lilia Maliar and Serguei Maliar

To increase the accuracy of stochastic simulation methods,Judd et al. (2011b) introduce
a generalized stochastic simulation algorithm (GSSA) which uses stochastic simulation as
a way to obtain grid points for computing solutions but replaces an inaccurate Monte
Carlo integration method with highly accurate deterministic (quadrature and monomial)
methods. Furthermore,GSSA replaces the least-squares learning method with regression
methods that are robust to ill-conditioned problems, including least-squares methods
that use singular value decomposition,Tikhonov regularization, least-absolute deviations
methods, and the principal component regression method.The key advantage of stochas-
tic simulation and learning methods is that they solve models only in the area of the state
space where the solution “lives.”Thus, they avoid the cost of finding a solution in those
areas that are unlikely to happen in equilibrium. GSSA preserves this useful feature but
corrects the shortcomings of the earlier stochastic simulation approaches. It delivers accu-
racy levels that are comparable to the best accuracy attained in the related literature.

Furthermore, Judd et al. (2010, 2012) introduce two solution methods that merge
stochastic simulation and projection techniques, a cluster grid algorithm (CGA) and
ε-distinguishable set method (EDS). Both methods use stochastic simulation to identify
a high-probability area of the state space, cover this area with a relatively small set of
representative points, and use projection-style techniques to solve a model on the con-
structed set (grid) of points. The two methods differ in the way in which they construct
representative points:CGA partitions the simulated data into clusters and uses the centers
of the clusters as grid points while EDS selects a roughly evenly spaced subset of simulated
points. These two approaches are used to solve moderately large new Keynesian models,
namely, Judd et al. (2011b) and Aruoba and Schorfheide (2012) use clustering techniques
while Judd et al. (2012) use the EDS construction.

As far as integration is concerned, there is a variety of methods that are tractable
in high-dimensional problems, e.g., Monte Carlo methods, quasi-Monte Carlo meth-
ods, and nonparametric methods; see Niederreiter (1992), Geweke (1996), Rust (1997),
Judd (1998), Pagan and Ullah (1999), Scott and Sain (2005) for reviews. However, the
quality of approximations of integrals differs considerably across methods. For models
with smooth decision functions, deterministic Gaussian quadrature integration methods
with just a few nodes are far more accurate than Monte Carlo methods with thousands
of random draws; see Judd et al. (2011a,b) for numerical examples. However, the cost of
Gaussian product rules is prohibitive in problems with high dimensionality; see Gaspar
and Judd (1997). To ameliorate the curse of dimensionality, Judd (1998) introduces to
the economic literature nonproduct monomial integration formulas. Monomial formu-
las turn out to be a key piece for constructing global solution methods that are tractable
in high-dimensional applications. Such formulas combine a low cost with high accuracy
and can be generalized to the case of correlated exogenous shocks using a Cholesky
decomposition; see Judd et al. (2011b) for a detailed description of monomial formulas,
as well as for a numerical assessment of the accuracy and cost of such formulas in the
context of economically relevant examples.

Numerical Methods for Large-Scale Dynamic Economic Models 335

Finally, we focus on numerical methods that can solve large systems of nonlinear
equations. In the context of Euler equation approaches, Maliar et al. (2011) argue that
the cost of finding a solution to a system of equilibrium conditions can be reduced
by dividing the whole system into two parts: intratemporal choice conditions (those
that contain variables known at time t) and intertemporal choice conditions (those that
contain some variables unknown at time t). Maliar and Maliar (2013) suggest a similar
construction in the context of dynamic programming methods; specifically, they separate
all optimality conditions into a system of the usual equations that identifies the optimal
quantities and a system of functional equations that identifies a value function.

The system of intertemporal choice conditions (functional equations) must be solved
with respect to the parameters of the approximating functions. In a high-dimensional
model this system is large, and solving it with Newton-style methods may be expensive.
In turn, the system of intratemporal choice conditions is much smaller in size; how-
ever, Newton’s methods can still be expensive because such a system must be solved a
large number of times (in each grid point, time period, and future integration node).
As an alternative to Newton’s methods, we advocate the use of a simple derivative-free
fixed-point iteration method in line with the Gauss-Jacobi and Gauss-Siedel schemes.
In particular, Maliar et al. (2011) propose a simple iteration-on-allocation solver that can
find the intratemporal choice in many points simultaneously and that produces essen-
tially zero approximation errors in all intratemporal choice conditions. See Wright and
Williams (1984), Miranda and Helmberger (1988), and Marcet (1988) for early appli-
cations of fixed-point iteration to economic problems; see Judd (1998) for a review of
various fixed-point iteration schemes. Also, see Eaves and Schmedders (1999) and Judd
et al. (2012b), respectively, for applications of homotopy methods and efficient Newton’s
methods to economic problems.

A February 2011 special issue of the Journal of Economic Dynamics and Control
(henceforth, the JEDC project) studied the performance of six state-of-the-art solution
methods in the context of an optimal growth model with heterogeneous agents (inter-
preted as countries).The model includes up to 10 countries (20 state variables) and features
heterogeneity in preferences and technology, complete markets, capital adjustment cost,
and elastic labor supply. The objectives of this project are outlined in Den Haan et al.
(2011).The participating methods are a perturbation method of Kollmann et al. (2011a),
a stochastic simulation and cluster grid algorithms of Maliar et al. (2011),a monomial rule
Galerkin method of Pichler (2011), and a Smolyak’s collocation method of Malin et al.
(2011). The methodology of the numerical analysis is described in Juillard andVillemot
(2011). In particular, they develop a test suite that evaluates the accuracy of solutions by
computing unit-free residuals in the model’s equations.The residuals are computed both
on sets of points produced by stochastic simulation and on sets of points situated on a
hypersphere. These two kinds of accuracy checks are introduced in Jin and Judd (2002)
and Judd (1992), respectively; see also Den Haan and Marcet (1994) and Santos (2000)
for other techniques for accuracy evaluation.

336 Lilia Maliar and Serguei Maliar

The results of the JEDC comparison are summarized in Kollmann et al. (2011b).
The main findings are as follows: First, an increase in the degree of an approximating
polynomial function by 1 increases the accuracy levels roughly by an order of magnitude
(provided that other computational techniques, such as integration, fitting, intratemporal
choice, etc., are sufficiently accurate). Second, methods that operate on simulation-based
grids are very accurate in the high-probability area of the state space, while methods that
operate on exogenous hypercube domains are less accurate in that area—although their
accuracy is more uniformly distributed on a large multidimensional hypercube. Third,
Monte Carlo integration is very inaccurate and restricts the overall accuracy of solutions.
In contrast,monomial integration formulas are very accurate and reliable. Finally, approx-
imating accurately the intratemporal choice is critical for the overall accuracy of solutions.

The importance of solving for intratemporal choice with a high degree of accuracy is
emphasized by Maliar et al. (2011), who define the intertemporal choice (capital func-
tions) parametrically; however, they define the intratemporal choice (consumption and
leisure) nonparametrically as quantities that satisfy the intratemporal choice conditions
given the future intertemporal choice. Under this construction, stochastic simulation and
cluster grid algorithms of Maliar et al. (2011) solve for the intratemporal choice with
essentially zero approximation errors (using an iteration-on-allocation solver). In contrast,
the other methods participating in the JEDC comparison solve for some of the intertem-
poral choice variables parametrically and face such large errors in the intratemporal choice
conditions that they dominate the overall accuracy of their solutions.

All six methods that participated in the JEDC comparison analysis work with Euler
equations. In addition to the Euler equation approach, we are interested in construct-
ing Bellman equation approaches that are tractable in high-dimensional applications. In
general, there is no simple one-to-one relation between the Bellman and Euler equa-
tion approaches. For some problems, the value function is not differentiable, and we
do not have Euler equations. On the contrary, for other problems (e.g., problems with
distortionary taxation, externalities, etc.), we are able to derive the Euler equation even
though such problems do not admit dynamic programming representations; for a gen-
eral discussion of dynamic programming methods and their applications to economic
problems, see Bertsekas andTsitsiklis (1996),Rust (1996,1997,2008), Judd (1998),Santos
(1999),Judd et al. (2003),Aruoba et al. (2006),Powell (2011),Fukushima andWaki (2011),
Cai and Judd (2010, 2012), among others.

The Bellman and Euler equation approaches are affected by the curse of dimension-
ality in a similar way. Hence, the same kinds of remedies can be used to enhance their
performance in large-scale applications, including nonproduct grid construction, mono-
mial integration, and derivative-free solvers. However, there is an additional important
computational issue that is specific to the dynamic programming methods: expensive
rootfinding. To find a solution to the Bellman equation in a single grid point, conven-
tional value function iteration (VFI) explores many different candidate points and, in

Numerical Methods for Large-Scale Dynamic Economic Models 337

each such point, it interpolates value function in many integration nodes to approximate
expectations. ConventionalVFI is costly even in low-dimensional problems; see Aruoba
et al. (2006) for an assessment of its cost.

Two alternatives to conventional VFI are proposed in the literature. First, Carroll
(2005) shows an endogenous grid method (EGM) that can significantly reduce the cost
of conventional VFI by using future endogenous state variables for constructing grid
points instead of the current ones; see also Barillas and Fernández-Villaverde (2007)
and Villemot (2012) for applications of EGM to models with elastic labor supply and
sovereign debt, respectively. Second, Maliar and Maliar (2013) show an envelope condi-
tion method (ECM) that replaces conventional expensive backward-looking iteration on
value function with a cheaper, forward-looking iteration. Also, Maliar and Maliar (2013)
develop versions of EGM and ECM that approximate derivatives of the value function
and deliver much higher accuracy levels than similar methods approximating the value
function itself. Finally, Maliar and Maliar (2012a,b) use a version of ECM to solve a
multicountry model studied in Kollmann et al. (2011b) and show that value function
iteration methods can successfully compete with most efficient Euler equation methods
in high-dimensional applications.

Precomputation—computation of a solution to some model’s equations outside the
main iterative cycle—is a technique that can reduce the cost of global solution methods
even further.We review three examples. First,Maliar and Maliar (2005a) introduce a tech-
nique of precomputing of intratemporal choice. It constructs the intratemporal choice
manifolds outside the main iterative cycle and uses the constructed manifolds inside the
cycle as if a closed-form solution were available;see Maliar et al. (2011) for a further devel-
opment of this technique. Second, Judd et al. (2011d) propose a technique of precompu-
tation of integrals.This technique makes it possible to construct conditional expectation
functions in the stage of initialization of a solution algorithm and, in effect, converts
a stochastic problem into a deterministic one. Finally, Maliar and Maliar (2001, 2003a)
introduce an analytical technique of imperfect aggregation, which allows us to charac-
terize the aggregate behavior of a multiagent economy in terms of a one-agent model.

There are many other numerical techniques that are useful in the context of global
solution methods. In particular,Tauchen (1986) andTauchen and Hussey (1991) propose
a discretization method that approximates a Markov process with a finite-state Markov
chain. Such a discretization can be performed using nonproduct rules, combined with
other computational techniques that are tractable in large-scale applications. For exam-
ple, Maliar et al. (2010) andYoung (2010) develop variants of Krusell and Smith’s (1998)
method that replaces stochastic simulation with iteration on discretized ergodic distri-
bution; the former method iterates backward as in Rios-Rull (1997) while the latter
method introduces a forward iteration; see also Horvath (2012) for an extension. These
two methods deliver the most accurate approximations to the aggregate law of motion
in the context of Krusell and Smith’s (1998) model studied in the comparison analysis of

338 Lilia Maliar and Serguei Maliar

Den Haan (2010). Of special interest are techniques that are designed for dealing with
multiplicity of equilibria, such as simulation-based methods of Peralta-Alva and Santos
(2005), a global solution method of Feng et al. (2009), and Gröbner bases introduced to
economics by Kubler and Schmedders (2010). Finally, an interaction of a large number
of heterogeneous agents is studied by agent-based computational economics. In this lit-
erature, behavioral rules of agents are not necessarily derived from optimization and that
the interaction of the agents does not necessarily lead to an equilibrium; see Tesfatsion
and Judd (2006) for a review.

We next focus on the perturbation class of solution methods. Specifically, we survey
two techniques that increase the accuracy of local solutions produced by perturbation
methods.The first technique—a change of variables—is introduced by Judd (2003),who
pointed out that an ordinary Taylor expansion can be dominated in accuracy by other
expansions implied by changes of variables (e.g., an expansion in levels may lead to more
accurate solutions than that in logarithms or vice versa). All the expansions are equivalent
in the steady state but differ globally. The goal is to choose an expansion that performs
best in terms of accuracy on the relevant domain. In the context of a simple optimal
growth model, Judd (2003) finds that a change of variables can increase the accuracy of
the conventional perturbation method by two orders of magnitude. Fernández-Villaverde
and Rubio-Ramírez (2006) show how to apply the method of change of variables to a
model with uncertainty and an elastic labor supply.

The second technique—a hybrid of local and global solutions—is developed by Maliar
et al. (2013).Their general presentation of the hybrid method encompasses some previous
examples in the literature obtained using linear and loglinear solution methods;see Dotsey
and Mao (1992) and Maliar et al. (2010,2011).This perturbation-based method computes
a standard perturbation solution,fixes some perturbation decision functions, and finds the
remaining decision functions to exactly satisfy certain models’equations.The construction
of the latter part of the hybrid solution mimics global solution methods: for each point of
the state space considered,nonlinear equations are solved either analytically (when closed-
form solutions are available) or with a numerical solver. In numerical examples studied
in Maliar et al. (2013), some hybrid solutions are orders of magnitude more accurate than
the original perturbation solutions and are comparable in accuracy to solutions produced
by global solution methods.

Finally, there is another technique that can help us to increase the accuracy of per-
turbation methods. Namely, it is possible to computeTaylor expansion around stochastic
steady state instead of deterministic steady state. Such a steady state is computed by tak-
ing into account the attitude of agents toward risk. This idea is developed in Juillard
(2011) and Maliar and Maliar (2011): the former article computes a stochastic steady
state numerically, whereas the latter article uses analytical techniques of precomputation
of integrals introduced in Judd et al. (2011d).

Numerical Methods for Large-Scale Dynamic Economic Models 339

We complement our survey of efficient numerical methods with a discussion of recent
developments in hardware and software that can help to reduce the cost of large-scale
problems. Parallel computation is the main tool for dealing with computationally intensive
tasks in recent computer science literature. A large number of central processing units
(CPUs) or graphics processing units (GPUs) are connected with a fast network and
are coordinated to perform a single job. Early applications of parallel computation to
economic problems are dated back to Amman (1986, 1990), Chong and Hendry (1986),
Coleman (1992),Nagurney and Zhang (1998);also,see Nagurney (1996) for a survey. But
after the early contributions,parallel computation received little attention in the economic
literature. Recently, the situation has begun to change. In particular,Doornik et al. (2006)
review applications of parallel computation in econometrics;Creel (2005,2008) and Creel
and Goffe (2008) illustrate the benefits of parallel computation in the context of several
economically relevant examples; Sims et al. (2008) employ parallel computation in the
context of large-scale Markov switching models; Aldrich et al. (2011), Morozov and
Mathur (2012) apply GPU computation to solve dynamic economic models; Durham
and Geweke (2012) use GPUs to produce sequential posterior simulators for applied
Bayesian inference;Cai et al. (2012) apply high-throughput computing (Condor network)
to implement value function iteration;Valero et al. (2013) review parallel computing
tools available in MATLAB and illustrate their application by way of examples; and,
finally, Maliar (2013) assesses efficiency of parallelization using message passing interface
(MPI) and open memory programming (OpenMP) in the context of high-performance
computing (a Blacklight supercomputer).

In particular,Maliar (2013) finds that information transfers on supercomputers are far
more expensive than on desktops. Hence, the problem must be sufficiently large to ensure
gains from parallelization. The task assigned to each core must be at least few seconds if
several cores are used, and it must be a minute or more if a large number (thousands) of
cores are used. Maliar (2013) also finds that for small problems,OpenMP leads to a higher
efficiency of parallelization than MPI. Furthermore,Valero et al. (2013) explore options
for reducing the cost of a Smolyak solution method in the context of large-scale models
studied in the JEDC project. Parallelizing the Smolyak method effectively is a nontrivial
task because there are large information transfers between the outer and inner loops and
because certain steps should be implemented in a serial manner. Nonetheless,considerable
gains from parallelization are possible even on a desktop computer. Specifically, in a model
with 16 state variables,Valero et al. (2013) attain the efficiency of parallelization of nearly
90% on a four-core machine via a parfor tool. Furthermore, translating expensive parts
of the MATLAB code into C++ via a mex tool also leads to a considerable reduction in
computational expense in some examples. However, transferring expensive computations
to GPUs does not reduce the computational expense: a high cost of transfers between
CPUs and GPUs outweighs the gains from parallelization.

340 Lilia Maliar and Serguei Maliar

3. THE CHAPTER AT A GLANCE

In this section, we provide a roadmap of the chapter and highlight the key ideas
using a collection of simple examples.

A Neoclassical Stochastic Growth Model
The techniques surveyed in the chapter are designed for dealing with high-dimensional
problems. However, to explain these techniques, we use the simplest possible framework,
the standard one-sector neoclassical growth model. Later, in Sections 11 and 12,we show
how such techniques can be applied for solving large-scale heterogeneous-agents models.

We consider a model with elastic labor supply. The agent solves:

max{kt+1,ct ,�t}t=0,...,∞
E0

{ ∞∑
t=0

β tu (ct , �t)

}
(1)

s.t. ct + kt+1 = (1 − δ) kt + θt f (kt , �t) , (2)

ln θt+1 = ρ ln θt + σεt+1, εt+1 ∼ N (0, 1) , (3)

where (k0, θ0) is given; Et is the expectation operator conditional on information at
time t; ct , �t , kt+1, and θt are consumption, labor, end-of-period capital, and productivity
level, respectively; β ∈ (0, 1) ; δ ∈ (0, 1] ; ρ ∈ (−1, 1) ; σ ≥ 0; u and f are the utility
and production functions, respectively, both of which are strictly increasing, continuously
differentiable, and concave.

Our goal is to solve for a recursive Markov equilibrium in which the decisions on
next-period capital, consumption, and labor are made according to some time-invariant
state contingent functions k′ = K (k, θ) , c = C (k, θ), and � = L (k, θ).

A version of model (1)–(3) in which the agent does not value leisure and supplies
to the market all her time endowment is referred to as a model with inelastic labor supply.
Formally, such a model is obtained by replacing u (ct , �t) and f (kt , �t) with u (ct) and f (kt)
in (1) and (2), respectively.

First-Order Conditions
We assume that a solution to model (1)–(3) is interior and satisfies the first-order condi-
tions (FOCs)

u1 (ct , �t) = βEt
{
u1 (ct+1, �t+1)

[
1 − δ + θt+1 f1 (kt+1, �t+1)

]}
, (4)

u2 (ct , �t) = u1 (ct , �t) θt f2 (kt , �t) , (5)

and budget constraint (2). Here, and further on, notation of type Fj stands for the first-
order partial derivative of a function F(. . ., xj , . . .) with respect to a variable xj . Condition
(4) is called the Euler equation.

Numerical Methods for Large-Scale Dynamic Economic Models 341

An Example of a Global Projection-Style Euler Equation Method
We approximate functions K , C, and L numerically. As a starting point, we consider a
projection-style method in line with Judd (1992) that approximates these functions to
satisfy (2)–(5) on a grid of points.

(EEM):A global projection-style Euler equation method.

Step 1. Choose functional forms K̂ (·, bk), Ĉ(·, bc), and L̂(·, b�) for representing
K , C, and L, where bk, bc , b� are the coefficient vectors.
Choose a grid {km, θm}m=1,...,M on which K̂ , Ĉ, and L̂ are constructed.
Step 2. Choose nodes, εj , and weights,ωj , j = 1, . . ., J , for approximating integrals.
Compute next-period productivity θ ′

m, j = θ
ρ
m exp(εj) for all j, m.

Step 3. Solve for bk, bc , b� that approximately satisfy the model’s equations:

u1 (cm, �m) = β
J∑

j=1
ωj ·

[
u1

(
c ′m, j , �

′
m, j

) (
1 − δ + θ ′

m, j f1
(
k′

m, �′
m, j

))]
,

u2 (cm, �m) = u1 (cm, �m) θm f2 (km, �m) ,
cm = (1 − δ) km + θm f (km, �m) − k′

m.

We use the assumed decision functions to determine the choices in the current period
k′

m = K̂
(
km, θm; bk

)
, cm = Ĉ

(
km, θm; bc

)
, �m = L̂ (km, θm; b�

)
, as well as to determine

these choices in J possible future states k′′
m, j = K̂

(
k′

m, θ ′
m, j; bk

)
, c ′m, j = Ĉ

(
k′

m, θ ′
m, j; bc

)
, and

�′
m, j = L̂(k′

m, θ ′
m, j; b�

)
.

Unidimensional Grid Points and Basis Functions
To solve the model, we discretize the state space into a finite set of grid points
{km, θm}m=1,...,M . Our construction of a multidimensional grid begins with unidimen-
sional grid points and basis functions.The simplest possible choice is a family of ordinary
polynomials and a grid of uniformly spaced points but many other choices are possi-
ble. In particular, a useful alternative is a family of Chebyshev polynomials and a grid
composed of extrema of Chebyshev polynomials. Such polynomials are defined in an
interval [−1, 1], and thus, the model’s variables such as k and θ must be rescaled to be
inside this interval prior to any computation. In Table 1, we compare two choices dis-
cussed above: one is ordinary polynomials and a grid of uniformly spaced points and the
other is Chebyshev polynomials and a grid of their extrema.

As we see,Chebyshev polynomials are just linear combinations of ordinary polynomi-
als. If we had an infinite arithmetic precision on a computer, it would not matter which
family of polynomials we use. But with a finite number of floating points, Chebyshev
polynomials have an advantage over ordinary polynomials. To see the point, in Figure 1
we plot ordinary and Chebyshev polynomials of degrees from 1 to 5.

For the ordinary polynomial family, the basis functions look very similar on R+.
Approximation methods using ordinary polynomials may fail because they cannot

342 Lilia Maliar and Serguei Maliar

Table 1 Ordinary and Chebyshev unidimensional polynomials.
Ordinary polyn. Uniform grid of Chebyshev polyn. n extrema of Chebyshev

n of degree n − 1 points on [−1, 1] of degree n − 1 polyn. of degree n − 1

1 1 0 1 0

2 x −1 1 x −1 1

3 x2 −1 0 1 2x2−1 −1 0 1

4 x3 −1, − 2

3
,

2

3
, 1 4x3 − 3x −1, − 1√

2
,

1

2
, 1

5 x4 −1 − 1

2
0 − 1

2
1 8x4 − 8x2 + 1 −1 − 1√

2
0 − 1√

2
1

Notes: Ordinary polynomial of degree n − 1 is given by Pn−1(x) = xn−1; Chebyshev polynomial of degree n − 1 is
given by Tn−1(x) = cos((n − 1)cos−1(x)); and finally, n extrema of Chebyshev polynomials of degree n − 1 are given by
ζ n
j = −cos(π (j − 1)/(n − 1)), j = 1, . . ., n.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x

P n-
1(x

)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x

T n-
1(x

)
T3 T1

T5T4

T2

P1
P2 P3

P4
P5

Figure 1 (a) Ordinary polynomials. (b) Chebyshev polynomials.

distinguish between similarly shaped polynomial terms such as x2 and x4. In contrast,
for the Chebyshev polynomial family, basis functions have very different shapes and are
easy to distinguish.

We now illustrate the use of Chebyshev polynomials for approximation by way of
example.

Example 1. Let f (x) be a function defined on an interval [−1, 1],and let us approximate
this function with a Chebyshev polynomial function of degree 2, i.e.,

f (x) ≈ f̂ (x; b) = b1 + b2x + b3
(
2x2 − 1

)
.

We compute b ≡ (b1, b2, b3) so that f̂ (·; b) and f coincide in three extrema of Chebyshev
polynomials, namely, {−1, 0, 1},

f̂ (−1; b) = b1 + b2 · (−1) + b3
(
2 · (−1)2 − 1

) = f (−1) ,

f̂ (0; b) = b1 + b2 · 0 + b3
(
2 · 02 − 1

) = f (0) ,

f̂ (1; b) = b1 + b2 · 1 + b3
(
2 · 12 − 1

) = f (1) .

Numerical Methods for Large-Scale Dynamic Economic Models 343

This leads us to a system of three linear equations with three unknowns that has a unique
solution

⎡
⎣ b1

b2

b3

⎤
⎦ =

⎡
⎣1 −1 1

1 0 −1
1 1 1

⎤
⎦

−1⎡
⎣ f (−1)

f (0)
f (1)

⎤
⎦

=
⎡
⎢⎣

1
4

1
2

1
4

− 1
2 0 1

2
1
4 − 1

2
1
4

⎤
⎥⎦
⎡
⎢⎣

f (−1)

f (0)

f (1)

⎤
⎥⎦ =

⎡
⎢⎣

f (−1)
4 + f (0)

2 + f (1)
4

− f (−1)
2 + f (1)

2
f (−1)

4 − f (0)
2 + f (1)

4

⎤
⎥⎦ .

It is possible to use Chebyshev polynomials with other grids, but the grid of extrema
of Chebyshev polynomials is a perfect match. (The extrema listed in Table 1 are also
seen in Figure 1.) First, the resulting approximations are uniformly accurate, and the
error bounds can be constructed. Second, there is a unique set of coefficients such that a
Chebyshev polynomial function of degree n − 1 matches exactly n given values, and this
property carries over to multidimensional approximations that build on unidimensional
Chebyshev polynomials. Finally, the coefficients that we compute in our example using
an inverse problem can be derived in a closed form using the property of orthogonality
of Chebyshev polynomials.The advantages of Chebyshev polynomials for approximation
are emphasized by Judd (1992) in the context of projection methods for solving dynamic
economic models; see Judd (1998) for a further discussion of Chebyshev as well as other
orthogonal polynomials (Hermite, Legendre, etc.).

Multidimensional Grid Points and Basis Functions
In Step 1 of the Euler equation algorithm, we must specify a method for approximat-
ing,representing,and interpolating two-dimensional functions.A tensor-product method
constructs multidimensional grid points and basis functions using all possible combina-
tions of unidimensional grid points and basis functions. As an example, let us approx-
imate the capital decision function K . First, we take two grid points for each state
variable,namely,{k1, k2} and {θ1, θ2},and we combine them to construct two-dimensional
grid points, {(k1, θ1), (k1, θ2), (k2, θ1) , (k2, θ2)}. Second, we take two basis functions for
each state variable, namely, {1, k} and {1, θ}, and we combine them to construct two-
dimensional basis functions {1, k, θ , kθ}. Third, we construct a flexible functional form
for approximating K ,

K̂ (k, θ; b) = b1 + b2k + b3θ + b4kθ. (6)

Finally, we identify the four unknown coefficients (b1, b2, b3, b4) ≡ b such that K (k, θ)
and K̂ (k, θ; b) coincide exactly in the four grid points constructed. That is, we write

344 Lilia Maliar and Serguei Maliar

Bb = w, where

B =

⎡
⎢⎢⎢⎣

1 k1 θ1 k1θ1

1 k1 θ2 k1θ2

1 k2 θ1 k2θ1

1 k2 θ2 k2θ2

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣

b1

b2

b3

b4

⎤
⎥⎥⎥⎦ , w =

⎡
⎢⎢⎢⎣

K (k1, θ1)

K (k1, θ2)

K (k2, θ1)

K (k2, θ2)

⎤
⎥⎥⎥⎦ . (7)

If B has full rank, then coefficient vector b is uniquely determined by b = B−1w. The
obtained approximation (6) can be used to interpolate the capital decision function in
each point off the grid.

Tensor-product constructions are successfully used in the literature to solve economic
models with few state variables; see,e.g., Judd (1992). However, the number of grid points
and basis functions grows exponentially (i.e., as 2d) with the number of state variables d.
For problems with high dimensionality,we need nonproduct techniques for constructing
multidimensional grid points and basis functions.

Nonproduct techniques for constructing multidimensional grids are the first essential
ingredient of solution methods for high-dimensional problems. We survey several such
techniques, including Smolyak (sparse), stochastic simulation, ε-distinguishable set, and
cluster grids. The above techniques attack the curse of dimensionality in two different
ways:one is to reduce the number of points within a fixed solution domain and the other
is to reduce the size of the domain itself.To be specific, the Smolyak method uses a fixed
geometry, a multidimensional hypercube, but chooses a small set of points within the
hypercube. In turn, a stochastic simulation method uses an adaptive geometry: it places
grid points exclusively in the area of the state space in which the solution “lives” and
thus avoids the cost of computing a solution in those areas that are unlikely to happen
in equilibrium. Finally, an ε-distinguishable set and cluster grid methods combine an
adaptive geometry with an efficient discretization: they distinguish a high-probability
area of the state space and cover such an area with a relatively small set of points. We
survey these techniques in Section 4.

Numerical Integration
In Step 2 of the Euler equation algorithm,we need to specify a method for approximating
integrals. As a starting point, we consider a simple two-node Gauss-Hermite quadrature
method that approximates an integral of a function of a normally distributed variable
ε ∼ N (0, σ 2) with a weighted average of just two values ε1 = −σ and ε2 = σ that
happen with probability ω1 = ω2 = 1

2 , i.e.,∫ ∞

−∞
G (ε) w (ε) dε ≈ G (ε1)ω1 + G (ε2)ω2 = 1

2
[G (−σ) + G (σ)] ,

where G is a bounded continuous function, and w is a density function of a normal
distribution. Alternatively, we can use a three-node Gauss-Hermite quadrature method,

Numerical Methods for Large-Scale Dynamic Economic Models 345

which uses nodes ε1 = 0, ε2 = σ

√
3
2 , and ε3 = −σ

√
3
2 and weights ω1 = 2

√
π

3 and

ω2 = ω3 =
√
π

6 or even a one-node Gauss-Hermite quadrature method, which uses
ε1 = 0 and ω1 = 1.

Another possibility is to approximate integrals using Monte Carlo integration.We can
make J random draws and approximate an integral with a simple average of the draws,

∫ ∞

−∞
G (ε) w (ε) dε ≈ 1

J

J∑
j=1

G
(
εj
)
.

Let us compare the above integration methods using an example.

Example 2. Consider a quadratic function G (ε) = b1 + b2ε + b3ε
2, where ε ∼

N (0, σ 2).

(i) An exact integral is I ≡ ∫∞
−∞

(
b1 + b2ε + b3ε

2
)

w (ε) dε = b1 + b3σ
2;

(ii) A two-node Gauss-Hermite quadrature integration method yields I ≈ b1 + b3σ
2;

(iii) A one-node Gauss-Hermite quadrature integration method yields I ≈ b1;

(iv) A Monte Carlo integration method yields I ≈ b1+b2

[
1
J

∑J
j=1 εj

]
+b3

[
1
J

∑J
j=1 ε

2
j

]
.

Note that the quadrature method with two nodes delivers the exact value of the
integral. Even with just one node, the quadrature method can deliver an accurate integral
if G is close to linear (which is often the case in real business cycle models), i.e., b3 ≈ 0.
To evaluate the accuracy of Monte Carlo integration, let us use σ = 0.01, which is
consistent with the magnitude of fluctuations in real business cycle models. Let us con-
centrate just on the term 1

J

∑J
j=1 εj for which the expected value and standard deviation

are E
[

1
J

∑J
j=1 εj

]
= 0 and std

[
1
J

∑J
j=1 εj

]
= σ√

J , respectively. The standard deviation

depends on the number of random draws: with one random draw, it is 0.01 and with
1,000,000 draws, it is 0.01√

1,000,000
= 10−5. The last number represents an (expected) error

in approximating the integral and places a restriction on the overall accuracy of solutions
that can be attained by a solution algorithm using Monte Carlo integration. An infeasibly
long simulation is needed for a Monte Carlo method to deliver the same accuracy level
as that of Gauss-Hermite quadrature in our example.

Why is Monte Carlo integration inefficient in the context of numerical methods
for solving dynamic economic models? This is because we compute expectations as do
econometricians,who do not know the true density function of the data-generating pro-
cess and have no choice but to estimate such a function from noisy data using a regression.
However, when solving an economic model, we do know the process for shocks. Hence,
we can construct the “true” density function and we can use such a function to compute
integrals very accurately, which is done by the Gauss-Hermite quadrature method.

In principle, the Gauss-Hermite quadrature method can be extended to an arbitrary
dimension using a tensor-product rule; see, e.g., Gaspar and Judd (1997). However, the
number of integration nodes grows exponentially with the number of shocks in the

346 Lilia Maliar and Serguei Maliar

model. To ameliorate the curse of dimensionality, we again need to avoid product rules.
Monomial formulas are a nonproduct integration method that combines high accuracy
and low cost; this class of integration methods is introduced to the economic literature
in Judd (1998). Integration methods that are tractable in problems with a large number
of shocks are surveyed in Section 5.

Optimization Methods
In Step 3 of the algorithm, we need to solve a system of nonlinear equations with
respect to the unknown parameters vectors bk, bc , b�. In principle, this can be done with
Newton-style optimization methods; see, e.g., Judd (1992). Such methods compute first
and second derivatives of an objective function with respect to the unknowns and move
in the direction of gradient descent until a solution is found. Newton methods are fast
and efficient in small problems but become increasingly expensive when the number
of unknowns increases. In high-dimensional applications, we may have thousands of
parameters in approximating functions, and the cost of computing derivatives may be
prohibitive. In such applications, derivative-free optimization methods are an effective
alternative. In particular, a useful choice is a fixed-point iteration method that finds a
root to an equation x = F(x) by constructing a sequence x(i+1) = F(x(i)). We illustrate
this method using an example.

Example 3. Consider an equation x3 − x − 1 = 0. Let us rewrite this equation as
x = (x + 1)1/3 and construct a sequence x(i+1) = (x(i) + 1)1/3 starting from x(0) = 1.
This yields a sequence x(1) = 1.26, x(2) = 1.31, x(3) = 1.32, . . ., which converges to a
solution.

The advantage of fixed-point iteration is that it can iterate in this simple manner on
objects of any dimensionality, for example, on a vector of the polynomial coefficients.
The cost of this procedure does not grow considerably with the number of polynomial
coefficients.The shortcoming is that it does not always converge. For example,if we wrote
the above equation as x = x3−1 and implemented fixed-point iteration x(i+1) = (x(i))3−1,
we would obtain a sequence that diverges to −∞ starting from x(0) = 1.

We survey derivative-free optimization methods in Section 6, and we show how to
enhance their convergence properties by using damping.We apply fixed-point iteration in
two different contexts. One is to solve for parameters vectors in approximating functions
and the other is to solve for quantities satisfying a system of equilibrium conditions.The
latter version of fixed-point iteration is advocated in Maliar et al. (2011) and is called
iteration-on-allocation.

Dynamic Programming Problems
Model (1)–(3) can be also written in the dynamic programming form:

V (k, θ) = max
k′,c,�

{
u (c, �) + βE

[
V
(
k′, θ ′)]} (8)

Numerical Methods for Large-Scale Dynamic Economic Models 347

s.t. k′ = (1 − δ) k + θ f (k, �) − c, (9)

ln θ ′ = ρ ln θ + σε′, ε′ ∼ N (0, 1) , (10)

where E [V (k′, θ ′)] ≡ E [V (k′, θ ′) |k, θ] is an expectation of V (k′, θ ′) conditional on
state (k, θ). Here, and further on, primes on variables mean their future values.

An Example of a Global Projection-Style Dynamic Programming Algorithm
We can also use a projection-style algorithm to solve for a value function V .

(DPM):A global projection-style dynamic programming method.

Step 1. Choose functional form V̂ (·, bv) for representing V , where bv is a
coefficient vector.
Choose a grid {km, θm}m=1,...,M on which V̂ is constructed.
Step 2. Choose nodes, εj , and weights,ωj , j = 1, . . ., J , for approximating integrals.
Compute next-period productivity θ ′

m, j = θ
ρ
m exp(εj) for all j, m.

Step 3. Solve for bv that approximately satisfies

V (km, θm; bv) = max{k′
m,cm,�m}

{
u (cm, �m) + β

J∑
j=1

(
ωj

[
V
(
k′

m, θ ′
m, j; bv

)])}
,

cm = (1 − δ) km + θm f (km, �m) − k′
m.

Observe that this dynamic programming method also requires us to approximate mul-
tidimensional functions and integrals. Hence, our discussion about the curse of dimen-
sionality and the need of nonproduct grids and nonproduct integration methods applies
to dynamic programming algorithms as well. Furthermore, if a solution to the Bellman
equation is interior, derivative-free optimization methods are also a suitable choice.

There are issues that are specific to dynamic programming problems, in addition to
those issues that are common for dynamic programming and Euler equation methods.
The first issue is that conventional value function iteration leads to systems of optimality
conditions that are expensive to solve numerically.As an example, let us consider a version
of model (8)–(10) with inelastic labor supply. We combine FOC u′ (c) = βE [V1 (k′, θ ′)]
with budget constraint (10) to obtain

u′ [(1 − δ) k + θ f (k) − k′] = βE
[
V1
(
k′, θ ′)] . (11)

We parameterize V1 with the simplest possible first-degree polynomial V̂ 1 (k, θ; b) =
b1 + b2k + b3θ . Then, (11) is

(1 − δ) k + θ f (k) = k′ +
⎡
⎣β J∑

j=1

ωj
(
b1 + b2k′ + b3θ

ρ exp
(
εj
))⎤⎦

−1/γ

, (12)

348 Lilia Maliar and Serguei Maliar

where we assume u (c) = c1−γ −1
1−γ

(and hence, u′ (c) = c−γ) for expository convenience.
Solving (12) with respect to k′ is expensive even in this simple case.We need to find a root
numerically by computing V1 in a large number of candidate points (k′, θ ′), as well as by
approximating expectations for each value of (k′, θ ′) considered. For high-dimensional
problems, the cost of conventional value function iteration is prohibitive.

Two methods are proposed to simplify rootfinding to (12), one is an endogenous grid
method of Carroll (2005) and the other is an envelope condition method of Maliar and
Maliar (2013).The essence of Carroll’s (2005) method is the following simple observation:
it is easier to solve (12) with respect to k given k′ than to solve it with respect to k′ given
k. Hence,Carroll (2005) fixes future endogenous state variable k′ as grid points and treats
current endogenous state variable k as an unknown.

The envelope condition method of Maliar and Maliar (2012a,b) builds on a different
idea. Namely, it replaces backward-looking iteration based on a FOC by forward-looking
iteration based on an envelope condition. For a version of (8)–(10) with inelastic labor
supply, the envelope condition is V1 (k, θ) = u′ (c) [1 − δ + θ f ′ (k)], which leads to an
explicit formula for consumption

c =
[

V1 (k, θ)

1 − δ + θ f ′ (k)

]−1/γ

, (13)

where we again assume u (c) = c1−γ −1
1−γ

. Since c follows directly from the envelope condi-
tion, and since k′ follows directly from budget constraint (9), no rootfinding is needed at
all in this example.

Our second issue is that the accuracy of Bellman equation approaches is typically
lower than that of similar Euler equation approaches. This is because the object that is
relevant for accuracy is the derivative of value function V1 and not V itself (namely, V1

enters optimality conditions (11) and (13) and determines the optimal quantities and not
V). If we approximate V with a polynomial of degree n, we effectively approximate V1

with a polynomial of degree n − 1, i.e., we effectively “lose” one polynomial degree after
differentiation with the corresponding accuracy loss. To avoid this accuracy loss, Maliar
and Maliar (2013) introduce variants of the endogenous grid and envelope condition
methods that solve for derivatives of value function instead of or in addition to the value
function itself. These variants produce highly accurate solutions.

Precomputation
Steps inside the main iterative cycle are repeated a large number of times. Computational
expense can be reduced if some expensive steps are taken outside the main iterative cycle,
i.e., precomputed.

As an example, consider a method of precomputation of integrals introduced in Judd
et al. (2011d). Let us parameterize V byV̂ (k, θ; b) = b1 + b2k + b3θ . The key here is to

Numerical Methods for Large-Scale Dynamic Economic Models 349

observe that we can compute the expectation ofV̂ up-front, without solving the model,

E
[
V̂ (k′, θ ′; b)

] = E
[
b1 + b2k′ + b3θ

′] = b1 + b2k′ + b3̃θ ,

where under assumption (10), we have θ̃ ′ ≡ θρE [exp (ε′)]. With this result, we rewrite
Bellman equation (8) as

b1 + b2k + b3θ ≈ max{k′
m,cm,�m}

{
u (cm, �m) + β

{
b1 + b2k′ + b3̃θ

}}
.

Effectively, this converts a stochastic Bellman equation into a deterministic one. The
effect of uncertainty is fully captured by a precomputed value θ̃ ′. Judd et al. (2011d) also
develop precomputation of integrals in the context of Euler equation methods.

Maliar and Maliar (2005b) and Maliar et al. (2011) introduce another kind of pre-
computation, one that constructs the solution manifolds outside the main iterative cycle.
For example, consider (2) and (5),

c + k′ = (1 − δ) k + θ f (k, �) ,

u2 (c, �) = u1 (c, �) θ f2 (k, �) .

If k′ is fixed, we have a system of two equations with two unknowns, c and �. Solving
this system once is not costly but solving it repeatedly in each grid point and integration
node inside the main iterative cycle may have a considerable cost even in our simple
example. We precompute the choice of c and � to reduce this cost. Specifically, outside
the main iterative cycle, we specify a grid of points for k, θ , k′, and we find a solution for
c and � in each grid point. The resulting solution manifolds C̃ (k, θ , k′) and L̃ (k, θ , k′)
give us c and � for each given triple (k, θ , k′). Inside the main iterative cycle, we use the
precomputed manifolds to infer consumption and labor choices as if their closed-form
solutions in terms of (k, θ , k′) were available.

Finally, Maliar and Maliar (2001, 2003a) introduce a technique of imperfect aggre-
gation that makes it possible to precompute aggregate decision rules in certain classes of
heterogeneous-agent economies.The precomputation methods are surveyed in Section 8.

Perturbation Methods
Perturbation methods approximate a solution in just one point—a deterministic steady
state—using Taylor expansions of the optimality conditions. The costs of perturbation
methods do not increase rapidly with the dimensionality of the problem. However, the
accuracy of a perturbation solution may deteriorate dramatically away from the steady
state in which such a solution is computed.

One technique that can increase the accuracy of perturbation methods is a change
of variables proposed by Judd (2003). Among many different Taylor expansions that are
locally equivalent, we must choose the one that is most accurate globally. For example,

350 Lilia Maliar and Serguei Maliar

consider two approximations for the capital decision function,

k′ = b1 + b2k + b3θ and k̃′ = b̃1 + b̃2 ln (k) + b̃3 ln (θ) .

Let
(

k, θ
)

be a steady state. If we set b1 = b̃1/k and b2 = b̃2/θ , then k′ and k̃′ are locally
equivalent in a sense that they have the same values and the same derivatives in the steady
state. Hence, we can compare their accuracy away from the steady state and choose the
one that has a higher overall accuracy.

The other technique for increasing the accuracy of perturbation methods is a hybrid
of local and global solutions developed in Maliar et al. (2013).The idea is to combine local
solutions produced by a perturbation method with global solutions that are constructed to
satisfy the model’s equations exactly. For example, assume that a first-order perturbation
method delivers us a solution k′ = bk

1 + bk
2k + bk

3θ and c = bc
1 + bc

2k + bc
3θ in a

model with inelastic labor supply. We keep the perturbation solution for k′ but replace c
with a new function for consumption c̃ that is constructed to satisfy (9) exactly

c̃ ≡ (1 − δ) k + θ f (k) − (
bk

1 + bk
2k + bk

3θ
)
.

The obtained k′, c̃ are an example of a hybrid solution. This particular hybrid solution
produces a zero residual in the budget constraint unlike the original perturbation solution
that produces nonzero residuals in all the model’s equations.The techniques for increasing
the accuracy of perturbation methods are surveyed in Section 9.

Parallel Computing
In the past decades, the speed of computers was steadily growing. However, this process
has a natural limit (because the speed of electricity along the conducting material is limited
and because the thickness and length of the conducting material are limited).The recent
progress in solving computationally intense problems is related to parallel computation.
We split a large problem into smaller subproblems, allocate the subproblems among many
workers (computers), and solve them simultaneously. Each worker does not have much
power but all together they can form a supercomputer. However, to benefit from this new
computation technology,we need to design solution methods in a manner that is suitable
for parallelizing. We also need hardware and software that support parallel computation.
These issues are discussed in Section 10.

Methodology of the Numerical Analysis and Computational Details
Our solution procedure has two stages. In Stage 1, a method attempts to compute a
numerical solution to a model. Provided that it succeeds,we proceed to Stage 2, in which
we subject a candidate solution to a tight accuracy check. We specifically construct a set
of points {ki, θi}i=1,...,I that covers an area in which we want the solution to be accurate,

Numerical Methods for Large-Scale Dynamic Economic Models 351

and we compute unit-free residuals in the model’s equations:

RBC (ki, θi) = (1 − δ) ki + θi f (ki, �i)

ci + k′
i

− 1, (14)

REE (ki, θi) = βE

{
u1
(
c ′i , �′

i

)
u1 (ci, �i)

[
1 − δ + θ ′

i f1
(
k′

i , �
′
i

)]}− 1, (15)

RMUL (ki, θi) = u1 (ci, �i) θi f2 (ki, �i)

u2 (ci, �i)
− 1, (16)

where RBC , REE , and RMUL are the residuals in budget constraint (9),Euler equation (4),
and FOC for the marginal utility of leisure (5). In the exact solution,such residuals are zero,
so we can judge the quality of approximation by how far these residuals are away from zero.

In most experiments, we evaluate residuals on stochastic simulation (we use 10,200
observations and we discard the first 200 observations to eliminate the effect of initial
conditions). This style of accuracy checks is introduced in Jin and Judd (2002). In some
experiments, we evaluate accuracy on deterministic sets of points that cover a given area
in the state space such as a hypersphere or hypercube; this kind of accuracy check is
proposed by Judd (1992). We must emphasize that we never evaluate residuals on points
used for computing a solution in Stage 1 (in particular, for some methods the residuals in
the grid points are zeros by construction) but we do so on a new set of points constructed
for Stage 2.

If either a solution method fails to converge in Stage 1 or the quality of a candidate
solution in Stage 2 is economically inacceptable,we modify the algorithm’s design (i.e.,the
number and placement of grid points, approximating functions, integration method, fit-
ting method,etc.) and we repeat the computations until a satisfactory solution is produced.

Parameterizations of the Model
In Sections (4)–(10),we report the results of numerical experiments. In those experiments,
we parameterize model (1)–(3) with elastic labor supply by

u (c, �) = c1−γ − 1
1 − γ

+ B
(1 − �)1−μ − 1

1 − μ
, and θ f (k, �) = θkα�1−α, (17)

where parameters γ ,μ, B > 0. We use α = 0.36,β = 0.99, δ = 0.025, and we use
ρ = 0.95 and σ = 0.01 to parameterize the stochastic process (3). For the utility
parameters, our benchmark choice is γ = 1 and μ = 1 but we also explore other values
of γ and μ.

In the model with inelastic labor supply, we assume B = 0 and � = 1, i.e.,

u (c) = c1−γ − 1
1 − γ

, and θ f (k) = θkα. (18)

352 Lilia Maliar and Serguei Maliar

Finally, we also study the latter model under the assumptions of full depreciation of
capital, δ = 1, and the logarithmic utility function, γ = 1; this version of the model has
a closed-form solution: kt+1 = βαθtkα

t and ct = (1 − βα) θtkα
t .

Reported Numerical Results
For each computational experiment, we report two accuracy measures, namely, the aver-
age and maximum absolute residuals across both the optimality conditions and I test
points. The residuals are represented in log 10 units, for example, RBC (ki, θi) = −2

Table 2 The acronyms used.

Acronym Meaning

CPU Central processing unit
CGA Cluster grid algorithm
DP Dynamic programming
DVF Derivative of value function
ECM Envelope condition method
EDS ε-distiguishable set
EGM Endogenous grid method
FOC First-order condition
FPI Fixed-point iteration
GSSA Generalized stochastic simulation algorithm
GPU Graphics processing unit
HPC High-performance computing
HTC High-throughput computing
HYB Hybrid perturbation-based method
LAD Least-absolute deviations
LS Least squares
MC Monte Carlo integration
MPI Message passing interface
MRGAL Monomial rule Galerkin method
OpenMP Open memory programming
PEA Parameterized expectations algorithm
PER Perturbation
PS Principal component
RLAD Regularaized least-absolute deviations
RLS Regularized least squares
SMOL Smolyak method
SSA Stochastic simulation algorithm
SVD Singular value decomposition
VF Value function
VFI Value function iteration
XSEDE eXtreme Science and Engineering Discovery Environment

Numerical Methods for Large-Scale Dynamic Economic Models 353

means that a residual in the budget constraint is 10−2 = 1%, and RBC (ki, θi) = −4.5
means such a residual is 10−4.5 = 0.00316%.

As a measure of computational expense, we report the running time. Unless specified
separately, we use MATLAB, version 7.6.0.324 (R2008a) and a desktop computer with a
Quad processor Intel® Core™ i7 CPU920 @2.67 GHz, RAM 6,00 GB, and Windows
Vista 64 bit.

Acronyms Used
We summarize all the acronyms used in the chapter in Table 2.

4. NONPRODUCT APPROACHES TO REPRESENTING,
APPROXIMATING, AND INTERPOLATING FUNCTIONS

We survey nonproduct approaches to representing, approximating, and interpolat-
ing functions that can mitigate the curse of dimensionality. Let us consider a canonical
approximation problem. Let f : R

d → R be a smooth function, and let f̂ (·; b) be a
parametric function of the form

f̂ (x; b) =
I∑

i=1

bi�i (x) , (19)

where �i : R
d → R is a basis function, and b ≡ (b1, . . ., bI) is a parameters vector. We

aim to find b such that f̂ (·; b) ≈ f within a given area of R
d .

We construct a grid of M ≥ I points {x1, . . ., xM } within a given area of R
d and

compute the residuals,ε ≡ {ε1, . . ., εM },defined as a difference between the true function,
f , and its approximation, f̂ (·; b),⎡

⎣ ε1

· · ·
εM

⎤
⎦ =

⎡
⎣ f (x1)

· · ·
f (xM)

⎤
⎦−

⎡
⎢⎣

�1 (x1) · · · �I (x1)

· · · . . . · · ·
�1 (xM) · · · �I (xM)

⎤
⎥⎦ ·

⎡
⎣ b1

· · ·
bI

⎤
⎦ . (20)

Our objective is to find b to minimize the residuals according to some norm.
An approximation method includes the following three steps:

(i) Construction of basis functions {�1, . . .,�I } for (19).
(ii) Selection of grid points {x1, . . ., xM } for (20).
(iii) Identification of parameters vector b that ensures that f̂ (·; b) ≈ f within a given

area of R
d .

We consider two types of approximation methods,a collocation method and a weighted
residuals method. Collocation is the case when M = I , i.e., the number of grid points
is the same as the number of basis functions. If the matrix of basis functions in the right
side of (20) has full rank,we can find b that makes the residuals be equal to zero in all grid

354 Lilia Maliar and Serguei Maliar

points (we have a system of M linear equations with M unknowns that admits a unique
solution for b). Approximation f̂ (·; b) coincides with true function f in all grid points,
i.e., f̂ (xm; b) = f (xm) for all xm ∈ {x1, . . ., xM }. In this case, f̂ (·; b) interpolates f off the
grid.

A weighted residuals method is the case when M > I . Since there are more equations
than unknowns, parameters vector b is overdetermined, and the system of equation (20)
has no solution in a sense that we cannot make all the residuals be zeros in all grid points.
The best we can do is to find b that minimizes the residuals according to some norm, e.g.,
a least-squares norm in which all the residuals have equal weights, i.e.,min

b

∑M
m=1 ε

2
m.This

is like the usual least-squares regression in which we have many data points for identifying
relatively few regression coefficients. Since approximation f̂ (·; b) does not coincide with
true function f in all grid points, we say that f̂ (·; b) approximates f off the grid (instead
of saying “interpolates”).

In the remainder of the section,we consider three methods that construct the approx-
imation of type (19) in a way which is tractable for high-dimensional problems.These are
a Smolyak method, a generalized stochastic simulation method, and an ε-distinguishable
set method. The first one is a collocation method, while the latter two are weighted
residuals methods.

4.1 Smolyak’s (1963) Sparse Grid Method
In a seminal work, Smolyak (1963) introduces a numerical technique for integrating,
representing, and interpolating smooth functions on multidimensional hypercubes. The
Smolyak method constructs multidimensional grid points and basis functions using non-
product rules. The complexity of the Smolyak method grows polynomially with the
dimensionality of the hypercube, i.e., the method is not subject to the curse of dimen-
sionality (at least in a space of smooth functions).

The Smolyak grid was incorporated into numerical methods for solving dynamic
economic models by Krueger and Kubler (2004); see also Malin et al. (2011). Further-
more,Winschel and Krätzig (2010) apply the Smolyak method for developing state-space
filters that are tractable in problems with large dimensionality. Fernández-Villaverde et al.
(2012) use the Smolyak method to solve a new Keynesian model. Finally,Judd et al. (2013)
generalize the Smolyak method in various dimensions to improve its performance in eco-
nomic applications.

We present the Smolyak method in two different ways. In Section 4.1.1, we derive
the Smolyak interpolation formula using intuitive arguments which allows us to illustrate
how the method works. In particular, we do not rely on the conventional interpolation
formula but construct Smolyak polynomials using a Smolyak rule; also, we do not rely
on the conventional formula for the Smolyak coefficients but obtain such coefficients
from an inverse problem; in this presentation, we follow Judd et al. (2013). Then, in
Section 4.1.2, we give a more conventional exposition of the Smolyak method in line

Numerical Methods for Large-Scale Dynamic Economic Models 355

with the analysis of Barthelmann et al. (2000), Krueger and Kubler (2004), and Malin
et al. (2011). Finally, in Section 4.1.3,we discuss the relation between the analysis in Judd
et al. (2013) and the conventional Smolyak interpolation in the literature.

4.1.1 HowDoes the SmolyakMethodWork?
We introduce the Smolyak method in the context of a simple two-dimensional example.
We show how the Smolyak method implements the three steps discussed in the beginning
of the section, i.e., how it (i) constructs grid points, (ii) constructs a polynomial function,
and (iii) identifies the polynomial coefficients for interpolation.

Smolyak Grid
The idea of the Smolyak method is appealing. Among all elements produced by a tensor-
product rule, some elements are more important for the quality of approximation than the
others. The Smolyak method orders all the tensor-product elements by their potential
importance for the quality of approximation and selects the most important ones. A
parameter, called approximation level, controls how many tensor-product elements are
included in a specific Smolyak approximation. By increasing the approximation level, we
add new elements and improve the quality of approximation.

Consider the following five unidimensional grid points
{−1, −1√

2
, 0, 1√

2
, 1
}
.10 If we

use a tensor-product rule to construct two-dimensional grid points, we obtain 25 such
grid points

{
(−1, −1),

(− 1, −1√
2

)
, . . ., (1, 1)

}
.

The Smolyak method constructs grid points in a different manner. First, we use the
unidimensional grid points to construct the following sequence of sets:

i = 1 : S1 = {0};
i = 2 : S2 = {0, −1, 1};
i = 3 : S3 =

{
−1, −1√

2
, 0, 1√

2
, 1
}
.

The sets are nested: each subsequent set contains all the elements of the previous set.
Second, we construct all possible two-dimensional tensor products using elements

from the nested sets. These products are shown in Table 3 for i = 1, 2, 3.
Finally, we select elements from those cells in Table 3 that satisfy a Smolyak rule: the

index of a column i1 plus the index of a row i2 is smaller than or equal to d + μ, i.e.,

i1 + i2 ≤ d + μ, (21)

where μ ∈ {0, 1, 2, . . .} is the approximation level parameter and d is the dimensionality
of the problem (in our case, d = 2).

10 These points are extrema of a Chebyshev polynomial function but this fact is not essential for the
Smolyak construction; we can use other unidimensional grid points instead, for example, uniformly
spaced grid points.

356 Lilia Maliar and Serguei Maliar

Table 3 Tensor products of unidimensional nested grid points for the two-dimensional case.

i2 = 1 i2 = 2 i2 = 3
Si1\Si2 0 0,−1, 1 0,−1, 1, −1√

2
, 1√

2

i1 = 1 0 (0, 0) (0, 0) , (0, −1) , (0, 1) (0, 0) , (0, −1), (0, 1) , (0, −1√
2

), (0, 1√
2

)

i1 = 2

0

−1

1

(0, 0)

(−1, 0)

(1, 0)

(0, 0) , (0, −1) , (0, 1)

(−1, 0) , (−1, −1) , (−1, 1)

(1, 0) , (1, −1) , (1, 1)

(0, 0) , (0, −1) , (0, 1) , (0, −1√
2

), (0, 1√
2

)

(−1, 0) , (−1, −1) , (−1, 1) , (−1, −1√
2

), (−1, 1√
2

)

(1, 0) , (1, −1) , (1, 1) , (1, −1√
2

), (1, 1√
2

)

i1 = 3

0

−1

1
−1√

2
1√
2

(0, 0)

(−1, 0)

(1, 0)

(−1√
2

, 0)

(1√
2

, 0)

(0, 0) , (0, −1) , (0, 1)

(−1, 0) , (−1, −1) , (−1, 1)

(1, 0) , (1, −1) , (1, 1)

(−1√
2

, 0), (−1√
2

, −1), (−1√
2

, 1)

(1√
2

, 0), (1√
2

, −1), (1√
2

, 1)

(0, 0) , (0, −1) , (0, 1) , (0, −1√
2

), (0, 1√
2

)

(−1, 0) , (−1, −1) , (−1, 1) , (−1, −1√
2

), (−1, 1√
2

)

(1, 0) , (1, −1) , (1, 1) , (1, −1√
2

), (1, 1√
2

)

(−1√
2

, 0), (−1√
2

, −1), (−1√
2

, 1), (−1√
2

, −1√
2

), (−1√
2

, 1√
2

)

(1√
2

, 0), (1√
2

, −1), (1√
2

, 1), (1√
2

, −1√
2

), (1√
2

, 1√
2

)

Let Hd,μ denote the Smolyak grid for a problem with dimensionality d and approxi-
mation level μ. We use the Smolyak rule (21) to construct two-dimensional grid points
for our example.
• If μ = 0, then (21) implies i1 + i2 ≤ 2. The only case that satisfies this restriction is

when i1 = 1 and i2 = 1, so that the Smolyak grid is a single point

H2,0 = {(0, 0)} . (22)

• If μ = 1, then i1 + i2 ≤ 3. The three cases that satisfy this restriction are (a) i1 = 1,
i2 = 1; (b) i1 = 1, i2 = 2; (c) i1 = 2, i2 = 1.The nonrepeating five Smolyak points are

H2,1 = {(0, 0) , (−1, 0) , (1, 0) , (0, −1) , (0, 1)} . (23)

• If μ = 2, then i1 + i2 ≤ 4.The six cases satisfying this restriction are (a) i1 = 1, i2 = 1;
(b) i1 = 1, i2 = 2; (c) i1 = 2, i2 = 1; (d) i1 = 1, i2 = 3; (e) i1 = 2, i2 = 2;
(f) i1 = 3, i2 = 1. The 13 Smolyak points are

H2,2 =
{

(−1, 1) , (0, 1) , (1, 1) , (−1, 0) , (0, 0) , (1, 0) , (−1, −1) , (0, −1) ,

(1, −1) ,
(−1√

2
, 0
)

,
(

1√
2

, 0
)

,
(

0,
−1√

2

)
,
(

0,
1√
2

)}
. (24)

Observe that the elements that satisfy (21) are situated on the diagonals that expand
from the upper left corner of the table toward the lower right corner. The Smolyak
grid points under μ = 0, 1, 2, 3 are illustrated in Figure 2; for comparison, we also
show a tensor-product grid of 9 × 9 points. The number of points in the Smolyak
sparse grid increases polynomially with dimensionality d. In particular, for μ = 1 and

Numerical Methods for Large-Scale Dynamic Economic Models 357

-1 0 1
-1

0

1

Smolyak
-1 0 1

-1

0

1
 = 1,d = 2

 Smolyak
-1 0 1

-1

0

1
 = 2,d = 2

 Smolyak
-1 0 1

-1

0

1
 = 3,d = 2

 Smolyak
-1 0 1

-1

0

1
9 x 9

Tensor Product

 = 0,d = 2

Figure 2 Smolyak grids versus tensor-product grid.

μ = 2, the number of points in the Smolyak grid is 1 + 2d and 1 + 4d + 4d (d − 1),
respectively,which means that the size of the Smolyak grid grows,respectively, linearly and
quadratically with d; seeTable 4 for a comparison of the number of points in the Smolyak
and tensor-product grids. A relatively small number of Smolyak grid points contrasts
sharply with a large number of tensor-product grid points which grows exponentially
with the dimensionality of the problem (curse of dimensionality).

Smolyak Polynomials
The construction of Smolyak polynomials is parallel to the construction of the Smolyak
grid. We build the Smolyak multidimensional polynomial function using a family of
unidimensional Chebyshev basis functions composed of five terms,

{
1, x, 2x2−1, 4x3−3x,

8x4 −8x2 +1
}
.11 Again,we can construct two-dimensional basis functions using a tensor

product of the unidimensional basis functions, which would give us 25 of such basis
functions.

However, under the Smolyak method, we first construct a sequence of nested sets
using the given unidimensional basis functions:

Table 4 Number of grid points: tensor-product grid with five
points in each dimension versus Smolyak grid.

Smolyak grid

d Tensor-product grid 5d μ = 1 μ = 2 μ = 3

1 5 3 5 9
2 25 5 13 29
10 9,765,625 21 221 1581
20 95,367,431,640,625 41 841 11561

Notes: d is the number of state variables;μ is the approximation level.

11 Again, the assumption of Chebyshev basis functions is convenient but not essential for the Smolyak
construction.

358 Lilia Maliar and Serguei Maliar

i = 1 : S1 = {1};
i = 2 : S2 = {

1, x, 2x2 − 1
}
;

i = 3 : S3 = {
1, x, 2x2 − 1, 4x3 − 3x, 8x4 − 8x2 + 1

}
.

Second, we list all possible two-dimensional tensor products of the unidimensional
Smolyak sequences (we denote dimensions by x and y); see Table 5.

Finally, we select the elements from the table which are implied by the Smolyak rule
(21). Let Pd,μ denote the Smolyak basis functions for a problem with dimensionality d
and approximation level μ. For the two-dimensional case, we have:
• If μ = 0, then i1 + i2 ≤ 2. The only case that satisfies this restriction is when i1 = 1

and i2 = 1, and thus there is just one Smolyak basis function

P2,0 (x, y) = {1} . (25)

• If μ = 1, then i1 + i2 ≤ 3. There are three combinations of i1 and i2 that satisfy this
restriction, and the corresponding five Smolyak basis functions are

P2,1 (x, y) = {
1, x, (2x2 − 1), y, (2y2 − 1)

}
. (26)

• If μ = 2, then i1 + i2 ≤ 4. There are six combinations of i1 and i2 that satisfy this
restriction, and the 13 Smolyak basis functions are

P2,2 (x, y) = {
1, x, (2x2 − 1), y, xy, (2x2 − 1)y, (2y2 − 1), x(2y2 − 1),

(2x2 − 1)(2y2 − 1), 4x3 − 3x2, 8x4 − 8x2 + 1,

4y3 − 3y2, 8y4 − 8y2 + 1
}
. (27)

By construction,in this example,the number of basis functions in Smolyak polynomial
is equal to the number of points in the Smolyak grid; compareTables 3 and 5.The same is
true for a Smolyak grid Hd,μ and Smolyak polynomial Pd,μ under any d ≥ 1 and μ ≥ 0.

Table 5 Tensor products of unidimensional nested polynomial basis for the two-dimensional case.
i2 = 1 i2 = 2 i2 = 3

Si1\Si2 1 1, y, 2y2 − 1 1, y, 2y2 − 1, 4y3 − 3y, 8y4 − 8y2 + 1

i1 = 1 1 1 1, y, 2y2 − 1 1, y, 2y2 − 1, 4y3 − 3y, 8y4 − 8y2 + 1

i1 = 2
1
x

2x2 − 1

1
x

2x2 − 1

1, y, 2y2 − 1,
x, xy, x

(
2y2 − 1

)
,

2x2 − 1, (2x2 − 1)y, (2x2 − 1)(2y2 − 1)

1, y, 2y2 − 1, 4y3 − 3y, 8y4 − 8y2 + 1
x, xy, x

(
2y2 − 1

)
, x
(
4y3 − 3y

)
, . . .

2x2 − 1, (2x2 − 1)y, (2x2 − 1)(2y2 − 1), . . .

i1 = 3

1
x

2x2 − 1
4x3 − 3x

8x4 − 8x2 + 1

1
x

2x2 − 1
4x3 − 3x

8x4 − 8x2 + 1

1, y, 2y2 − 1
x, xy, x

(
2y2 − 1

)
2x2 − 1, (2x2 − 1)y, (2x2 − 1)(2y2 − 1)(

4x3 − 3x
)

,
(
4x3 − 3x

)
y, . . .(

8x4 − 8x2 + 1
)

,
(
8x4 − 8x2 + 1

)
y, . . .

1, y, 2y2 − 1, 4y3 − 3y, 8y4 − 8y2 + 1
x, xy, x

(
2y2 − 1

)
, x
(
4y3 − 3y

)
, . . .(

2x2 − 1
)

,
(
2x2 − 1

)
y, . . .(

4x3 − 3x
)

,
(
4x3 − 3x

)
y, . . .(

8x4 − 8x2 + 1
)

,
(
8x4 − 8x2 + 1

)
y, . . .

Numerical Methods for Large-Scale Dynamic Economic Models 359

Smolyak Interpolation Under d= 2 and μ= 1
We now show Smolyak interpolation. Suppose we must interpolate a two-dimensional
function f on a square [−1, 1]2 (i.e.,we must construct a function f̂ that matches f exactly
in a finite set of points). We consider μ = 1, in which case the interpolating function is
composed of family P2,1 of five Smolyak basis functions distinguished in (26),

f̂ (x, y; b) ≡ b111 + b21x + b31
(
2x2 − 1

)+ b12y + b13
(
2y2 − 1

)
, (28)

where b ≡ (b11, b21, b31, b12, b13) is a vector of five unknown coefficients.
The unknown coefficients must be chosen to match the values of f (x, y) in five

Smolyak grid points H2,1 = {(0, 0) , (−1, 0) , (1, 0) , (0, −1) , (0, 1)} distinguished in (23).
This yields a system of linear equations Bb = w, where

B =

⎡
⎢⎢⎢⎢⎣

1 0 −1 0 −1
1 −1 1 0 −1
1 1 1 0 −1
1 0 −1 −1 1
1 0 −1 1 1

⎤
⎥⎥⎥⎥⎦ ; b =

⎡
⎢⎢⎢⎢⎣

b11

b21

b31

b12

b13

⎤
⎥⎥⎥⎥⎦ w ≡

⎡
⎢⎢⎢⎢⎣

f (0, 0)
f (−1, 0)
f (1, 0)

f (0, −1)
f (0, 1)

⎤
⎥⎥⎥⎥⎦ . (29)

The solution to this system is given by b = B−1w,

⎡
⎢⎢⎢⎢⎣

b11

b21

b31

b12

b13

⎤
⎥⎥⎥⎥⎦ = B−1w =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1
4

1
4

1
4

1
4

0 − 1
2

1
2 0 0

− 1
2

1
4

1
4 0 0

0 0 0 − 1
2

1
2

− 1
2 0 0 1

4
1
4

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

f (0, 0)
f (−1, 0)
f (1, 0)

f (0, −1)
f (0, 1)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f (−1,0)+f (1,0)+f (0,−1)+f (0,1)
4

−f (−1,0)+f (1,0)
2

− f (0,0)
2 + f (−1,0)+f (1,0)

4
−f (0,−1)+f (0,1)

2

− f (0,0)
2 + f (0,−1)+f (0,1)

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (30)

Substituting b into the Smolyak polynomial function (28) gives us f̂ that can be used to
interpolate f in any point of [−1, 1]2.

As we see, Smolyak interpolation works similarly to conventional tensor-product
interpolation described in Section 2 and used in, e.g., Judd (1992).The key feature of the
Smolyak method is that it uses fewer elements than does a tensor-product method. In our
two-dimensional case, the difference is not so large,but in high-dimensional problems,the
number of Smolyak elements is just an infinitesimally small fraction of the tensor-product
elements, as Table 4 shows.

360 Lilia Maliar and Serguei Maliar

4.1.2 The Automated SmolyakMethod
Our construction of Smolyak interpolation has been done manually. Tables 3 and 5
contain,respectively,repeated grid points and repeated polynomial terms. However,when
constructing the interpolation function (28), we list points and basis functions in a way
that avoids repetitions.

In applications, the Smolyak construction cannot rely on a visual inspection of the
tables and must be automated. Smolyak (1963) does not propose an algorithmic procedure
that automates the construction of multidimensional grids and basis functions. He defines
these objects mathematically and provides accuracy bounds for some classes of periodic
functions.

An algorithm for constructing Smolyak elements was proposed in the subsequent
literature. The conventional procedure for automating the Smolyak method is based on
an interpolation formula developed in Wasilkowski and Woźniakowski (1999, Lemma 1)
and Delvos (1982,Theorem 1). We provide this formula below and illustrate its use by
way of example.

A Formula for Smolyak Interpolation
The following formula is used to interpolate f (x1, . . ., xd) defined on a hypercube
[−1, 1]d :

f̂ (x1, . . ., xd; b) =
∑

max(d,μ+1)≤|i|≤d+μ

(−1)d+μ−|i|
(

d − 1
d + μ − |i|

)
p|i| (x1, . . ., xd) , (31)

where |i| ≡ i1 + · · · + id , p|i| (x1, . . ., xd) is the sum of tensor products of unidimensional
basis functions pi1,...,id (x1, . . ., xd) whose indices satisfy i1 + · · · + id = |i| and

pi1,...,id (x1, . . ., xd) =
m(i1)∑
�1=1

· · ·
m(id)∑
�d=1

b�1···�dψ�1 (x1) · · ·ψ�d (xd) , (32)

where m (i1) , . . ., m (id) is the number of elements in unidimensional nested sets i1, . . ., id ,
respectively; ψ�1 (x1) , . . .,ψ�d (xd) are unidimensional basis functions in dimensions
1, . . ., d,respectively;�d = 1, . . ., m (id),and b�1···�d are the polynomial coefficients given by

b�1···�d = 2d

(m (i1) − 1) · · · (m (id) − 1)
1

c�1 · · · c�d

×
m(i1)∑
j1=1

· · ·
m(id)∑
jd=1

ψ�1

(
ζj1

) · · ·ψ�d

(
ζjd

) · f
(
ζj1 , . . ., ζjd

)
cj1 · · · cjd

, (33)

where ζj1 , . . ., ζjd are grid points in the dimensions j1, . . ., jd , respectively; cj = 2 for
j = 1 and j = m (id); cj = 1 for j = 2, . . ., m (id) − 1. If along any dimension d, we
have m (id) = 1, this dimension is dropped from the computation of the coefficient, i.e.,
m (id) − 1 is set to 1 and cjd = c1 is set to 1.

Numerical Methods for Large-Scale Dynamic Economic Models 361

Smolyak Interpolation Under d= 2 and μ= 1 Revisited
We now illustrate the application of the interpolation formula (31) in the context of an
example with d = 2 and μ = 1 studied in Section 4.1.1. For the case of μ = 1, we have
i1 + i2 ≤ d + μ = 3. This is satisfied in three cases: (a) i1 = i2 = 1; (b) i1 = 1, i2 = 2; (c)
i1 = 2, i2 = 1. From (32), we obtain

(a) p1,1 =
m(1)∑
�1=1

m(1)∑
�2=1

b�1�2ψ�1 (x)ψ�2 (y) = b11,

(b) p1,2 =
m(1)∑
�1=1

m(2)∑
�2=1

b�1�2ψ�1 (x)ψ�2 (y) = b11 + b12ψ2(y) + b13ψ3(y), (34)

(c) p2,1 =
m(2)∑
�1=1

m(1)∑
�2=1

b�1�2ψ�1 (x)ψ�2 (y) = b11 + b21ψ2(x) + b31ψ3(x). (35)

Collecting the elements pi1,i2 with the same sum of i1 and i2, i.e., |i| ≡ i1 + i2, we
obtain

p|2| ≡ p1,1, (36)

p|3| ≡ p2,1 + p1,2. (37)

The Smolyak polynomial function (31) for the case d = 2 and μ = 1 is given by

f̂ (x, y; b) =
∑

max(d,μ+1)≤|i|≤d+μ

(−1)d+μ−|i|
(

d − 1
d + μ − |i|

)
p|i|

=
∑

2≤|i|≤3

(−1)3−|i|
(

1
3 − |i|

)
p|i| =

∑
2≤|i|≤3

(−1)3−|i| 1
(3 − |i|)!p

|i|

= (−1) × p|2| + 1 × p|3| = (−1) × p1,1 + 1 × (p2,1 + p1,2)

= −b11 + b11 + b21ψ2(x) + b31ψ3(x) + b11 + b12ψ2(y) + b13ψ3(y)

= b11 + b21ψ2(x) + b31ψ3(x) + b12ψ2(y) + b13ψ3(y). (38)

Formula (38) coincides with (28) if instead of ψ ’s in (38),we substitute the corresponding
Chebyshev unidimensional basis functions.

Let us now compute the coefficients using (33). Coefficient b21 appears in p2,1 with
m (i1) = m (2) = 3 and m (i2) = m (1) = 1. The Smolyak nested sets of grid points are
S1 = {0} and S2 = {0, −1, 1}, i.e., the first three grid points are ζ1 = 0, ζ2 = −1, ζ3 = 1.

362 Lilia Maliar and Serguei Maliar

Condition (33) implies

b21 = 22

3 − 1
· 1

c2 · c1

3∑
j1=1

ψ2
(
ζj1

) · ψ1 (ζ1) · f
(
ζj1 , ζ1

)
cj1 · 1

= ψ2 (ζ1) · f (ζ1, ζ1)

c1
+ ψ2 (ζ2) · f (ζ2, ζ1)

c2
+ ψ2 (ζ3) · f (ζ3, ζ1)

c3

= −1 · f (−1, 0)

2
+ 1 · f (1, 0)

2
;

and b12 is obtained similarly,

b12 = − f (0, −1)

2
+ f (0, 1)

2
.

Coefficient b31 is given by

b31 = 2
3 − 1

1
c3 · c1

3∑
j1=1

ψ3
(
ζj1

) · ψ1 (ζ1) · f
(
ζj1 , ζ1

)
cj1

= 1
2

[
1 · f (−1, 0)

2
− f (0, 0) + 1 · f (1, 0)

2

]

= − f (0, 0)

2
+ f (−1, 0) + f (1, 0)

4
,

and b13 is obtained similarly

b13 = − f (0, 0)

2
+ f (0, −1) + f (0, 1)

4
.

Conditions defining b21, b12, b31, and b13 are the same as those we had in (30). Formula
(33) cannot be used to find b11. We use (38) instead, which implies

f̂ (0, 0; b) = b11 − b31 − b13

= b11 + f (0, 0)

2
− f (−1, 0) + f (1, 0)

4
+ f (0, 0)

2
− f (0, −1) + f (0, 1)

4
.

Since under interpolation, we must have f̂ (0, 0; b) = f (0, 0), the last formula implies

b11 = f (−1, 0) + f (1, 0) + f (0, −1) + f (0, 1)

4
,

which coincides with the condition for b11 in (30).

Numerical Methods for Large-Scale Dynamic Economic Models 363

4.1.3 Conventional Interpolation Formula with Repetitions of Elements Is
Inefficient

The conventional interpolation formula (31)–(33) is inefficient. First, it creates a long list
with many repeated elements from all tensors that satisfy

max(d,μ + 1) ≤ i1 + · · · + id ≤ d + μ, (39)

and then, it assigns weights to each element in the list such that the repeated elements
are cancelled out.

The number of repeated elements in the list increases with both the dimensionality of
the problem and the approximation level. In particular, for our two-dimensional example,
the list involves seven elements under μ = 1 (i.e., two elements are repeated) and 25
elements under μ = 2 (i.e., 12 elements are repeated). In high-dimensional applications,
the number of repetitions is hideous,which seriously limits the capacities of the Smolyak
method.

To summarize, the original Smolyak’s (1963) construction provides us with a set of
grid points and basis functions that are an efficient choice for interpolation. However, the
formula based on (39) is an inefficient way to arrive to such grid points and basis functions.
Judd et al. (2013) show a Smolyak interpolation formula that avoids repetitions of elements
and that is an efficient alternative to the conventional interpolation formula based on (39).

4.2 Generalized Stochastic Simulation Algorithm
The idea of finding solutions to economic models using stochastic simulation dates back
to Marcet’s (1988) parameterized expectations algorithm (PEA), which was later devel-
oped in Den Haan and Marcet (1990); see Marcet and Lorenzoni (1999) for a detailed
description of this algorithm. PEA is feasible in high-dimensional problems but its overall
accuracy is limited by a low accuracy of Monte Carlo integration. Moreover, PEA builds
on least-squares learning which is numerically unstable in the context of stochastic sim-
ulation. Judd et al. (2009, 2011b) propose a generalized stochastic simulation algorithm
(GSSA),in which inaccurate Monte Carlo integration is replaced with accurate determin-
istic integration, and in which unstable least-squares learning is replaced with regression
methods suitable for dealing with ill-conditioned problems.The resulting GSSA method
is numerically stable and delivers accuracy of solutions comparable to the best accuracy
attained in the related literature. In particular, Hasanhodzic and Kotlikoff (2013) applied
GSSA to solve life-cycle models with up to 80 periods.

Again, for the sake of expositional convenience, we work with a simple two-
dimensional example. In Sections 4.2.1, 4.2.2, and 4.2.3, we show how stochastic sim-
ulation methods implement the three steps outlined in the beginning of Section 4:
(i) constructs a grid of simulated points, (ii) constructs an approximating function using
some nonproduct rules, and (iii) identifies the parameters in the approximating func-
tion by way of regression. In the remainder of the section, we discuss advantages and

364 Lilia Maliar and Serguei Maliar

shortcomings of stochastic simulation methods, provide a description of PEA and GSSA,
and discuss computational techniques that can improve the performance of stochastic
simulation methods in problems with high dimensionality.

4.2.1 A Grid of Simulated Points
A stochastic simulation approach solves a dynamic economic model on a grid composed of
simulated points. Constructing such a grid is simple.As an example,consider the neoclas-
sical stochastic growth model (1)–(3) described in Section 3.We draw and fix a sequence
of productivity shocks {εt+1}t=0,...,T and construct productivity levels {θt+1}t=0,...,T using
(3). We guess a parametric function K̂ (·; b) that approximates the true capital decision
function,K , choose initial condition (k0, θ0), fix the coefficient vector b, and simulate the
model forward using kt+1 = K̂ (kt , θt; b). The resulting series {kt , θt}t=1,...,T are used as a
grid for finding a solution.

4.2.2 An Approximating Function
As a set of basis functions for approximation, we can use any family of functions which
is sufficiently flexible (to ensure a sufficiently high accuracy), and which does not grow
too rapidly with the dimensionality of the problem (to ensure a reasonably low cost). In
particular, Judd et al. (2011b) advocate families of complete polynomials that are linear
in coefficients b, i.e.,

K̂ (k, θ; b) =
I∑

i=1

bi�i (k, θ) , (40)

where {�i | i = 1, . . ., I } is a set of basis functions and b ≡ (b1, . . ., bI)

 ∈ R

I . The basis
functions can be ordinary polynomials, e.g., K̂ (k, θ; b) = b1 + b2k + b3θ , or some other
polynomials; for example, Judd et al. (2011b) and Maliar et al. (2011) combine a grid
of points produced by stochastic simulation with Hermite and Smolyak polynomials,
respectively. The numbers of terms in a complete polynomial function of degrees one,
two, and three are given by 1 + d, 1 + d + d(d+1)

2 , 1 + d + d(d+1)
2 + d2 + d(d−1)(d−2)

6 , i.e.,
they grow linearly, quadratically, and cubically, respectively.

4.2.3 Finding the Polynomial Coefficients byWay of Regression
We estimate the coefficients in (40) by way of regression

yt = Xtb + εt , (41)

where yt is the model’s variable for which we aim to approximate the decision function,
e.g.,yt = kt+1; Xt is the list of basis functions in (40),e.g.,Xt ≡

[
1, kt , θt , k2

t , ktθt , θ2
t , . . ., θL

t

]
∈ R

I with L being the polynomial degree; and εt is the residual between the true value
of yt and fitted value ŷt = Xtb. Regression Equation (41) is a special case of the general
approximation problem (20).

Numerical Methods for Large-Scale Dynamic Economic Models 365

If simulated points are used as a grid, then basis functions do not have the property of
orthogonality. In particular, there is no guarantee that any specific polynomial function
composed of I basis functions will pass exactly through I simulated points, unlike they do
in the Smolyak collocation method. Therefore, we will not try to fit the approximating
function exactly to any of the simulated points; instead, we will proceed as is done in
the regression analysis in econometrics. Namely, we will choose a simulation length to
be larger than the number of explanatory variables, i.e., T > I , and we will identify
coefficients b by minimizing the residuals in regression equation (41). As we will see, the
way in which the regression coefficients are estimated will play an important role in the
accuracy and numerical stability of stochastic simulation methods.

4.2.4 Advantages of the Stochastic Simulation Approach
The key advantage of the stochastic simulation approach is that it produces an adaptive
grid. Points that are realized in simulation belong to a high-probability set of a given
model;we also refer to this set as an essentially ergodic set; see Judd et al. (2012) for a formal
definition of an essentially ergodic set. By focusing just on those points, we can save
on the cost of computing a solution in those areas that are not visited in equilibrium.
How much can one save on cost by focusing on the essentially ergodic set instead of
a multidimensional hypercube that encloses such a set? As an illustration, in Figure 3,
we plot the simulated series of capital and productivity levels for the one-agent model
(1)–(3).The essentially ergodic set takes the form of an oval, and the rectangular area that
sits outside of the oval’s boundaries is effectively never visited. In the two-dimensional
case, a circle inscribed within a square occupies about 79% of the area of the square, and
an oval inscribed in this way occupies an even smaller area. Thus, the essentially ergodic
set is at least 21% smaller than the hypercube enclosing this set. In general, the ratio
of the volume of a d-dimensional hypersphere of diameter 1, Vd

O, to the volume of a

Figure 3 A high probability set in the one-agent model.

366 Lilia Maliar and Serguei Maliar

d-dimensional hypercube of width 1, Vd
�, is

Vd
O

Vd
�

=

⎧⎪⎨
⎪⎩

(π/2)
d−1

2

1·3·...·d for d = 1, 3, 5, . . .

(π/2)
d
2

2·4·...·d for d = 2, 4, 6, . . .
(42)

The ratio Vd
O

Vd
�

declines very rapidly with the dimensionality of the state space. For example,

for dimensions three, four, five, ten, and thirty, this ratio is 0.52, 0.31, 0.16, 3 · 10−3, and
2 · 10−14, respectively.

This example suggests that focusing on the right geometry can be critical for accuracy
and cost in high-dimensional applications. Potential benefits are twofold: first, when
computing a solution on an essentially ergodic set, we face just a fraction of the cost we
would have faced on a hypercube grid, used in conventional projection methods. The
higher the dimensionality of a problem, the larger the reduction in cost is likely to be.
Second, when fitting a polynomial on an essentially ergodic set, stochastic simulation
methods focus on a relevant solution domain and can get a better fit inside this domain
than methods that operate on a hypercube and that face a trade-off between the fit inside
and outside the relevant domain.

4.2.5 Marcet’s (1988) Parameterized Expectations Algorithm
Marcet’s (1988) parameterized expectations algorithm (PEA) approximates the expecta-
tion function in the right side of the Euler equation by an exponentiated polynomial of
logarithm of the state variables,

Et [u1 (ct+1, �t+1) (1 − δ + θt+1 f1 (kt+1, �t+1))]

≈ �̂ (kt , θt; b) = exp
(
b1 + b2 ln (kt) + b3 ln (θt) + · · · + bI [ln (θt)]

L) , (43)

where L is a degree of approximating polynomial. This also identifies the left side of the
Euler equation as u1 (ct , �t) = β�̂ (kt , θt; b).12 Using the assumed �̂, PEA simulates the
model forward to construct the series {θt , kt}t=1,...,T . Next,it approximates the conditional
expectation function by the realized value of the integrand for each t = 1, . . ., T − 1,

Et
[
u1 (ct+1, �t+1)

(
1 − δ + θt+1 f1

(
k′

t+1, �
′
t+1

))] ≡ Et [yt+1]

≈ u1 (ct+1, �t+1)
[
1 − δ + θt+1 f1

(
k′

t+1, �
′
t+1

)] ≡ yt+1. (44)

Finally, PEA fits values of yt+1 to �̂ (kt , θt; b) using a nonlinear least-squares (NLLS)
regression to compute b̂; it iterates on b until convergence.

12 The name of Marcet’s (1988) method highlights the way in which it deals with uncertainty; namely, it
parameterizes a conditional expectation function and approximates such a function from simulated data
using a Monte Carlo integration method (combined with a least-squares learning).

Numerical Methods for Large-Scale Dynamic Economic Models 367

Marcet’s (1988) implementation of a stochastic simulation algorithm has important
shortcomings that limit both accuracy and numerical stability. First, the PEA uses stochas-
tic simulation not only to construct a grid of points for approximating the solution but
also as a set of nodes for integration. However, the one-node Monte Carlo method used
has low accuracy (unless the simulation length is impractically long). This is not surpris-
ing given that PEA replaces an expectation of a random variable Et [yt+1] with just one
realization of this variable yt+1; see Section 5.3 for a discussion of the accuracy of this
integration method.

Second, PEA relies on standard least-squares (LS) learning methods for fitting the
approximating functions to simulated data, and such LS methods are numerically unsta-
ble in the given context (beyond the first-degree polynomials). This is because mono-
mial terms constructed on simulated series are highly correlated in the studied class of
economic models.The multicollinearity problem is severe even under low-degree poly-
nomials. In particular, Den Haan and Marcet (1990) report that in a second-degree PEA
solution, the cross term ln kt ln θt in (43) is highly correlated with the other terms and
must be removed from the regression.

Finally, PEA builds on a nonlinear approximating function, which is an additional
source of numerical instability and computational expense.The resulting nonlinear regres-
sion model must be estimated with NLLS methods. Such methods need a good initial
guess, may deliver multiple minima, and on many occasions fail to converge; moreover,
nonlinear optimization is costly because it requires computing Jacobian and Hessian
matrices; see Christiano and Fisher (2000) for a discussion.

4.2.6 Generalized Stochastic Simulation Algorithm by Judd et al. (2011b)
Judd et al. (2011b) propose a generalized stochastic simulation algorithm (GSSA) that
does not suffer from the above shortcomings. First, GSSA uses stochastic simulation only
for constructing a grid on which a solution is approximated; however, it computes inte-
grals using accurate quadrature and monomial integration formulas described in Sections
5.1 and 5.2, respectively. Second, GSSA stabilizes stochastic simulation by using regres-
sion methods that are suitable for ill-conditioned problems. Finally, GSSA uses families
of basis functions of type (40) that are linear in coefficients b, and it builds the fitting
step on a linear regression model that can be estimated with simple and reliable linear
approximation methods. As a result, GSSA can deliver high-degree polynomial approx-
imations and attain accuracy of solutions comparable to the best accuracy in the related
literature. Below, we show regression methods and other techniques that GSSA uses to
stabilize stochastic simulation.

Ill-Conditioned LS Problem
We now explain when the multicollinearity arises and show how it affects the regression
outcomes. We consider the simplest possible approximating family, the one composed

368 Lilia Maliar and Serguei Maliar

of ordinary polynomials. The objective is to fit simulated series for a variable yt on an
ordinary polynomial function of the current state variables Xtb as shown in (41).

Consider the standard LS approach to regression equation (41):

min
b

∥∥y − Xb
∥∥2

2 = min
b

[y − Xb]
 [y − Xb] , (45)

where ‖·‖2 denotes the L2 vector norm; y ≡ (y0, . . ., yT−1)

 ∈ R

T and X ≡ (X0, . . .,
XT−1)

 ∈ R
T×I .

The solution to (45) is

b̂ = (
X
X

)−1
X
y. (46)

LS problem (45) is often ill-conditioned when X is generated by stochastic simulation.
To measure the degree of ill-conditioning,we use the condition number of matrix X
X ,
denoted by K (

X
X
)

and defined as follows: We order the eigenvalues,λi, i = 1, . . ., I ,of
X
X by their magnitude, λ1 ≥ λ2 ≥ · · · ≥ λI ≥ 0, and find a ratio of the largest eigen-
value, λ1, of X
X to its smallest eigenvalue, λI , i.e., K (

X
X
) ≡ λ1/λI . The eigenvalues

of X
X are defined by the standard eigenvalue decomposition X
X = V�V
, where
� ∈ R

I×I is a diagonal matrix of eigenvalues of X
X , and V ∈ R
I×I is an orthogonal

matrix of eigenvectors of X
X . A large condition number implies that X
X is close to
being singular and not invertible and tells us that any linear operation, such as (46), is very
sensitive to perturbation and numerical errors (such as round-off errors).

Two causes of ill-conditioning are multicollinearity and poor scaling of the variables
constituting X . Multicollinearity occurs when the variables forming X are significantly
correlated. The following example illustrates the effects of multicollinearity on the LS
solution (we analyze the sensitivity to changes in y but the results are similar for the
sensitivity to changes in X).

Example 4. Let X =
[

1 + φ 1
1 1 + φ

]
with φ �= 0. Then, K (

X
X
) = (

1 + 2
φ

)2
.

Let y = (0, 0)
. Thus, OLS solution (46) is
(

b̂1, b̂2
) = (0, 0). Suppose y is perturbed by

a small amount, i.e., y = (ε1, ε2)

. Then, the OLS solution is

b̂1 = 1
φ

[
ε1 (1 + φ) − ε2

2 + φ

]
and b̂2 = 1

φ

[
ε2 (1 + φ) − ε1

2 + φ

]
. (47)

The sensitivity of b̂1 and b̂2 to perturbation in y is proportional to 1/φ (increases with
K (

X
X
)
).

The scaling problem arises when the columns of X have significantly different means
and variances (due to differential scaling among either the state variables, kt and θt , or
their functions, e.g.,kt and k5

t). A column with only very small entries will be treated as if
it were a column of zeros.The next example illustrates the effect of the scaling problem.

Numerical Methods for Large-Scale Dynamic Economic Models 369

Example 5. Let X =
[

1 0
0 φ

]
with φ �= 0. Then, K (

X
X
) = 1/φ. Let y =

(0, 0)
. Thus, OLS solution (46) is
(

b̂1, b̂2
) = (0, 0). Suppose y is perturbed by a small

amount, i.e., y = (ε1, ε2)

. The OLS solution is

b̂1 = ε1 and b̂2 = ε2

φ
. (48)

Sensitivity of b̂2 to perturbation in y is proportional to 1/φ (and K (
X
X

)
).

A comparison of Examples 1 and 2 shows that multicollinearity and poor scaling
magnify the impact of perturbations on the OLS solution. Each iteration of a stochastic
simulation algorithm produces changes in simulated data (perturbations). In the presence
of ill-conditioning, these changes, together with numerical errors, may induce large,
erratic jumps in the regression coefficients and failures to converge.

Data Normalization
Data normalization addresses the scaling issues highlighted in Example 2. We center
and scale both the response variable y and the explanatory variables of X to have a
zero mean and unit standard deviation. We then estimate a regression model without
an intercept to obtain the vector of coefficients

(
b̂+

1 , . . ., b̂+
I

)
. We finally restore the

coefficients b̂1, . . ., b̂I and the intercept b̂0 in the original (unnormalized) regression model
according to b̂i = (

σy/σxi

)
b̂+

i , i = 1, . . ., I , and b̂0 = y −∑I
i=1 b̂ixi, where y and xi are

the sample means, and σy and σxi are the sample standard deviations of the original
unnormalized variables y and xi, respectively.

Choosing a Family of Basis Functions
An obvious example of a family of type (40) is an ordinary polynomial family, Pn (x) =
xn, n = 0, 1, However, as we argued in Section 3, the basis functions of this family
look very similar (e.g., P2 (x) = x2 looks similar to P4 (x) = x4, and P3 (x) = x3 looks
similar to P5 (x) = x5). As a result, the explanatory variables in the regression equation
are likely to be strongly correlated (i.e., the LS problem is ill-conditioned) and estimation
methods (e.g., OLS) may fail because they cannot distinguish between similarly shaped
polynomial terms.

In contrast, for families of orthogonal polynomials (e.g., Hermite, Chebyshev, Legen-
dre), basis functions have very different shapes and, hence, the multicollinearity problem
is likely to manifest to a smaller degree, if at all. In the context of GSSA, we consider the
family of Hermite polynomials. Such polynomials can be defined with a simple recursive
formula:H0 (x) = 1, H1 (x) = x, and Hn (x) = xHn−1 (x)− (n − 1) Hn−2 (x),which yields
H2 (x) = x2 −1, H3 (x) = x3 −3x, H4 (x) = x4 −6x2 +3, and H5 (x) = x5 −10x3 +15x.

Two points are in order. First, while Hermite polynomials are orthogonal under the
Gaussian density function, they are not orthogonal under the ergodic measure derived

370 Lilia Maliar and Serguei Maliar

from stochastic simulation. Still, Hermite polynomials are far less correlated than ordi-
nary polynomials which suffice to avoid ill-conditioning. Second, even though using
Hermite polynomials helps us avoid ill-conditioning in one variable, they may not suf-
fice to deal with multicollinearity across variables. For example, if kt and θt are perfectly
correlated, certain Hermite polynomial terms for kt and θt , such as H2 (kt) = k2

t − 1
and H2 (θt) = θ2

t − 1, are also perfectly correlated and, hence, X is singular. Thus, we
may still need to complement Hermite polynomials with regression methods that suit
ill-conditioned problems.13

Approximation Methods Suitable for Dealing with Multicollinearity
We now review fitting (regression) techniques that are suitable for dealing with ill-
conditioned problems.We also discuss the choice of a family of approximating functions;
see Judd et al. (2011b) for more details.

LS-SVD We now present two LS methods that are more robust to ill-conditioning
than the standard OLS method.The first approach, called LS using SVD (LS-SVD), relies
on a singular value decomposition (SVD) of X . We use the SVD of X to rewrite OLS
solution (46) in a way that does not require an explicit computation of

(
X
X

)−1
. For a

matrix X ∈ R
T×I with T > I , an SVD decomposition is

X = USV
, (49)

where U ∈ R
T×I and V ∈ R

I×I are orthogonal matrices and S ∈ R
I×I is a diagonal

matrix with diagonal entries s1 ≥ s2 ≥ · · · ≥ sI ≥ 0, known as singular values of X .14

The condition number of X is its largest singular value divided by its smallest singular
value, K (X) = s1/sI . The singular values of X are related to the eigenvalues of X
X
by si = √

λi. This implies that K (X) = K (S) = √
K(X
X). The OLS estimator

b̂ = (
X
X

)−1
X
y in terms of SVD (49) is

b̂ = VS−1U
y. (50)

With an infinite-precision computer, OLS formula (46) and LS-SVD formula (50) give
us identical estimates of b. With a finite-precision computer, the standard OLS estima-
tor cannot be computed reliably if X
X is ill-conditioned. However, it is still possible
that S is sufficiently well-conditioned so that the LS-SVD estimator can be computed
successfully.15

13 Christiano and Fisher (2000) found that multicollinearity can plague the regression step even with
orthogonal (Chebyshev) polynomials as basis functions.

14 For a description of methods for computing the SVD of a matrix, see, e.g., Golub andVan Loan (1996),
pp. 448–460. Routines that compute the SVD are readily available in modern programming languages.

15 Another decomposition of X that leads to a numerically stable LS approach is a QR factorization; see,
e.g., Davidson and MacKinnon (1993), pp. 30–31, and Golub andVan Loan (1996), p. 239.

Numerical Methods for Large-Scale Dynamic Economic Models 371

RLS-Tikhonov The second approach, called regularized LS using Tikhonov regulariza-
tion (RLS-Tikhonov), imposes penalties based on the size of the regression coefficients.
In essence, a regularization method replaces an ill-conditioned problem with a well-
conditioned problem that gives a similar answer. In statistics,Tikhonov regularization is
known as ridge regression and is classified as a shrinkage method because it shrinks the
norm of estimated coefficient vector relative to the nonregularized solution. Formally,
Tikhonov regularization imposes an L2 penalty on the magnitude of the regression-
coefficient vector; i.e., for a regularization parameter η ≥ 0, the vector b (η) solves

min
b

‖y − Xb‖2
2 + η ‖b‖2

2 = min
b

(y − Xb)
 (y − Xb) + ηb
b, (51)

where y ∈ R
T and X ∈ R

T×I are centered and scaled, and b ∈ R
I . The parameter η

controls the amount by which the regression coefficients are shrunk, with larger values
of η leading to greater shrinkage.

Finding an FOC of (51) with respect to b gives us the following estimator

b̂ (η) = (
X
X + ηII

)−1
X
y, (52)

where II is an identity matrix of order I . Note thatTikhonov regularization adds a positive
constant multiple of the identity matrix to X
X prior to inversion.Thus, if X
X is nearly
singular, the matrix X
X + ηII is less singular, reducing problems in computing b̂ (η).

LAD Approaches LAD, or L1, regression methods use linear programming to mini-

mize the sum of absolute deviations. LAD methods do not construct
(
X
X

)−1
and avoid

the ill-conditioning. The basic LAD method solves the optimization problem

min
b

‖y − Xb‖1 = min
b

1

T |y − Xb|, (53)

where ‖·‖1 denotes the L1 vector norm, and |·| denotes the absolute value. Without a
loss of generality, we assume that X and y are centered and scaled.

There is no explicit solution to LAD problem (53), but the LAD problem (53) is
equivalent to the linear programming problem:

min
g,b

1

T g (54)

s.t. − g ≤ y − Xb ≤ g, (55)

where g ∈ R
T . The problem has I + T unknowns. Although this formulation of the

LAD problem is intuitive, it is not the most suitable for a numerical analysis. Judd et al.
(2011b) show primal and dual implementations of the LAD problems that are more
convenient for numerical treatment.

372 Lilia Maliar and Serguei Maliar

Regularized LAD Approaches Similar to the LS case, we can modify the original
LAD problem (53) to incorporate an L1 penalty on the coefficient vector b. We refer to
the resulting problem as a regularized LAD (RLAD). Like Tikhonov regularization, the
RLAD problem shrinks the values of the coefficients toward zero. Introducing an L1

penalty in place of the L2 penalty used in Tikhonov regularization allows us to have the
same benefits of shrinking the coefficients but in the context of a linear programming
approach. Formally, for a given regularization parameter η ≥ 0, the RLAD problem finds
a vector b (η) that solves

min
b

‖y − Xb‖1 + η ‖b‖1 = min
b

1

T |y − Xb| + η1

I |b| , (56)

where y ∈ R
T and X ∈ R

T×I are centered and scaled, and b ∈ R
I . See Judd et al. (2011b)

for a detailed description of the primal and dual formulations of the regularized LAD
problems.

Principal ComponentMethod A principal component method reduces the multi-
collinearity in the data to a given target level. Let X ∈ R

T×I be a matrix of centered and
scaled explanatory variables and consider the SVD of X defined in (49). Let us make a
linear transformation of X using Z ≡ XV ,where Z ∈ R

T×I and V ∈ R
I×I is the matrix

of singular vectors of X defined by (49).Vectors z1, . . ., zI are called principal components
of X .They are orthogonal,z

j zi = 0 for any j �= i, and their norms are related to singular
values si by z

i zi = s2
i . Principal components have two noteworthy properties. First, the

sample mean of each principal component zi is equal to zero, since it is given by a linear
combination of centered variables X1, . . ., XI , each of which has a zero mean; second,
the variance of each principal component is equal to s2

i /T , because we have z

i zi = s2

i .
By construction of the SVD, if zi has a zero variance (equivalently, a zero singular

value, si = 0), then all entries of zi are equal to zero, zi = (0, . . ., 0)
, which implies that
variables x1, . . ., xI constituting this particular principal component are linearly depen-
dent. Therefore, we can reduce the degrees of ill-conditioning of X to some target level
by excluding low-variance principal components corresponding to small singular values.

Let κ represent the largest condition number of X that we are willing to tolerate. Let
us compute the ratios of the largest singular value to all other singular values, s1

s2
, . . ., s1

sI
.

(Recall that the last ratio is the actual condition number of matrix X ; K (X) = K (S) =
s1
sI

). Let Zr ≡ (z1, . . ., zr) ∈ R
T×r be the first r principal components for which s1

si
≤ κ ,

and let us remove the last I − r principal components for which s1
si

> κ . By construction,
Zr has a condition number which is smaller than or equal to κ .

Let us consider regression equation (41) and let us approximate Xb using Zr such that
Xb = XVV −1b ≈ XV r (V r)−1 b (κ) = Zrϑ r , where V r = (v1, . . ., vr) ∈ R

I×r contains
the first r right singular vectors of X and ϑ r ≡ (V r)−1 b (κ) ∈ R

r .The resulting regression
equation is

y = Zrϑ r + ε, (57)

Numerical Methods for Large-Scale Dynamic Economic Models 373

where y is centered and scaled. The coefficients ϑ r can be estimated by any of the
methods described in this section. For example, we can compute OLS estimator (46).
Once we compute ϑ̂ r , we can recover the coefficients as b̂ (κ) = V r ϑ̂ r ∈ R

I . Instead of
the principal component methods, we can use a truncated SVD method; see Judd et al.
(2011b) for a description of this method.

4.2.7 Numerical Illustration of the Importance of the Approximating Function
and FittingMethod

As an illustration, we consider the one-agent model with inelastic labor supply under
parameterization (18) that allows for a closed-form solution. Judd et al. (2011b) use the
GSSA method to solve this model under a simulation length T = 10,000; see Judd
et al. (2011b) for details. In Table 6, we provide the results that illustrate the impor-
tance of a choice of the approximating function. When the OLS method is used with
unnormalized data and ordinary polynomials, we cannot go beyond the second-degree
polynomial approximations. The data normalization improves the performance of the
OLS method; however, we still cannot calculate more than a third-degree polynomial
approximation. The introduction of Hermite polynomials completely resolves the ill-
conditioning of the LS problem: OLS can compute all five degrees of the polynomial
approximations, and the accuracy of these approximations improves systematically as we
move from the first- to the fifth-degree polynomials, e.g., the average Euler equation
residuals decrease from 10−4 to 10−9.

In Table 7, we illustrate the importance of the fitting methods. The RLS-Tikhonov
method leads to visibly less accurate solutions than the LS-SVD method. This happens
because RLS-Tikhonov and LS-SVD work with different objects: the former works with
a very ill-conditioned matrix X
X , while the latter works with a better conditioned
matrix S. Under RLAD-DP and LS-SVD, the solutions are very accurate: the average

Table 6 Conventional OLS in the one-agent model with a closed-form solution: ordinary polynomial
with unnormalized and normalized data and Hermite polynomials.a

Ordinary polynomials Hermite polynomials

Unnormalized data Normalized data Unnormalized data

Polynomial degree L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU

1st −3.52 −2.45 0.8 −3.52 −2.45 1 −3.52 −2.45 1
2nd −5.46 −4.17 3.1 −5.45 −4.17 3 −5.46 −4.17 4
3rd – – – −6.84 −5.36 5 −6.84 −5.36 6
4th – – – – – – −7.97 −6.35 8
5th – – – – – – −9.09 −7.29 10

aNotes: L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality conditions and test
points (in log10 units). CPU is the time necessary for computing a solution (in seconds). These results are reproduced
from Judd et al. (2011b), Table 1.

374 Lilia Maliar and Serguei Maliar

Table 7 Other fitting methods in the one-agent model with a closed-form solution: RLS-Tikhonov,
RLAD-DP and LS-SVD.a

RLS-Tikhonov RLAD LS-SVD

Polynomial degree L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU

1st −3.52 −2.45 1 −3.52 −2.45 3 −3.52 −2.45 1
2nd −5.46 −4.17 3 −5.55 −4.12 10 −5.46 −4.17 4
3rd −6.84 −5.36 5 −6.98 −5.25 19 −6.84 −5.36 6
4th −6.97 −5.63 8 −8.17 −6.13 45 −7.97 −6.35 8
5th – – – −8.17 −6.15 71 −9.08 −7.25 9

aNotes: L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality conditions and test
points (in log10 units). CPU is the time necessary for computing a solution (in seconds). RLS-Tikhonov uses ordinary
polynomials and η = 10−10. RLAD uses ordinary polynomials and η = 10−6. LS-SVD uses Hermite polynomials.
These results are reproduced from Judd et al. (2011b), Table 1. RLAD corresponds to RLAD-DP in Judd et al. (2011b),
where DP stands for a dual problem.

Euler equation residuals decrease from 10−4 to 10−9 when the polynomial degree
increases from one to five.

4.3 ε-Distinguishable Set and Cluster Grid Algorithms
The Smolyak method provides an efficient nonproduct discretization of a hypercube;
however, the hypercube itself is not an efficient choice for a solution domain. In order
to capture all points that are visited in equilibrium, the hypercube must typically contain
large areas that are unlikely to happen in equilibrium. In turn, simulated points used by
GSSA occupy a much smaller area than the hypercube and allow us to focus on a relevant
solution domain. However, a set of simulated points itself is not an efficient discretization
of such a domain because a grid of simulated points is unevenly spaced; has many closely
located, redundant points; and contains some points in low-density regions.

Judd et al. (2012) introduce an ε-distinguishable set (EDS) technique that selects a subset
of points situated at the distance of at least ε from one another.This construction combines
the best features of stochastic simulation and hypercube grids; namely, it combines an
adaptive geometry with efficient discretization. In Figure 4a and b,we shows an example
of such a grid for the one-agent model.

As is seen in the figure, the resulting EDS covers the high-probability area of the state
space roughly uniformly.The EDS grid can be combined with any family of approximat-
ing functions, in particular with those of type (40). As in the case of stochastic simulation
methods, we use more EDS grid points than the parameters in the approximating func-
tion, and we identify the parameters of such a function using regression methods that are
robust to ill-conditioned problems.Therefore, we just focus on explaining how the EDS
grid is constructed.

Numerical Methods for Large-Scale Dynamic Economic Models 375

Figure 4 (a) A set of simulated points. (b) A subset of simulated points.

4.3.1 Eliminating Simulated Points Outside the High-Probability Set
Let us assume some equilibrium law of motion ϕ for state variables

xt+1 = ϕ (xt , εt+1) , t = 0, 1, . . ., (58)

where xt ∈ R
d is a vector of d (exogenous and endogenous) state variables. We first

select a subset of simulated points which belong to an essentially ergodic set Aη using
the following algorithm.

(Algorithm Aη):An algorithm for selecting points within an essentially ergodic set.

Step 1. Simulate ϕ (xt , εt+1) for T periods.
Step 2. Select each κth point to get a set P of n points x1, . . ., xn ∈ X ⊆ R

d .
Step 3. Estimate the density function ĝ (xi) ≈ g (xi) for all xi ∈ P .
Step 4. Remove all points for which the density is below η.

In Step 2, we include only each κth observation in the sample P to make random draws
(approximately) independent. As far as Step 3 is concerned, there are various methods in
statistics that can be used to estimate the density function from a given set of data; see
Scott and Sain (2005) for a review.We use one such method,namely, a multivariate kernel
algorithm with a normal kernel which estimates the density function in a point x as

ĝ (x) = 1

n (2π)d/2 h
d

n∑
i=1

exp
[
−D (x, xi)

2h
2

]
, (59)

where h is the bandwidth parameter and D (x, xi) is the distance between x and xi.
The complexity of Algorithm Aη is O(n2) because it requires us to compute pairwise
distances between all sample points. Finally, in Step 3, we do not choose the den-
sity cutoff η but a fraction of the sample to be removed, �, which is related to η by

376 Lilia Maliar and Serguei Maliar

p (η) = ∫
g(x)≥η

g (x) dx = 1− �. For example, �= 0.05 means that we remove the 5% of
the sample which has the lowest density.

4.3.2 Constructing an ε-Distinguishable Set of Points
Formally, we define an EDS as follows. Let (X , D) be a bounded metric space. A set Pε

consisting of points xε
1, . . ., xε

M ∈ X ⊆ R
d is called ε-distinguishable if D(xε

i , xε
j) > ε for all

1 ≤ i, j ≤ M : i �= j,where ε > 0 is a parameter. EDSs are used in mathematical literature
that studies entropy;seeTemlyakov (2011) for a review.This literature focuses on a problem
of constructing an EDS that covers a given subset of R

d (such as a multidimensional
hypercube). Judd et al. (2012) study a different problem: they construct an EDS for a
given discrete set of points. To this purpose, they introduce the following algorithm.

(Algorithm Pε):An algorithm for constructing an EDS.

Let P be a set of n simulated points x1, . . ., xn ∈ X ⊆ R
d .

Let Pε begin as an empty set, Pε = {∅}.
Step 1. Select xi ∈ P . Compute D(xi , xj) to all xj in P .
Step 2. Eliminate from P all xj for which D(xi , xj) < ε.
Step 3.Add xi to Pε and eliminate it from P .

Iterate on Steps 1–3 until all points are eliminated from P .

The complexity of Algorithm Pε is of the order O(nM). When no points are eliminated
from P , i.e.,M = n, the complexity is quadratic,O(n2),which is the upper bound on cost.
However,the number of points M in an EDS is bounded from above if X is bounded.This
means that asymptotically,when n → ∞, the complexity ofAlgorithm Pε is linear,O (n).

The distance between simulated points depends on measurement units of and cor-
relation between variables (this affects the resulting EDS). Therefore, prior to using
Algorithms Aη and Pε, we normalize and orthogonalize the simulated data using the
principal component (PC) transformation. As a measure of distance between two obser-
vations xi and xj , we use the Euclidean distance between their PCs, namely, D(xi, xj) =[∑d

�=1(PC�
i − PC�

j)
2
]1/2

, where all principal components PC1, . . ., PCd are normalized
to have unit variance.

In Figure 5, we illustrate the described two-step procedure by way of an example of
the one-agent model.

We simulate time series for capital and productivity level of 1,000,000 periods, and
we select a sample of 10,000 observations by taking each 100th point (to make the draws
independent); see Figure 5a.We orthogonalize the data using PC transformation and we
normalize the PCs to a unit variance; see Figure 5b. We estimate the density function
using the multivariate kernel algorithm with the standard bandwidth of h = n−1/(d+4),
and we remove from the sample 5% of simulated points in which the density was lowest;

Numerical Methods for Large-Scale Dynamic Economic Models 377

Figure 5 (a) Simulated points. (b) Principal components (PCs). (c) Density levels on PCs. (d) Construct-
ing EDS. (e) EDS on PCs. (f) EDS on original data.

378 Lilia Maliar and Serguei Maliar

see Figure 5c. We construct an EDS; see Figure 5d. We plot such a set in the PC and
original coordinates in Figure 5e and f, respectively. The constructed EDS appears to be
evenly spaced.

More details about the EDS sets and their applications for solving dynamic eco-
nomic models are given in Judd et al. (2012); in particular, this paper establishes the
dispersion, cardinality, and degree of uniformity of the EDS grid. Also, Judd et al. (2012)
perform the worst-case analysis and relate the results to recent mathematical literature on
covering problems (see Temlyakov, 2011) and random sequential packing problems (see
Baryshnikov et al., 2008). Judd et al. (2012) use the EDS algorithm to compute accu-
rate quadratic solutions to a multicountry neoclassical growth model with up to 80 state
variables, as well as to solve a large-scale new Keynesian model with a zero lower bound
on nominal interest rates.

4.3.3 Other Grids on the Ergodic Set
We have described just one specific procedure for forming a discrete approximation to
the essentially ergodic set of an economic model. Below, we outline other techniques
that can be used for this purpose.

First, the two-step procedure outlined above has a complexity of order O(n2) because
the kernel algorithm computes pairwise distances between all observations in the sample.
This is not a problem for the size of applications we study in this chapter; however, it
is expensive for large samples. Judd et al. (2012) describe an alternative procedure that
has a lower complexity of O (nM). The complexity is reduced by inverting the steps in
the two-step procedure: first an EDS is constructed on all simulated points, and then the
points in which the density is low are removed.

Second,one can use methods from cluster analysis to select a set of representative points
from a given set of simulated points (instead of constructing an EDS set). We partition
the simulated data into clusters (groups of closely located points) and we replace each
cluster with one representative point. Examples of cluster grids are shown in Figure 6.
The clustering techniques are demonstrated in Judd et al. (2012a) using two clustering
methods: an agglomerative hierarchical and a K-means method. Such techniques were
used to produce all the results in Judd et al. (2010,2011d) and were found to lead to highly

Figure 6 (a) The ergodic set. (b) Four clusters. (c) The clusters’ centers.

Numerical Methods for Large-Scale Dynamic Economic Models 379

accurate solutions. However, the cost of constructing cluster grids is higher than that of
EDS grids. Judd et al. (2011d) and Aruoba and Schorfheide (2012) use clustering tech-
niques to solve a new Keynesian model with a zero lower bound on nominal interest rates.

4.3.4 Numerical Illustration of the Accuracy of the SmolyakMethod
Judd et al. (2012) compare the accuracy of solutions under the conventional Smolyak
grid and EDS grids in the one-agent model with inelastic labor supply parameterized
by (18). To make the results comparable, Judd et al. (2012) construct an EDS grid with
the same target number of points (namely, 13) as in the Smolyak grid and use ordinary
polynomials up to degree three under both the Smolyak and EDS grids. The accuracy
is evaluated on two sets of points: one is a stochastic simulation of 10,000 points and the
other is a set of 100× 100 points that are uniformly spaced on the same solution domain
as the one used by the Smolyak method. The results are shown in Table 8.

The accuracy ranking depends critically on the choice of points in which the accu-
racy is evaluated. The EDS method is significantly more accurate than the Smolyak
method when the accuracy is evaluated on a stochastic simulation.This is because under
an adaptive domain, we fit a polynomial function directly in an essentially ergodic set;
while under the conventional hypercube grid, we fit a polynomial function in a larger
hypercube domain and face a trade-off between the fit inside and outside the essentially
ergodic set.

Nevertheless, the Smolyak method produces smaller maximum residuals than the EDS
method when the accuracy is evaluated on a deterministic hypercube domain. This is
because the EDS method is designed to be accurate in the ergodic set (simulated points),
and its accuracy decreases away from the ergodic set while the conventional Smolyak
(1963) method produces solutions that are uniformly accurate on a larger hypercube
domain.

Table 8 Smolyak grid versus EDS grid in the one-agent model.a

Accuracy on a simulation Accuracy on a hypercube

Smolyak grid EDS grid Smolyak grid EDS grid

Polynomial degree L1 L∞ L1 L∞ L1 L∞ L1 L∞

1st −3.31 −2.94 −4.23 −3.31 −3.25 −2.54 −3.26 −2.38
2nd −4.74 −4.17 −5.89 −4.87 −4.32 −3.80 −4.41 −3.25
3rd −5.27 −5.13 −7.19 −6.16 −5.39 −4.78 −5.44 −4.11

aNotes: L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality condition and test
points (in log10 units) on a stochastic simulation of 10,000 observations. The results are reproduced from Judd et al.
(2012a), Table 2.

380 Lilia Maliar and Serguei Maliar

5. APPROXIMATIONOF INTEGRALS

We study a class of methods that approximates multidimensional integrals by a
weighted sum of integrands, i.e.,

E [G (ε)] =
∫

RN
G (ε) w (ε) dε ≈

J∑
j=1

ωjG
(
εj
)

, (60)

where ε ≡ (
ε1, . . ., εN

)
 ∈ R
N is a vector of uncorrelated variables; G : R

N → R is a
continuous bounded function; w is a density function normalized by

∫
RN w (ε) dε = 1;

{εj}j=1,...,J is a set of nodes; and {ωj}j=1,...,J is a set of weights normalized by
∑ J

j=1ωj = 1.
We restrict attention to the case of random variables that are normally distributed with

zero mean and unit standard deviation,i.e.,ε ∼ N (0N , IN),where 0N ≡ (0, . . ., 0)
 ∈ R
N

is a vector of zeros and IN ∈ R
N×N is an identity matrix; and w (ε) = (2π)−N/2

exp
[− 1

2ε

ε
]

is a density function of a multivariate normal distribution. However, our
analysis is easy to extend to other random processes.

Typically, there is a trade-off between accuracy and cost of integration methods:
having more nodes leads to a more accurate approximation of integrals but is also more
expensive. Hence,we describe several alternative integration methods that differ in accu-
racy and cost. While we describe the integration rules for the case of uncorrelated vari-
ables, at the end of the section we show how all the results can be generalized for the
case of correlated variables using a Cholesky decomposition.

5.1 Gauss-Hermite Product Quadrature Rules
The Gauss-Hermite quadrature method provides a set of integration nodes {εj}j=1,...,J and
weights {ωj}j=1,...,J for approximation of a unidimensional version of integral (60),

∫
R

G (ε) w (ε) dε ≈
J∑

j=1

ωjG
(
εj
)
. (61)

In Section 3, we show nodes and weights for one-, two-, and three-node Gauss-Hermite
quadrature methods.

We can extend the unidimensional Gauss-Hermite quadrature rule to the multidi-
mensional quadrature rule by way of a tensor-product rule:∫

RN
G (ε) w (ε) dε ≈

J1∑
j1=1

· · ·
JN∑

jN =1

ω1
j1 · · ·ωN

jN · G
(
ε1

j1 , . . ., ε
N
jN

)
, (62)

where {ωh
jh}jh=1,...,Jh and {εh

jh}jh=1,...,Jh are, respectively, weights and nodes in a dimension h
derived from the unidimensional Gauss-Hermite quadrature rule (note that, in general,

Numerical Methods for Large-Scale Dynamic Economic Models 381

the number of nodes in one dimension, Jh,can differ across dimensions).The total number
of nodes is given by the product J1 J2 ···JN .The total number of nodes grows exponentially
with the dimensionality N ; under the assumption that Jh = J for all dimensions, the total
number of nodes is JN .

Consider a two-node Gauss-Hermite quadrature rule for a model with two shocks;
then we have (θ h

j)′ = θρ exp(εh
j); see Figure 7a.

Example 6. Let εh ∼ N (0, 1) , h = 1, 2 be uncorrelated normally distributed variables.
A two-node Gauss-Hermite quadrature rule, denoted by Q(2), has four nodes

value\node j = 1 j = 2 j = 3 j = 4

ε1
j 1 −1 1 −1
ε2

j 1 1 −1 −1
ωj 1/4 1/4 1/4 1/4

The expectation of a function G (ε) can be approximated as

E [G (ε)] ≈ 1
4

[G (1, 1) + G (−1, 1) + G (1, −1) + G (−1, −1)] .

Under a J-node Gauss-Hermite product rule, the number of nodes grows rapidly
with the number of exogenous random variables, N . Even if there are just two nodes for
each random variable, the total number of nodes is prohibitively large for large N ; for
example, if N = 100, we have 2N ≈ 1030 nodes. This makes product rules impractical
for high-dimensional applications.

There is a specific case of Gauss-Hermite quadrature rule, a one-node quadrature rule
Q (1), which is the cheapest possible deterministic integration method; see Figure 7b.

Example 7. Let εh ∼ N (0, 1) , h = 1, 2 be uncorrelated normally distributed variables.
A one-node Gauss-Hermite quadrature rule, denoted by Q(1), has one node

value\node j = 1

ε1
j 0
ε2

j 0
ωj 1

The expectation of a function G (ε) can be approximated as

E [G (ε)] ≈ G (0, 0) .

This rule has just one node independently of the number of shocks N . In the context of
one- and multicountry growth models,Maliar et al. (2011) find that this simple rule leads
to just a slightly lower accuracy of solutions than the most accurate deterministic methods.

382 Lilia Maliar and Serguei Maliar

0.8 0.9 1 1.1 1.2

0.8

0.9

1

1.1

1.2

1

2

0.8 0.9 1 1.1 1.2

0.8

0.9

1

1.1

1.2

1

2

0.8 0.9 1 1.1 1.2

0.8

0.9

1

1.1

1.2

1

2

0.8 0.9 1 1.1 1.2

0.8

0.9

1

1.1

1.2

1

2

0.8 0.9 1 1.1 1.2

0.8

0.9

1

1.1

1.2

1

2

0.8 0.9 1 1.1 1.2

0.8

0.9

1

1.1

1.2

1

2

(a) (b)

(d)

(f)(e)

(c)

Figure 7 (a) Quadrature rule Q(2). (b) Quadrature rule Q(1). (c) Monomial rule M1. (d) Monomial rule
M2. (e) Monte Carlo draws. (f) Sobol grid.

5.2 Monomial Rules
Monomial integration rules are nonproduct: they construct a relatively small set of
nodes distributed in some way within a multidimensional hypercube. The computa-
tional expense of monomial rules grows only polynomially with the dimensionality of
the problem, which makes them feasible for problems with large dimensionality. Mono-
mial rules are introduced to economic literature in Judd (1998). Monomial formulas are
used for approximating integrals by all global methods focusing on large-scale applica-
tions, e.g., Judd et al. (2010, 2011a,b, 2012), Malin et al. (2011), Maliar et al. (2011), and

Numerical Methods for Large-Scale Dynamic Economic Models 383

Pichler (2011). The last paper also uses monomial rules for constructing a grid of points
for finding a solution. Finally, Juillard and Villemot (2011) use monomial formulas for
implementing the accuracy checks.

5.2.1 Monomial RuleM1with 2N Nodes
Consider the following simple example of the monomial rule with 2N nodes which we
denote M1:

E [G (ε)] ≈ 1

2N

N∑
h=1

[
G
(
Rιh

)+ G
(−Rιh

)]
, (63)

where ε ∼ N (0N , IN) and R ≡ √
N , and ιh ∈ R

N is a vector whose hth element is
equal to one and the remaining elements are equal to zero, i.e., ιh ≡ (0, . . ., 1, . . ., 0)
.

M1 constructs nodes by considering deviations of each random variable holding the
other random variables fixed to their expected values. Let us illustrate this rule with a
two-dimensional example.

Example 8. Let εh ∼ N (0, 1) , h = 1, 2 be uncorrelated normally distributed variables.
A monomial rule M1 has four nodes; see Figure 7c

value\node j = 1 j = 2 j = 3 j = 4

ε1
j

√
2 −√

2 0 0
ε2

j 0 0
√

2 −√
2

ωj 1/4 1/4 1/4 1/4

The expectation of a function G (ε) is approximated as

E [G (ε)] = 1
4

[
G
(√

2, 0
)

+ G
(
−√

2, 0
)

+ G
(
0,

√
2
)

+ G
(
0, −√

2
)]

.

The integration nodes produced by this monomial rule are shown in Figure 7c. Since
the cost of M1 increases with N only linearly, this rule is feasible for the approximation of
integrals with very large dimensionality. For example, with N = 100, the total number
of nodes is just 2N = 200.

5.2.2 Monomial RuleM2with 2N2 + 1Nodes
Many other monomial rules are available in the mathematical literature;see Stroud (1971),
pp. 315–329, and Judd (1998), p. 275, for a discussion. Below, we show a monomial rule

384 Lilia Maliar and Serguei Maliar

with 2N 2 + 1 nodes, denoted by M2,

E [G (ε)] ≈ 2
2 + N

G (0, . . ., 0)

+ 4 − N

2 (2 + N)2

N∑
h=1

[
G
(
Rιh

)+ G
(−Rιh

)]

+ 1

(N + 2)2

N−1∑
h=1

N∑
s=h+1

G
(±Dιh ± Dιs

)
, (64)

where ε ∼ N (0N , IN) , R ≡ √
2 + N and D ≡

√
2+N

2 . A two-dimensional example of
this rule is illustrated in the example below.

Example 9. Let εh ∼ N (0, 1) , h = 1, 2 be uncorrelated normally distributed variables.
A monomial rule M1 has nine nodes; see Figure 7d.

value\node j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

ε1
j 0 2 −2 0 0

√
2

√
2 −√

2 −√
2

ε2
j 0 0 0 2 −2

√
2 −√

2
√

2 −√
2

ωj
1
2 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16

The expectation of a function G (ε) can be approximated as

E [G (ε)] ≈ 1
2

G (0, 0) + 1
16

[G (2, 0) + G (−2, 0) + G (0, 2) + G (0, −2)]

+ 1
16

[
G
(√

2,
√

2
)

+ G
(√

2, −√
2
)

+ G
(
−√

2,
√

2
)

+ G
(
−√

2,
√

2
)]

.

The cost of M2 grows quadratically with N but it is still feasible with high dimension.
For example, with N = 100, the total number of nodes is just 2N 2 + 1 = 20,001, which
is still manageable.

5.3 Monte Carlo Integration Method
A J-node Monte Carlo integration method,denoted by MC (J),draws J shocks,{εj}j=1,..., J

and approximates the integral by the average of the integrand’s values across the shocks

E [G (ε)] = 1

J

J∑
j=1

G
(
εj
)
. (65)

Numerical Methods for Large-Scale Dynamic Economic Models 385

See Figure 7e for a Monte Carlo method with 100 realizations. A one-node version of
the Monte Carlo integration method is used in Marcet’s (1988) PEA (namely, the future
expectation of a random variable is approximated by one realization of the variable).
As we argued in Section 3, this method is inaccurate and limits the overall accuracy of
solutions produced by numerical solution methods.

5.4 Quasi-Monte Carlo Integration Methods
Quasi-Monte Carlo methods construct a set of nodes that are uniformly spaced in a
given area of the state space. Normally, the nodes are constructed in a multidimensional
hypercube. It is possible to construct a uniformly spaced set of nodes in a hypercube
using a tensor-product grid of unidimensional uniformly spaced nodes, but this tech-
nique is subject to the curse of dimensionality. Quasi-Monte Carlo methods construct a
uniformly spaced grid of nodes using nonproduct techniques.The number of grid points
is controlled by a researcher. The accuracy of quasi-Monte Carlo methods is generally
higher than that of Monte Carlo methods. Applications of quasi-Monte Carlo sequences
to solving dynamic economic models are studied in Rust (1997); see also Geweke (1996)
for a discussion.

Our presentation relies on the standard notion of uniformity in the literature, which
is the discrepancy of a given set of points from the uniformly distributed set of points;
see Niederreiter (1992), p. 14. Let P be a set consisting of points x1, . . ., xn ∈ X ⊆ R

d ,
and let J be a family of Lebesgue-measurable subsets of X . The discrepancy of P under

J is given by Dn (P; J) = sup
J∈J

∣∣∣C(P;J)
n − λ (J)

∣∣∣, where C (P; J) counts the number of

points from P in J , and λ (J) is a Lebesgue measure of J . Thus, Dn (P; J) measures the
discrepancy between the fraction of points C(P;J)

n contained in J and the fraction of space
λ (J) occupied by J . If the discrepancy is low, Dn (P; J) ≈ 0, the distribution of points
in X is close to uniform.

The measure of discrepancy commonly used in the literature is the star discrepancy.
The star discrepancy D∗

n (P; J) is defined as the discrepancy of P over the family J
generated by the intersection of all subintervals of R

d of the form �d
i=1 [−∞, vi), where

vi > 0. Let S be a sequence of elements on X , and let x1, . . ., xn ∈ X ⊆ R
d be the first

n terms of S. Niederreiter (1992), p. 32, suggests calling a sequence S low discrepancy if
D∗

n (S; J) = O
(
n−1 (log n)d

)
, i.e., if the star discrepancy converges to zero asymptotically

at a rate at least of order n−1 (log n)d .
The star discrepancy of points which are randomly drawn from a uniform distribution

[0, 1]d also converges to zero asymptotically, lim
n→∞ D∗

n (S; J) = 0, a.e. but its rate of

convergence (log log n)1/2 (2n)−1/2 is far lower than that of low-discrepancy sequences.
This rate of convergence follows directly from the law of iterated logarithm by Kiefer
(1961); see Niederreiter (1992), pp. 166–168, for a general discussion on how to use
Kiefer’s (1961) results for assessing the discrepancy of random sequences.

386 Lilia Maliar and Serguei Maliar

The simplest example of a sequence, equidistributed on [0, 1], is a Weyl sequence
xn = {nϑ},where ϑ is irrational and {x} is a fractional part of x. For example, let ϑ = √

2.
Then, we have x1 = {

1 · √
2
} = {1.4142} = 0.4142, x2 = {

2 · √
2
} = {2.8284} =

0.8284, etc. This sequence can be generalized to a d-dimensional case using d distinct
and linearly independent irrational numbers ϑ1, . . .,ϑd ; this yields a sequence xn =
({nϑ1} , . . ., {nϑd}) whose points are equidistributed over the [0, 1]d .There is a variety of
other low-discrepancy sequences in the literature including Haber, Baker, Niederreiter,
and Sobol sequences; see Niederreiter (1992) for a review.As an example,we draw a two-
dimensional Sobol sequence with 100 points; see Figure 7f.Thus, to perform integration,
we use a low-discrepancy sequence in the same way as we use a number of Monte Carlo
random draws.

5.5 Nonparametric Kernel-Density Methods
Suppose we observe a set of data {xi, Gi}i=1,...,I , and we must compute the conditional
expectation function E

[
G|xj

]
, for some j ∈ {1, . . ., I }. A general class of nonparametric

estimators can be written as

E
[
G|xj

] =
I∑

i=1

wi,jGi, (66)

where wi,j = W
(
D
(
xi, xj

))
is a weight function that satisfies

∑I
i=1 wi,j = 1 and W ′ < 0,

with D
(
xi, xj

)
being a distance between points xi and xj . In other words, expectation

E
[
G|xj

]
is given by a weighted sum of all observations in the sample, and a weight wi,j

placed on each observation xi depends on how far this particular observation is from
observation xj in which the expectation is evaluated. Nadaraya (1964) andWatson (1964)
propose to construct the weights using the multivariate normal kernel

wi,j =
exp

[
−D(xi ,xj)

2h
2

]
∑I

i=1 exp
[
−D(xi ,xj)

2h
2

] , (67)

where h is a parameter which effectively represents the width of the interval in which
the expectation is estimated. There are many other alternatives for the weight function
in the literature on nonparametric estimation; see Pagan and Ullah (1999). The difficult
problem in statistics is to choose the width parameter h.There are two procedures in the
literature for identifying this parameter, namely, cross-validation and plug-in. Typically, an
iterative procedure is used: assume some h, compute the expectation function, and check
h by using some criterion; and iterate until a fixed point h is obtained. A recent example
of application of nonparametric methods for solving dynamic economic models is Jirnyi
and Lepetyuk (2011).

Numerical Methods for Large-Scale Dynamic Economic Models 387

5.6 Approximating a Markov Process Using a Markov Chain
There are other combinations of techniques of potential interest that are not described
above. For example,Tauchen (1986) shows how to accurately approximate unidimen-
sional integrals by discretizing an autoregressive process into a finite-state Markov chain;
andTauchen and Hussey (1991) generalize their analysis to multidimensional cases. Such
a discretization can be performed using nonproduct rules that are tractable in high-
dimensional applications. This discretization method can be combined with other com-
putational techniques surveyed in the present chapter to construct numerical solution
methods that are tractable in high-dimensional applications.

5.7 Correlated Shocks and Cholesky Decomposition
We finally show how to extend the described integration methods to the case when the
shocks are correlated.To be specific,we evaluate a multidimensional integral of the form

E [G (ε)] =
∫

RN
G (ε) w (ε) dε, (68)

where ε ≡ (
ε1, . . ., εN

)
 ∈ R
N follows a multivariate normal distribution,ε ∼ N (μ,�),

with μ ≡ (
μ1, . . .,μN

)
 ∈ R
N being a vector of means and � ∈ R

N×N being a
variance-covariance matrix, and w (ε) is a density function of the multivariate Normal
distribution,

w (ε) = (2π)−N/2 det (�)−1/2 exp
[
−1

2
(ε − μ)
 �−1 (ε − μ)

]
, (69)

with det (�) denoting the determinant of �.
If random variables ε1, . . ., εN are correlated, we must rewrite the integral in terms

of uncorrelated variables prior to numerical integration. Given that � is symmetric
and positive-definite, it has a Cholesky decomposition, � = ��
, where � is a lower
triangular matrix with strictly positive diagonal entries.The Cholesky decomposition of
� allows us to transform correlated variables ε into uncorrelated ν with the following
linear change of variables:

ν = �−1 (ε − μ) . (70)

Note that dε = det (�) dν. Using (70) and taking into account that �−1 = (
�−1

)

�−1

and that det (�) = [det (�)]2, we obtain

∫
RN

G (ε) w (ε) dε = (2π)−N/2
∫

RN
G (�ν + μ) exp

(
−ν
ν

2

)
dν

388 Lilia Maliar and Serguei Maliar

=
∫

RN
G (�ν + μ) w (v)

≈
J∑

j=1

ωjG
(
�νj + μ

) ≡
J∑

j=1

ωjG
(
εj
)

, (71)

where ν ∼ N (0N , IN), with 0N ≡ (0, . . ., 0)
 ∈ R
N . Comparing (60) and (71) shows

that with correlated shocks,we can use the same formula as with uncorrelated normalized
shocks with the only modification that instead of a node implied by a given integration
rule we use a transformed node εj ≡ �νj +μ,where νj is a node for uncorrelated shocks.

5.8 Numerical Illustration of the Importance of the Integration Method
We compare the simulation-based and nonparametric methods with the parametric ones.
As we will see, the performance of simulation-based integration is poor, and the perfor-
mance of the nonparametric integration methods is even poorer. The reason is that we
disregard information about the true density function by replacing it with the estimated
(noisy) density function. Econometricians use the estimated density function because
the true one is not available. However, in economic models we define the process for
shocks and we do know density functions.We can do much better by using deterministic
(quadrature and monomial) rules rather than simulation-based methods. We provide an
illustration below.

5.8.1 Monte Carlo Integration
The Monte Carlo integration method is feasible in high-dimensional applications (because
we control the number of draws) but its accuracy is generally far lower than that of the
deterministic integration methods. Judd et al. (2011b) study a version of the one-agent
model with inelastic labor supply under assumption (18).They assess the performance of
GSSA based on the Monte Carlo method, MC (J), with J = 1 and J = 2, 000 random
nodes in each simulated point and, the Gauss-Hermite quadrature method, Q (J), with
J = 1 and J = 2 deterministic nodes. The results are provided in Table 9. Under Monte
Carlo integration,high-degree polynomials do not necessarily lead to more accurate solu-
tions than low-degree polynomials because the overall accuracy is dominated by errors
produced by an integration method. Surprisingly, a one-node Gauss-Hermite quadrature
method, Q (1), leads to more accurate solutions than a 2,000-node Monte Carlo method
MC (2, 000).A two-node Gauss-Hermite quadrature method,Q (2),produces very accu-
rate solutions with the residuals of order 10−8. Increasing the number of quadrature nodes
does not visibly improve the accuracy. Monomial integration rules deliver the same (high)
accuracy levels as the quadrature rules; see Judd et al. (2011b) for more details.

Numerical Methods for Large-Scale Dynamic Economic Models 389

Table 9 Monte Carlo integration and quadrature integration in the one-agent model.a

Polynomial MC(1) MC(2000) Q(1) Q(2)
degree

T = 10, 000
L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU

1st −4.26 −3.37 1 −4.40 −3.48 1236 −4.35 −3.37 15 −4.36 −3.37 16
2nd −4.42 −3.69 11 −6.04 −4.93 1711 −5.99 −4.94 32 −6.13 −4.92 27
3rd −4.32 −3.37 25 −6.15 −5.07 2198 −6.32 −5.90 45 −7.48 6.01 35
4th −4.31 −2.98 47 −6.08 −4.71 3337 −6.32 −6.18 53 −8.72 −7.10 44
5th −4.23 −3.30 80 −6.07 −4.70 4551 −6.32 −6.18 62 −8.91 −7.26 51

T = 100, 000

1st −4.39 −3.40 4 −4.36 −3.40 117 −4.37 −3.39 113
2nd −4.87 −3.96 79 −6.03 −4.94 281 −6.16 −4.94 188
3rd −4.86 −3.60 184 Ran out of memory −6.32 −5.93 387 −7.52 −6.04 260
4th −4.72 −3.43 341 −6.32 −6.19 470 −8.78 −7.18 335
5th −4.71 −3.44 623 −6.32 −6.19 548 −8.98 −7.35 406

aNotes: L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality conditions and test
points (in log10 units). CPU is the time necessary for computing a solution (in seconds).T is the simulation length. MC(J)
and Q(J) denote J-node Monte Carlo and quadrature integration methods, respectively. These results are reproduced
from Judd et al. (2011b), Table 2.

The above results illustrate a slow
√

J rate of convergence of the Monte Carlo method.
To achieve high accuracy of solutions under the Monte Carlo method, we must increase
the sample size by many orders of magnitude, which is infeasible in practice.

5.8.2 Nonparametric Kernel-Density IntegrationMethod
It might be tempting to solve for decision functions using a fully nonparametric solution
method.The advantage of this approach is that we do not need to make any assumptions
about a functional form for decision functions. Instead, we just simulate the model,
compute the expectation using the simulated data, and let the model itself choose what
is the best possible approximation. Unfortunately, such nonparametric methods are not
competitive in the studied applications due to their high computational expense and low
rate of convergence (equivalently, low accuracy).

As an illustration,we assess the performance of a nonparametric kernel-density method
in the context of the model with inelastic labor supply under the assumptions (18).
To give the best chance to the nonparametric method, we choose the width parameter,
h, optimally, namely, we compute an accurate parametric solution, and we find the value
of h for which conditional expectations delivered by the parametric and nonparametric
methods are as close as possible on a set of the simulated points considered (this technique
is not feasible in statistics where the true expectation function is unknown). We find the

390 Lilia Maliar and Serguei Maliar

Table 10 Nonparametric kernel-density integration method.a

Polynomial degree T = 1000 T = 3000 T = 10,000

L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU

1st −3.35 −1.94 2429.3 −3.31 −1.87 11373.3 −3.62 −2.21 62051.8
2nd −3.37 −2.22 −3.32 −1.97 −3.62 −2.23
3rd – – – – −3.64 −1.98
4th – – – – −3.64 −1.82
5th −3.31 −1.04 −3.16 −1.68 −3.63 −1.75

aNotes: L1 and L∞ are, respectively, the average and maximum of absolute approximation errors across optimality con-
ditions and test points (in log10 units). CPU is the time necessary for computing a solution (in seconds).T is the sample
size.

solutions under T = 1, 000, T = 3, 000, and T = 10,000. The solution procedure is
expensive since we have to find an expectation in each simulation point by averaging
up all simulated points. Furthermore, there is no natural way to assess the accuracy
of nonparametric solutions. We therefore take a time-series solution delivered by the
nonparametric method, regress it on an ordinary polynomial function of degrees from
one to five, and use the resulting parametric function to run accuracy checks.The results
are shown in Table 10. As we see, the performance of the nonparametric integration
method is poor. The running time is large and increases rapidly with the simulation
length. Under T = 1, 000 and T = 3, 000, the accuracy is so low that the solution
is numerically unstable in simulation. Under T = 10,000, the numerical stability is
achieved but the accuracy is still very low compared to parametric solutions reported in
Table 9.

The rate of convergence of the Nadaraya-Watson method we use is always slower than
that of the Monte Carlo method and decreases with the number of random variables with
respect to which the expectation is evaluated. When there are k random variables and J
simulated points, and when we use the same value of width h for all random variables,
the convergence rate is of the order J 2/(k+4); see Bierens (1994),Theorem 10.2.2. For our
example, k = 1 and hence, the convergence rate is of the order J 2/5. There are other
nonparametric estimators, e.g., local linear regressions, but their convergence properties
are also poor.

6. DERIVATIVE-FREE OPTIMIZATIONMETHODS

In this section, we focus on solving systems of nonlinear equations that arise in
the context of the Euler equation methods. Our main tool is a simple derivative-free
fixed-point iteration (FPI) method. Assume that we need to solve an equation x = F (x)
(any equation can be represented in this form). We implement the following iterative
procedure.

Numerical Methods for Large-Scale Dynamic Economic Models 391

(FPI): Fixed-point iteration.

Initialization. Fix initial guess x(0), a norm ‖·‖, and a convergence criterion � .
Step 1. On iteration i, compute x̂ = F

(
x(i)
)
.

Step 2. If
∥∥̂x − x(i)

∥∥ < � , then stop.
Otherwise, set x(i+1) = x̂ and go to Step 1.

FPI has two advantages over Newton-style methods. First, FPI does not require us to
compute derivatives (such as Jacobian or Hessian); as a result, its cost does not increase
considerably with the dimensionality of the problem. Second, FPI can iterate on any
object x at once (variable, vector of variables, matrix, time series, vector of coefficients,
etc.), while Newton-style methods compute a solution point-by-point and are more
difficult to vectorize or parallelize.

The drawback of the FPI method is that it may fail to converge. However, damping
can often help us to achieve the convergence. Instead of a full updating at the end of
the iteration x(i+1) = x̂, we use a partial updating x(i+1) = ξ x̂ + (1 − ξ) x(i) for some
ξ ∈ (0, 1]. By varying a damping parameter ξ , we can control how much x changes
from one iteration to another and avoid explosive paths. FPI with damping systematically
converged in all our numerical experiments. Note that we need to adjust the convergence
criterion � to the damping parameter ξ , for example,by replacing � with �

ξ
; otherwise,

the convergence will critically depend on the value of ξ assumed and can be trivially
achieved by using a very small value of ξ . In the remainder of the section, we illustrate
the applications of FPI by way of examples.

6.1 Separation of Intertemporal and Intratemporal Choices
Equilibrium conditions of dynamic economic models are not symmetric in a sense that
some of them contain only current variables (known at t), while the others contain both
current and future variables (unknown at t); we refer to these two groups of conditions
as the intratemporal and intertemporal choice conditions, respectively. Maliar et al. (2011) show
how to exploit this asymmetry of the equilibrium conditions to solve for equilibrium
more efficiently. Specifically, they find solutions to the intertemporal choice conditions
in terms of state contingent functions; however, they find solutions to the intratemporal
choice conditions in terms of equilibrium quantities. Below,we show how this construc-
tion can be implemented in the context of model (1)–(3).

6.1.1 Intratemporal Choice FOCs
Let us collect the intratemporal choice conditions of problem (1)–(3) that contain only
the variables known at time t:

u2 (c, �) = u1 (c, �) θ f� (k, �) , (72)

c + k′ = (1 − δ) k + θ f (k, �) . (73)

392 Lilia Maliar and Serguei Maliar

The above system contains five variables, namely, c, �, k′,k, θ .We can solve it with respect
to two variables if the remaining three variables are fixed. In the benchmark case, we fix
(k, θ) and k′, and we solve for c, �.

6.1.2 Intertemporal Choice FOCs
The FOC of problem (1)–(3) with respect to capital contains both current and future
variables

u1 (c, �) = βE
{
u1
(
c ′, �′) [1 − δ + θ ′f1

(
k′, �′)]} . (74)

Note that (74) cannot be treated in the same way as (72), (73). In particular, fixing c, � is
not sufficient for computing k′ from (74). We need a method that allows us to infer the
values of future variables c ′, �′ in all possible future economy’s states (k′, θ ′).

To find a solution to the intertemporal choice conditions, we use a Markov structure
of the decision functions, namely, we parameterize K (k, θ) with a flexible functional
form K̂ (k, θ; b), and we solve for a coefficient vector b that approximately satisfies (74).

6.1.3 A Global Euler EquationMethodwith a Separation of Intertemporal
and Intratemporal Choices

We now outline a global Euler equation method that finds a solution to (1)–(3) by
separating the intertemporal and intratemporal choice conditions.

The inner and outer loops in the algorithm correspond to the intratemporal and
intertemporal planner’s choice, respectively. Note that planner has to solve for the intra-
temporal choice J + 1 times, one time at present and J times in all possible future states
(integration nodes).The problems solved at Step 3a and 3b are identical.We next discuss
how to find a solution to the intratemporal and intertemporal choice conditions in more
detail.

6.2 The Intratemporal Choice Quantities
Consider system (72), (73) under utility and production function parameterizations
in (17),

B�−μ = c−γ (1 − α) θkα (1 − �)−α , (75)

c = θkα�1−α + (1 − δ) k − k′. (76)

This system has a small number of equations, and, in principle, Newton solvers can be
used to solve for c and � in terms of (k, θ , k′). However, we must solve this system a
large number of times, namely, for each value of

(
km, θm, k′

m

)
on the grid, and for J future

states
(
k′

m, θ ′
m, j , k′′

m, j

)
corresponding to each grid point, i.e., M × (J + 1) times in total

for every iteration on the outer loop. The cost of solving this system repeatedly can be
large, especially in high-dimensional problems.

Maliar et al. (2011) develop a derivative-free solver called iteration-on-allocation. This
method solves a system of nonlinear equations by performing FPI on the intratemporal

Numerical Methods for Large-Scale Dynamic Economic Models 393

(EEM2):A global Euler equation method with inner and outer loops.

Step 1. Choose a grid {km, θm}m=1,..., M on which decision functions are approximated.
Choose a flexible functional form K̂ (·; b) for approximating decision function K .
Step 2. Choose nodes, εj , and weights,ωj , j = 1, . . ., J , for approximating integrals.
Compute next-period productivity θ ′

m, j = θ
ρ
m exp(εj) for all j, m.

Step 3. Solve for b, {cm, �m}, and
{
c ′m, j , �

′
m, j

}
for all j such that

–3a (inner loop): The quantities {cm, �m} solve:
u2 (cm, �m) = u1 (cm, �m) θm f2 (km, �m),
cm + k′

m = θm f (km, �m) + (1 − δ) km,
given k′

m = K̂ (km, θm; b).

–3b: In each state j = 1, . . ., J , the quantities
{
c ′m, j , �

′
m, j

}
solve:

u2

(
c ′m, j , �

′
m, j

)
= u1

(
c ′m, j , �

′
m, j

)
θ ′

m, j f2
(
k′

m, �′
m, j

)
,

c ′m, j + k′′
m, j = θ ′

m, j f
(
k′

m, �′
m, j

)
+ (1 − δ) k′

m,

given k′
m = K̂ (km, θm; b) and k′′

m, j = K̂
(
k′

m, θ ′
m, j; b

)
.

–3c (outer loop): The function k′ = K̂ (k, θ; b) solves:

u1 (cm, �m) = β
J∑

j=1
ωj ·

[
u1

(
c ′m, j , �

′
m, j

) (
1 − δ + θ ′

m, j f1
(
k′

m, �′
m, j

))]
,

given {cm, �m} and
{
c ′m, j , �

′
m, j

}
for all j.

choice variables in line with Gauss-Jacobi and Gauss-Siedel iteration schemes; see Judd
(1998) for a detailed description of these schemes. Below, we illustrate iteration-on-
allocation in the context of system (75), (76).

Example 10. We represent system (75), (76) in the form �̂ = F (�) suitable for FPI:

ĉ =
[

B (1 − �)−μ

(1 − α) θkα�−α

]−1/γ

, (77)

�̂ =
[̂

c + k′ − (1 − δ) k
θkα

]1/(1−α)

. (78)

Initialization. Fix initial guess �(0), a norm ‖·‖, and a convergence criterion � .
Step 1. On iteration i, compute ĉ and �̂ using (77), (78), respectively.
Step 2. If

∥∥̂� − �(i)
∥∥ < �

ξ
, then stop.

Otherwise, set �(i+1) = ξ�(i) + (1 − ξ) �̂, where ξ ∈ (0, 1] and go to Step 1.

Therefore, we apply iteration-on-allocation M × (J + 1) times to system (77), (78).
Namely,we solve for quantities {cm, �m} given

(
km, θm, k′

m

)
in all grid points, and we solve

for quantities
{
c ′m, j , �

′
m, j

}
given

(
k′

m, θ ′
m, j , k′′

m, j

)
for all j, m.

394 Lilia Maliar and Serguei Maliar

The iteration-on-allocation method has the following valuable feature: it delivers
exact solutions to the intratemporal choice condition both at present and future (up to
a given degree of precision). The residuals in the intratemporal choice conditions are
all zeros by construction, and the only condition that has nonzero residuals is the Euler
equation (74).

The iteration-on-allocation method is used by Maliar et al. (2011) to compute the
intratemporal choice in the context of the JEDC comparison analysis. A high accuracy
of iteration-on-allocation gives an important advantage in accuracy to the stochastic
simulation and cluster grid algorithms of Maliar et al. (2011) over the other methods
participating in the JEDC comparison analysis; see Kollmann et al. (2011b).Those other
methods approximate some of the intratemporal choice variables in terms of state con-
tingent functions and face large residuals in some intratemporal choice conditions which
dominate the overall accuracy of solutions.

Finally, let us mention that many different implementations of the iteration-on-
allocation method are possible. First, in Eq. (78), we can use consumption obtained
in the previous iteration, c, instead of consumption obtained in the current iteration,
ĉ (this is the difference between the Gauss-Jacobi and Gauss-Siedel iterative schemes).
Second, we can switch the order of equations, as well as change the way in which we
express the variables from the equations. For example, we can express labor from the
first equation (75), and we can express consumption from the second equation (76). A
specific implementation can affect the numerical stability and speed of convergence of
the iteration-on-allocation method.

6.3 The Intertemporal Choice Functions
Consider Euler equation (74) on a grid of points {km, θm}m=1,...,M ,

u1 (cm, �m) = β

J∑
j=1

ωj ·
[
u1

(
c ′m, j , �

′
m, j

) (
1 − δ + θ ′

m, j f1
(
k′

m, �′
m, j

))]
. (79)

In the outer loop, we must find a vector of parameters b such that (79) is satisfied either
exactly (collocation methods) or approximately (weighted residuals methods) on a given
grid of points.Again,this is possible to do using Newton-style solvers;see,e.g., Judd (1992)
and Gaspar and Judd (1997). To be specific, we fix some b, compute k′

m = K̂ (km, θm; b)
and k′′

m, j = K̂
(
k′

m, θ ′
m, j; b

)
, solve for {cm, �m} and

{
c ′m, j , �

′
m, j

}
from the intratemporal choice

conditions, and substitute the results in the Euler equation (79) to evaluate the residuals.
We subsequently perform iterations on b until the residuals are minimized. However, this
procedure is expensive when the number of coefficients in b is large. For problems with
high dimensionality, our preferred method is again FPI.

Numerical Methods for Large-Scale Dynamic Economic Models 395

Example 11. To implement FPI on b, we represent (79) in the form k̂′
m = F

(
k′

m

)
suitable for FPI as follows:

k̂′
m = β

J∑
j=1

ωj ·
⎡
⎣u1

(
c ′m, j , �

′
m, j

)
u1 (cm, �m)

(
1 − δ + θ ′

m, j f1
(
k′

m, �′
m, j

))⎤⎦ k′
m

︸ ︷︷ ︸
≡F(k′

m)

. (80)

Initialization. Fix initial guess b(0), a norm ‖·‖, and a convergence criterion � .
Step 1. On iteration i, use b(i) to compute

{
k′

m, cm, �m
}

and
{
k′

m, j , c ′m, j , �
′
m, j

}
j=1,...,J and

substitute them in the right side of (80) to find k̂′
m.

Step 2. If
∥∥̂k′

m − k′
m

∥∥ < �
ξ

, then stop.

Otherwise, find b̂ that solves minb

∥∥̂k′
m − K̂ (km, θm; b)

∥∥, set b(i+1) = ξb(i) + (1 − ξ) b̂,
where ξ ∈ (0, 1], and go to Step 1.

In the true solution, we have a fixed-point property k̂′
m = k′

m, and these two variables
cancel out, making equations (79) and (80) to be equivalent. However, in the iterative
process, we have k̂′

m �= k′
m, and the difference between those quantities guides us in the

process of convergence to the true solution.
We can use different FPI representations of the Euler equation to parameterize decision

functions of other variables; for example, we can parameterize the consumption decision
function by premultiplying the left and right sides of Euler equation (74) by ĉm and cm,
respectively; see Den Haan (1990) and Marcet and Lorenzoni (1999) for related examples.

Among many possible variants of FPI for finding b, we distinguish one special case,
which is known as time iteration and is used in, e.g., the Smolyak method of Malin
et al. (2011). In the context of our example, we fix b and represent all choice variables
as functions of k′

m, namely, we first identify k′′
m, j = K̂

(
k′

m, θ ′
m, j; b

)
and we then identify{

cm, �m
}

and
{
c ′m, j , �

′
m, j

}
to satisfy the intratemporal choice conditions under given k′

m
and k′′

m, j . With this representation, we can implement the following iterative process.

Example 12. We rewrite Euler equation (79) to implement FPI of type b̂ = F (b):

u1
(
cm
(·, k̂′

m

)
, �m

(·, k̂′
m

))
= β

J∑
j=1

ωj ·
[
u1

(
c ′m, j

(·, k̂′
m

)
, �′

m, j

(·, k̂′
m

)) (
1 − δ + θ ′

m, j f1
(̂
k′

m, �′
m, j

(·, k̂′
m

)))]
. (81)

Initialization. Fix an initial guess b(0), a norm ‖·‖, and a convergence criterion � .
Step 1. On iteration i, solve for k̂′

m satisfying (81) under b(i) and compute k′
m = K̂(

km, θm; b(i)
)
.

Step 2. If
∥∥̂k′

m − k′
m

∥∥ < �
ξ

, then stop.

396 Lilia Maliar and Serguei Maliar

Otherwise,find b̂ that solves min
b

∥∥̂k′
m − K̂ (km, θm; b)

∥∥, set b(i+1) = ξb(i)+(1 − ξ) b̂,where

ξ ∈ (0, 1], and go to Step 1.

The name time iteration emphasizes the similarity of this iterative process to value
function iteration. Namely,we restrict future end-of-period capital k′′

m, j = K̂
(
k′

m, θ ′
m, j; b

)
,

and we solve for current end-of-period capital k′
m, in the same way as in the case of

dynamic programming methods, we fix the future value function, Vt+1, in the right side
of the Bellman equation, and we solve for the present value function, Vt , in the left side
of the Bellman equation; see Section 7 for more details. Some theoretical arguments
suggest that time iteration is more stable numerically than other versions of FPI (because
for some simple equilibrium problem,time iteration possesses the property of contraction
mapping as does value function iteration; see Judd (1998) for a discussion). However, the
contraction mapping is not preserved in more complex equilibrium problems so it is not
clear which of many possible versions of FPI will perform best in terms of convergence.

Certainly, time iteration is far more expensive than our benchmark simple FPI
described in Example 11. Even in the simple growth model, it requires us to find k̂′

m
satisfying (81) using a numerical solver. In more complex high-dimensional problems,
time iteration is even more expensive because it requires us to solve a system of several
Euler equations with respect to several unknowns. In contrast,FPI of type (80) is trivial to
implement in problems with any dimensionality since only straightforward calculations
are needed.

6.4 Coordination Between the Intratemporal and Intertemporal Choices
A specific way in which we define and coordinate the intertemporal and intratemporal
choices can significantly affect the accuracy and speed of a solution method.

First, under some parameterizations, the system of intratemporal choice conditions
can be easier to solve than under others. For example, Maliar and Maliar (2005b) use
the labor decision function L̂ (km, θm; b) as an intertemporal choice instead of the capital
decision function K̂ (km, θm; b). In this case, we fix (k, θ , �) and solve (72), (73) with
respect to (c, k′). Under parameterization (17), the solution to the resulting intratemporal
choice conditions can be characterized analytically.

Example 13. We represent system (72), (73) in the form

c =
[

B (1 − �)−μ

(1 − α) θkα�−α

]−1/γ

,

k′ = θkα�1−α + (1 − δ) k − c,

Second, we must compute the intertemporal and intratemporal choices in a way
that delivers similar accuracy levels in all models’ equations. If some decision functions
are computed less accurately than the others, the overall accuracy of solutions will be

Numerical Methods for Large-Scale Dynamic Economic Models 397

Table 11 Intertemporal choice in the two-agent model: one policy function versus iteration-on-
allocation (in both the solution and simulation procedures).a

Optimality condition Alternative 1 Alternative 2

L1 L∞ L1 L∞

Euler equation −6.06 −4.57 −5.74 −4.35
Budget constraint −4.54 −3.09 – –
Overall −4.54 −3.09 −5.74 −4.35

aNotes: L1 and L∞ are, respectively, the average and maximum of absolute residuals across test points (in log10 units). An
entry “–” is used if accuracy measure is below −10 (such residuals are viewed as negligible). The results are reproduced
from Maliar et al. (2011), Table 1.

determined by the least accurate decision function; see Maliar et al. (2011) for related
examples and further discussion.

Finally, solving for the intratemporal choice with a high degree of accuracy may be
unnecessary in every outer-loop iteration. For example, consider Example 10. Instead
of solving for the intratemporal choice accurately in initial outer-loop iterations, we
perform a fixed number of iterations in the inner loop, let us say 10. (Each time, we
start the inner loop iterations from quantities {�m} ,

{
�′

m, j

}
j=1,...,J that were obtained at

the end of the previous outer-loop iteration). As the capital decision function K̂ refines
along the outer-loop iterations, so does the intertemporal choice; this technique is used
by Maliar et al. (2011) to reduce the computational expense of finding the intratemporal
choice in problems with high dimensionality. A possible shortcoming of this technique
is that too inaccurate calculations of the intratemporal choice may reduce the numerical
stability and may slow down the convergence of K̂ in the outer loop; to deal with this
shortcoming, one must choose the damping parameter appropriately.

6.5 Numerical Illustration of the Importance of Coordination
Maliar et al. (2011) illustrate the importance of coordination between different com-
putational techniques by showing an example in which the total accuracy is dominated
by the least accurate decision function. Specifically, they consider two alternatives in the
context of a two-agent version of model (1)–(3) with inelastic labor supply:

Alternative 1. Approximate consumption of the first agent, c1, with a second-degree poly-
nomial (the capital decision function is also approximated with a second-degree polyno-
mial), and compute consumption of the second agent, c2, to satisfy an FOC with respect
to consumption.
Alternative 2. Solve for c1 and c2 to satisfy exactly the budget constraint and an FOC with
respect to consumption using iteration-on-allocation.

Thus, under alternative 1, c1 is approximated with error and this error is transmitted
to c2,while under alternative 2, c1 and c2 are calculated exactly.Table 11 shows the results.

398 Lilia Maliar and Serguei Maliar

As we can see, a parametric polynomial approximation of the intratemporal choice (i.e.,
alternative 1) reduces the overall accuracy of solutions by about an order of magnitude
compared to the case when all the intratemporal choice variables are computed accurately
using iteration-on-allocation (i.e., alternative 2). In this particular example, to have a
comparable accuracy in the capital and consumption choices under alternative 1, one
needs to approximate the consumption decision function with a polynomial of a degree
higher than that used for parametric approximations of the capital decision function.

7. DYNAMIC PROGRAMMINGMETHODS FOR
HIGH-DIMENSIONAL PROBLEMS

The efficient techniques for interpolation, integration, and optimization described
in Sections 4, 5, and 6, respectively, apply to dynamic programming (DP) methods in the
same way as they do to the Euler equation methods. DP methods which are analogs to
the previously described Euler equation methods are developed and tested. In particular,
Maliar and Maliar (2005a) introduce a solution method that approximates the value
function by simulation and use this method to solve a multisector model with six state
variables. Judd et al. (2011d) apply a value function iteration version of the GSSA method
to solve a multicountry model with up to 20 countries (40 state variables). Judd et al.
(2012) implement a value function iteration method operating on the EDS grid. Finally,
Maliar and Maliar (2012a,b) use a version of ECM to solve a multicountry model studied
in Kollmann et al. (2011b).

We therefore concentrate on two questions that are specific to DP methods. First,con-
ventional value function iteration (VFI) leads to systems of equations that are expensive to
solve,especially in high-dimensional applications.We describe two approaches that reduce
the cost of conventionalVFI: an endogenous grid method (EGM) of Carroll (2005) and an
envelope condition method (ECM) of Maliar and Maliar (2013). Second, value function
iteration produces less accurate solutions than Euler equation methods.We describe ver-
sions of EGM and ECM methods developed in Maliar and Maliar (2013) that approximate
derivatives of the value function instead of, or in addition to, the value function itself and
that deliver high accuracy levels comparable to those produced by Euler equation meth-
ods. We illustrate the above methods in the context of the one-agent model. In Section
12, we use a version of ECM to solve large-scale DP problems.

7.1 Conventional Value Function Iteration
As a starting point,we describe conventionalVFI.To simplify the exposition,we consider
a version of model (1)–(3) with inelastic labor supply. In the DP form, this model can be
written as

V (k, θ) = max
k′,c

{
u (c) + βE

[
V
(
k′, θ ′)]} (82)

Numerical Methods for Large-Scale Dynamic Economic Models 399

s.t. k′ = (1 − δ) k + θ f (k) − c, (83)

ln θ ′ = ρ ln θ + σε′, ε′ ∼ N (0, 1) . (84)

If a solution to Bellman (82)–(84) is interior, the optimality quantities satisfy the FOC,

u′ (c) = βE
[
V1
(
k′, θ ′)] , (85)

ConventionalVFI goes backward: it guesses a value function in period t + 1, and it solves
for a value function in period t using the Bellman equation; this procedure is referred to
as time iteration in the literature.

(VFI): Conventional value function iteration with inner and outer loops.

Step 1. Choose a grid {km, θm}m=1,..., M on which value function is approximated.

Choose a flexible functional form V̂ (·; b) for approximating value function V .
Step 2. Choose nodes, εj , and weights,ωj , j = 1, . . ., J , for approximating integrals.
Compute next-period productivity θ ′

m, j = θ
ρ
m exp(εj) for all j, m.

Step 3. Solve for b and
{
cm, k′

m
}

such that
–3a (inner loop): The quantities

{
cm, k′

m
}

solve:
u′ (cm) = βE

[
V1
(
k′

m, θ ′
m
)]

,
cm + k′

m = θm f (km) + (1 − δ) km,
given V (km, θm).
–3c (outer loop): The value function V̂ (k, θ; b) solves:

V̂ (km, θm; b) = u (cm) + β
J∑

j=1
ωj ·

[
V̂
(
k′

m, θ ′
m, j; b

)]
,

given
{
cm, k′

m
}
.

Here,we approximate V parametrically, namely,we parameterize V with a flexible func-
tional form V̂ (·; b), and we solve for a coefficient vector b that approximately satisfies
(82). In turn, the policy functions satisfying (83), (85) are computed in terms of quanti-
ties, i.e., nonparametrically. Conditions (83), (85) can be viewed as intratemporal choice
conditions, and condition (82) can be viewed as an intertemporal choice condition.This
separation is parallel to the one introduced in Maliar et al. (2011) for the Euler equation
methods and is discussed in Section 6.

The main shortcoming of conventional VFI is that the system of equations in the
inner loop is expensive to solve numerically. Indeed, consider (83) and (85) under our
benchmark parameterization.

Example 14. (Inner loop): Under (18), combining (83) and (85) yields

(
k′ − (1 − δ) k − θkα

)−γ = βE
[
V1
(
k′, θ ′)] . (86)

We must solve (86) with respect to k′ given (k, θ).

400 Lilia Maliar and Serguei Maliar

To find a root to (86), we must explore many different candidate points k′. For each
candidate point,we must interpolate V1 to J new values (k′, θ ′), as well as to approximate
conditional expectation E [V1 (k′, θ ′)].The cost of this procedure is high even in models
with few state variables; see Aruoba et al. (2006) for examples assessing the cost of VFI.

7.2 Reducing the Cost of Dynamic ProgrammingMethods
We now describe two methods that reduce the cost of conventionalVFI: an endogenous
grid method of Carroll (2005) and an envelope condition method of Maliar and Maliar
(2013).

7.2.1 Endogenous GridMethod
Carroll (2005) introduces an endogenous grid method (EGM) that simplifies rootfinding
under VFI. The key idea of EGM is to construct a grid on future endogenous state
variables instead of current endogenous state variables. EGM dominates conventional
VFI because in a typical economic model, it is easier to solve for k given k′ than to
solve for k′ given k. Below, we outline EGM for our example (the steps that coincide
under conventionalVFI and EGM are omitted).

(EGM):An endogenous grid method with inner and outer loops.

Step 1. Choose a grid
{
k′

m, θm
}

m=1,...,M on which value function is approximated.
…
Step 3. Solve for b and {cm, km} such that
–3a (inner loop): The quantities {cm, km} solve:

u′ (cm) = βE
[
V1

(
k′

m, θ ′
m, j

)]
,

cm + k′
m = θm f (km) + (1 − δ) km,

given V (km, θm).
…

Since the values of k′ are fixed (they are grid points), it is possible to up-front compute
E [V (k′, θ ′)] ≡ W (k′, θ) and E [V1 (k′, θ ′)] ≡ W1 (k′, θ). Now, system (83) and (85) can
be written as follows:

Example 15. (Inner loop): Under (18), we use (83) to express c = [βW1 (k′, θ)]−1/γ ,
and we rewrite (85) as

(1 − δ) k + θkα = [
βW1

(
k′, θ

)]−1/γ + k′. (87)

We must solve (87) with respect to k given (k′, θ).

Equation (87) is easier to solve numerically than (86) because it does not involve
either interpolation or approximation of a conditional expectation. Furthermore,Carroll
(2005) finds a clever change of variables that simplifies rootfinding even further and

Numerical Methods for Large-Scale Dynamic Economic Models 401

effectively allows us to solve (87) in a closed form. He introduces a new variable Y ≡
(1 − δ) k + θkα = c + k′, which allows us to rewrite Bellman equation (82)–(84) as

V (Y , θ) = max
k′

{
c1−γ − 1
1 − γ

+ βE
[
V
(
Y ′, θ ′)]} , (88)

s.t. c = Y − k′, (89)

Y ′ = (1 − δ) k′ + θ ′ (k′)α , (90)

where E [V (Y ′, θ ′)] = W (Y ′, θ). The FOC of 88,89,90 is

u′ (c) = βE
[
V1
(
Y ′, θ ′) (1 − δ + αθ ′ (k′)α−1

)]
. (91)

FOC (91) allows us to compute c directly since Y ′ ≡ (1 − δ) k′ +θ ′ (k′)α follows directly
from the (endogenous) grid points and so does the conditional expectation in the right
side of (91). Given c, we find Y = k′ + c and, subsequently, we find V (Y , θ) in the
left side of (88). This provides a basis for iterating on the Bellman equation (88) without
using a numerical solver. Once the convergence is achieved, we find k that corresponds
to the constructed endogenous grid by solving Y ≡ (1 − δ) k + θkα with respect to k
for each value Y .This step does require us to use a numerical solver, but just once, at the
very end of the iteration procedure.

7.2.2 Envelope ConditionMethod
The envelope condition method (ECM) of Maliar and Maliar (2013) simplifies rootfind-
ing using a different mechanism. First, ECM does not perform conventional backward
iteration on the Bellman equation but iterates forward. Second, to construct policy func-
tions, ECM uses the envelope condition instead of the FOCs used by conventionalVFI
and EGM.The systems of equations produced by ECM are typically easier to solve than
those produced by conventionalVFI. In this sense, ECM is similar to EGM.

For problem (82)–(84), the envelope condition is given by

V1 (k, θ) = u′ (c) [1 − δ + θ f1 (k)] . (92)

Typically, the envelope condition used to derive the Euler equation (92) is updated to get
V1 (k′, a′) and the result is substituted into (85) to eliminate the unknown derivative of the
value function). In ECM, the envelope condition is used to solve for the intratemporal
choice by combining (92) and (85).

ECM proceeds as follows (the steps that coincide underVFI and ECM are omitted):
Consider again our benchmark example under parameterization (18).

Example 16. (Inner loop): Under (18), we solve envelope condition (92) with respect
to c in a closed form:

c =
(

V1 (k, θ)

1 − δ + αθ (k)α−1

)−1/γ

. (93)

402 Lilia Maliar and Serguei Maliar

(ECM):An envelope condition method with inner and outer loops.

Step 1. Choose a grid {km, θm}m=1,...,M on which the value function is approximated.
…
Step 3. Solve for b and

{
cm, k′

m
}

such that
–3a (inner loop): The quantities

{
cm, k′

m
}

solve:
V1 (km, θm) = u′ (cm)

[
1 − δ + θm f ′ (km)

]
,

cm + k′
m = θm f (km) + (1 − δ) km,

given V (km, θm).
…

We compute k′ from budget constraint (85) given (k, θ).

In this example, ECM is simpler than Carroll’s (2005) EGM since all the policy func-
tions can be constructed analytically and a solver need not be used at all (not even once).

7.2.3 Shall We Use the Envelope Condition with Endogenous Grid?
Four combinations are possible to obtain from two alternative conditions for V1 (i.e.,
FOC (83) and envelope condition (92)) and two alternative grids (i.e., exogenous and
endogenous). So far, we have distinguished two competitive methods: one is EGM of
Carroll (2005) (FOC (83) and endogenous grid) and the other is our ECM (envelope
condition (92) and exogenous grid). ConventionalVFI (FOC (83) and exogenous grid)
is not competitive.Therefore, we are left to check the remaining combination (envelope
condition (92) and endogenous grid).

Example 17. (Inner loop): Combining (92) and (93) yields

(1 − δ) k + θkα =
(

V1 (k, θ)

1 − δ + αθ (k)α−1

)−1/γ

+ k′. (94)

We must solve (94) for k given (k′, θ).

Solving (94) involves costly evaluation of V1 (k, θ) for many candidate solution points
(k, θ).We conclude that the combination of the envelope condition and endogenous grid
does not lead to a competitive method. Our results are suggestive for other applications.

7.2.4 EGMand ECM in aModel with Elastic Labor Supply
Maliar and Maliar (2013) apply ECM and EGM for solving the one-agent model with
elastic labor supply under assumption (17). Under EGM, Carroll’s (2005) change of
variables does not avoid rootfinding in the model with elastic labor supply. The variable
Y ′ = θ ′f (k′, �′) + k′ depends on future labor �′, and E [V (Y ′, θ ′)] cannot be computed
without specifying a labor policy function. Barillas and Fernández-Villaverde (2007)
propose a way of extending EGM to the model with elastic labor supply. Namely, they

Numerical Methods for Large-Scale Dynamic Economic Models 403

fix a policy function for labor � = L (k′, θ), construct the grid of (Y ′, θ), solve the model
on that grid holding L fixed, and use the solution to reevaluate L; they iterate on these
steps until L converges. See alsoVillemot (2012) for an application of EGM for solving
a model of sovereign debt.

The implementation of EGM in Maliar and Maliar (2013) for the model with elastic
labor supply differs from that in Barillas and Fernández-Villaverde (2007). First, Maliar
and Maliar (2013) use future endogenous state variables for constructing grid points but
they do not use Carroll’s (2005) change of variables. Second, to deal with rootfinding,
Maliar and Maliar (2013) use a numerical solver,while Barillas and Fernández-Villaverde
(2007) iterate on a state contingent policy function for labor L (k′, θ). Maliar and Maliar
(2013) find that ECM and EGM have very similar performances in that they produce
solutions of similar (high) accuracy and have similar computational expenses. Even though
neither ECM nor EGM allows us to solve the system of intratemporal choice conditions
in a closed form, these two methods still lead to far simpler systems of equations than
does conventionalVFI.

7.3 Increasing the Accuracy of Dynamic ProgrammingMethods
So far, we have been concerned with the inner loop: all the methods we have considered
differ in the way in which they solve for the intratemporal choice. Maliar and Maliar
(2012b, 2013) modify the outer loop as well by introducing versions of EGM and ECM
that solve for the derivative of value function, V1, instead of or in addition to the value
function itself V . Since only the derivative of the value function enters optimality con-
ditions (83) and (92) but not the value function itself, we can find a solution to problem
(82)–(84) without computing V explicitly.

In terms of our example, combining (83) and (92) yields

V1 (k, θ) = β [1 − δ + θ f1 (k, �)] E
[
V1
(
k′, θ ′)] . (95)

This equation is used in Maliar and Maliar (2012b, 2013) to implement iteration on the
derivative of the value function similar to the one we implement for value function using
the Bellman equation. Iteration on the derivative of the value function is compatible
with all previously described DP methods such as conventionalVFI, EGM, and ECM. In
particular, ECM modifies as follows:

(ECM-DVF):An algorithm iterating on derivatives of value function.

…
–3c (outer loop): The derivative of value function, V̂1 (k, θ; b), solves:

V̂1 (km, θm; b) = β
[
1 − δ + αθmkα−1

m
]∑J

j=1 ωj V̂1
(
k′

m, θm, j; b
)
,

given
{
cm, k′

m
}
.

404 Lilia Maliar and Serguei Maliar

In some experiments,Maliar and Maliar (2012a,b) approximate the value function V and
its derivative V1 jointly. A robust finding is that methods approximating derivatives of
value function lead to far more accurate solutions than the methods approximating the
value function itself.

7.4 Numerical Illustration of Dynamic ProgrammingMethods
Under Maliar and Maliar’s (2012a) implementation,the rootfinding problems under EGM
and ECM are comparable in their complexity. In both cases, we must find a solution
to a nonlinear equation in each grid point. Such an equation does not involve either
interpolation or approximation of expectations. Below, we reproduce from Maliar and
Maliar (2013) the results about a numerical comparison of ECM with EGM in the
context of the model with elastic labor supply parameterized by (17).

We first solve for V by iterating on the Bellman equation (82)–(84); we refer to the
corresponding methods as EGM-VF and ECM-VF. The results are shown in Table 12.
The performance of EGM-VF and ECM-VF is very similar. EGM-VF produces slightly
smaller maximum residuals, while ECM-VF produces slightly smaller average residuals.
EGM-VF is somewhat slower than ECM-VF.

We next solve for V1 by iterating on (95); we call the corresponding methods EGM-
DVF and ECM-DVF.The results are provided inTable 13. Again,EGM-DVF and ECM-
DVF perform very similarly. Both methods deliver accuracy levels that are about an order
of magnitude higher than those of EGM-VF and ECM-VF.

Iterating on (95) produces more accurate solutions than iterating on (82) because the
object that is relevant for accuracy is V1 and not V (V1 identifies the model’s variables
via (83), (85), and (92)). Approximating a supplementary object V and computing its
derivative V1 involves an accuracy loss compared to the case when we approximate the
relevant object V1 directly. For example, if we approximate V with a polynomial, we
effectively approximate V1 with a polynomial which is one degree lower, i.e., we “lose”

Table 12 Accuracy and speed of EGM-VF and ECM-VF in the one-agent model with elastic labor
supply.a

Polynomial degree EGM-VF ECM-VF

L1 L∞ CPU L1 L∞ CPU

1st – – – – – –
2nd −3.28 −2.81 8.3 −3.34 −2.75 5.8
3rd −4.31 −3.99 8.9 −4.38 −3.87 7.2
4th −5.32 −4.96 7.3 −5.45 −4.86 5.8
5th −6.37 −5.85 6.5 −6.57 −5.72 4.7

aNotes: L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality condition and test
points (in log10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary for computing a
solution (in seconds). These results are reproduced from Maliar and Maliar (2013), Table 1.

Numerical Methods for Large-Scale Dynamic Economic Models 405

Table 13 Accuracy and speed of EGM-DVF and ECM-DVF in the one-agent model with elastic labor
supply.a

Polynomial degree EGM-DVF ECM-DVF

L1 L∞ CPU L1 L∞ CPU

1st −3.03 −2.87 8.1 −3.08 −2.92 7.2
2nd −4.13 −3.82 7.2 −4.18 −3.91 6.5
3rd −5.06 −4.77 7.3 −5.20 −4.87 6.7
4th −6.09 −5.64 7.4 −6.29 −5.72 6.8
5th −7.12 −6.26 7.6 −7.36 −6.32 6.9

aNotes: L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality condition and test
points (in log10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary for computing a
solution (in seconds). These results are reproduced from Maliar and Maliar (2013), Table 2.

one polynomial degree. In our experiments, EGM-DVF and ECM-DVF attain accuracy
levels that are comparable to the highest accuracy attained by the Euler equation methods.

8. PRECOMPUTATION TECHNIQUES

Precomputation is a technique that computes solutions to some model’s equations
outside the main iterative cycle. Precomputation techniques can be analytical, numerical,
or a combination of both. We describe two numerical techniques: a technique of pre-
computing integrals in the intratemporal choice introduced in Judd et al. (2011d) and a
technique of precomputing the intratemporal choice manifolds introduced in Maliar and
Maliar (2005b) and developed in Maliar et al. (2011).We then briefly discuss an analytical
technique of imperfect aggregation of Maliar and Maliar (2001, 2003a) which allows us to
characterize aggregate behavior of certain classes of heterogeneous-agent economies in
terms of one-agent models.

8.1 Precomputation of Integrals
In existing iterative methods for solving dynamic stochastic models,a conditional expecta-
tion function is computed in each iteration. Recomputing expectations in each iteration is
costly. Judd et al. (2011d) show a simple technique that makes it possible to compute con-
ditional expectation functions just once, in the stage of initialization.The proposed tech-
nique is called precomputation of integrals.We first show how to precompute the expectation
for polynomial functions, and we then use the resulting polynomial functions to approx-
imate expectations in the Euler and Bellman equations outside the main iterative loop.

8.1.1 Precomputation of Expectations for Polynomial Functions
Let us consider the one-agent model 1, 2, 3. Consider a complete ordinary polynomial
function in terms of the current state (k, θ),

P (k, θ; b) = b1 + b2k + b3θ + b4k2 + b5kθ + b6θ
2 + · · · + bIθ

L , (96)

406 Lilia Maliar and Serguei Maliar

where b ≡ (b1, b1, . . ., bI) ∈ R
I is a vector of polynomial coefficients, and L is a polyno-

mial degree. Taking into account that k′ is known at present and that θ ′ = θρ exp (ε′),
we can represent the conditional expectation of P (k′, θ ′; b) as follows:

E
[P (

k′, θ ′; b
)]

= E
[
b1 + b2k′ + b3θ

ρ exp
(
ε′)+ b4

(
k′)2 + b5k′θρ exp

(
ε′)+ · · · + bIθ

Lρ exp
(
Lε′)]

= b1I1 + b2I2k′ + b3I3θ
ρ + b4I4

(
k′)2 + b5I5k′θρ + · · · + bIIIθ

Lρ

≡ P (
k′, θρ; bI) , (97)

where bI ≡ (b1I1, . . ., bIII) ∈ R
I , and I1 = I2 = I4 = I7 = · · · = e0, I3 = I5 =

I8 = · · · = e1, I6 = I9 = · · · = e2, . . ., II = eL with

el ≡ E
[
exp

(
lε′)] = 1√

2πσ

∫ +∞

−∞
exp

(
lε′) exp

(
− (ε′)2

2σ 2

)
dε′. (98)

The integrals I1, . . ., II can be computed up-front without solving the model (i.e.,
precomputed). Once I’s are computed,an evaluation of conditional expectation becomes
very simple. Namely, the conditional expectation of a polynomial function is given by
the same polynomial function but evaluated at a different coefficient vector, i.e.,
E [P (k′, θ ′; b)] = P (k′, θρ; bI). Effectively, precomputation of integrals converts a
stochastic problem into a deterministic one.

8.1.2 Precomputation of the Expectation in the Euler Equation
We now show how to precompute conditional expectation functions in Euler equation
(74). Let us parameterize a variable inside the conditional expectation function with a
polynomial function,

u1 (c, �) [1 − δ + θ f1 (k, �)] = b1 + b2k + · · · + bIθ
L . (99)

By (99), we can write Euler equation (74) as

u1 (c, �) = βE
{
u1
(
c ′, �′) [1 − δ + θ ′f1

(
k′, �′)]}

= βE
[
b1 + b2k′ + · · · + bIθ

Lρ exp
(
Lε′)]

= β
[
b1I1 + b2I2k′ + · · · + bIIIθ

Lρ
]

, (100)

where I1, . . ., II are integrals that are known (precomputed) using (98).With this result,
we formulate a system of four equations to feed into a grid-based Euler equation method:

u1 (cm, �m) [1 − δ + θm f1 (km, �m)] = b1 + b2km + · · · + bIθ
L
m , (101)

u2 (cm, �m) = u1 (cm, �m) θm f2 (km, �m) , (102)

Numerical Methods for Large-Scale Dynamic Economic Models 407

cm + k′
m = θm f (km, �m) + (1 − δ) km, (103)

u1 (cm, �m) = β
[
b1I1 + b2I2k′

m + · · · + bIIIθ
ρL
m

]
. (104)

We can now implement the following iterative scheme: fix some b, use the intratemporal
choice equations 101, 102, 103 to solve for

{
cm, �m, k′

m

}
in each grid point (km, θm),

and use the intertemporal choice equation (104) to recompute b. There is an explicit
OLS formula for b, namely, b = (X ′X)−1 X ′u1, where X = [

βI1, I2k′
m, . . ., IIθ

ρL
m

]
is a

matrix of the coefficients and u1 ≡ (u1 (c1, �1) , . . ., u1 (cM , �M))
 is a vector of marginal
utilities. However, the OLS method can be numerically unstable, and we may need to
use regression methods that are robust to ill-conditioning studied in Section 4.2.

With precomputation of integrals, we can also construct a version of the Euler
equation method that operates on an endogenous grid

{
k′

m, θm
}

m=1,...,M and that is anal-
ogous to Carroll’s (2005) EGM.The iterative scheme modifies as follows: fix some b, use
the intratemporal choice equations (102)–(104) to solve for {cm, �m, km} in each grid point(
k′

m, θm
)
, and use the intertemporal choice condition (101) to recompute b.Again, there is

an explicit OLS formula for b = (X ′X)−1 X ′u+
1 ,where X = [

1, km, . . ., θρL
m

]
is a matrix of

the coefficients and variable u+
1 is defined as u+

1 = (u1 (c1, �1) [1 − δ + θ1f1 (k1, �1)] , . . .,
u1 (cM , �M) [1 − δ + θM f1 (kM , �M)])
.

8.1.3 Precomputation of the Expectation in the Bellman Equation
We now show how to precompute conditional expectation functions in Bellman equation
8, 9, 10. Let us parameterize the value function with complete ordinary polynomial,

V (k, θ) ≈ V̂ (k, θ; b) = b1 + b2k + · · · + bIθ
L . (105)

Then, according to (97), expectation E [V (k′, θ ′)] can be precomputed as

E
[
V
(
k′, θ ′)] ≈ E

[
V̂
(
k′, θ ′; b

)] = b1I1 + b2I2k′
m + · · · + bIIIθ

ρL
m . (106)

With this result, we rewrite the Bellman equation (8) as

u (c, �) = b1 (1 − βI1) + b2
(
k − βI2k′)+ · · · + bI

(
θL − βIIθ

ρL) . (107)

The system of the optimality conditions under precomputation of integrals becomes

u1 (cm, �m) [1 − δ + θm f1 (km.�m)] = ∂

∂km

[
b1 + b2km + · · · + bIθ

L
m

]
, (108)

u2 (cm, �m) = u1 (cm, �m) θm f2 (km, �m) , (109)

cm + k′
m = θm f (km, �m) + (1 − δ) km, (110)

u (cm, �m) = b1 (1 − βI1) + b2
(
km − βI2k′

m

)+ · · · + bI
(
θL

m − βIIθ
ρL
m

)
. (111)

408 Lilia Maliar and Serguei Maliar

A version of ECM with precomputation of integrals is as follows:fix some b,use intratem-
poral choice equations (108)–(110) to solve for

{
cm, �m, k′

m

}
in each grid point (km, θm),and

use the intertemporal choice equation (111) to recompute b; iterate until convergence.
Precomputation of integrals can also be performed for the DP methods iterating on

derivatives of value function as discussed in Section 7. Interestingly, a method that iterates
on a derivative of value function coincides with the previously described Euler equation
method that solves (101)–(104). This is because in this specific example, a variable in
(99) which is parameterized to precompute the expectations in the Euler equation (74)
coincides with the derivative V1 (k, θ). However,precomputation of integrals in the Euler
equation is possible even for those problems for which we do not have a Bellman equation.

Similar to the Euler equation case, there is an explicit OLS formula for
b = (X ′X)−1 X ′u,where X = [

(1 − βI1) , (km − βI2k′
m), . . ., (θL

m − βIIθ
ρL
m)
]

is a matrix
of coefficients, and u = (u (c1, �1) , . . . , u (cM , �M))
 is a vector of values of the utility
functions. Finally, we can construct a version of Carroll’s (2005) EGM with precompu-
tation of integrals. In this case, we compute the intratemporal choice {cm, �m, km} on the
grid

{
k′

m, θm
}

m=1,...,M to satisfy (109)–(111), and we use (108) to recompute b.

8.1.4 Relation of Precomputation of Integrals to the Literature
Effectively, precomputation of integrals allows us to solve stochastic economic models as
if they were deterministic, with the corresponding reduction in cost. Precomputation of
integrals is a very general technique that can be applied to any set of equations that con-
tains conditional expectations, including the Bellman and Euler equations. Furthermore,
precomputation of integrals is compatible with a variety of approximating functions,
solution domains, integration rules, fitting methods, and iterative schemes for finding
unknown parameters of approximating functions. That is, apart from precomputation
of integrals, the rest of our solution procedure is standard. Finally, given that we must
approximate integrals just once,we can use very accurate integration methods that would
be intractable if integrals were computed inside an iterative cycle.

We must emphasize that, in order to precompute integrals, it is critical to parame-
terize the integrand, i.e., the expression inside the expectation function. Other param-
eterizations such as the capital function or the expectation function do not allow us to
precompute integrals using accurate deterministic integration methods.

There are two other methods of approximating integrals that have similar computa-
tional complexity as does the method of precomputation of integrals (they also evaluate
integrals in just one point). First, Marcet (1988) approximates an expectation function in
each simulated point using a next-period realization of the integrand (which is a version
of a Monte Carlo method with one random draw); the accuracy of this approximation is
low and limits dramatically the accuracy of solutions; see our discussion in Section 5.8.
Second,Judd et al. (2011a) propose to use a one-node Gauss-Hermite quadrature method,
which approximates the integral with the expected value of the integrand; this method is
far more accurate than the one-node Monte Carlo integration and is even more accurate

Numerical Methods for Large-Scale Dynamic Economic Models 409

than Monte Carlo integration with thousands of random nodes in the class of problems
studied. Still, for high-degree polynomials, the one-node quadrature method limits the
accuracy of solutions. In contrast, the method of precomputation of integrals delivers the
highest possible accuracy that can be produced by deterministic integration methods at
the lowest possible cost.

8.1.5 Numerical Illustration of the PrecomputationMethods
In Table 14, we provide the results for the model with inelastic labor supply param-
eterized by (18) that are delivered by the Bellman and Euler equation methods with
precomputation of integrals (these results are reproduced from Judd et al. (2011d)).

As we can see, the residuals decrease with each polynomial degree by one or more
orders of magnitude. High-degree polynomial solutions are very accurate. Under ECM-
VF-Prec (which is a DP algorithm), the maximum residuals for the fifth-degree
polynomial approximations are of the order 10−6. Under ECM-DVF-Prec (which is
an Euler equation algorithm), the maximum residuals are about one order of magnitude
smaller. The tendencies are similar to those we observe for the corresponding methods
without precomputation; see Tables 12 and 13 for a comparison.

8.2 Precomputation of Intratemporal Choice Manifolds
The precomputation technique of intratemporal choice manifolds constructs solutions
to the intratemporal choice conditions outside the main iterative cycle and uses the
constructed solutions to infer the intratemporal choice inside the main iterative cycle.
Consider the intratemporal choice conditions for model (1)–(3) under parameteriza-
tion (17)

B�−μ = c−γ (1 − α) θkα (1 − �)−α , (112)

c = θkα�1−α + (1 − δ) k − k′. (113)

Table 14 Accuracy and speedof the Bellmanequation algorithm in theone-agentmodelwith inelastic
labor supply.a

Polynomial degree ECM-VF-Prec ECM-DVF-Prec

L1 L∞ CPU L1 L∞ CPU

1st −1.64 −1.63 8.60 −3.39 −3.24 1.20
2nd −3.65 −3.42 0.14 −4.64 −4.21 1.16
3rd −4.83 −4.39 0.16 −5.68 −5.19 0.72
4th −5.96 −5.36 0.17 −6.83 −6.18 0.73
5th −7.12 −6.43 0.18 −8.01 −7.32 0.40

aNotes: L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality condition and
test points (in log10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary for computing
a solution (in seconds). The results for ECM-VF-Prec and ECM-DVF-Prec are reproduced from Judd et al. (2011d),
Tables 1 and 2, respectively.

410 Lilia Maliar and Serguei Maliar

We denote a solution for c and � for given (k, θ , k′) as c = C̃ (k, θ , k′) and � = L̃ (k, θ , k′),
respectively, and we call C̃ and L̃ solution manifolds.

Observe that it is sufficient for us to construct a manifold for labor L̃ since we can
infer consumption from (113) if labor is given. To compute the intratemporal choice
inside the main iterative cycle, first we use K̂ (k, θ; b) to find k′ and k′′; then we use L̃
to compute � = L̃ (k, θ , k′) and �′ = L̃ (k′, θ ′, k′′); and, finally, we can get c and c ′ from
(113). In the remainder of the section, we focus on constructing L̃.

In simple cases, the intratemporal choice manifolds can be constructed analytically.
Consider the following example.

Example 18. Assume (17) under γ = μ = 0. Then, system (112), (113) admits a
closed-form solution in the form

� = B−1/α [(1 − α) θ]1/α k. (114)

However,under more general parameterizations, L̃ cannot be constructed analytically
from (112), (113). We therefore construct it numerically.

Example 19. Assume (17). Consider system (112), (113). We proceed as follows:
– Outside the main iterative cycle:

(i) Take a grid
{
ki, θi, k′

i

}
i=1,...,I within the relevant range.

(ii) For each grid point i, compute the values of ci and �i that satisfy (112), (113) using
a numerical solver.

(iii) Construct a labor manifold L̃ (k, θ , k′) (by fitting �1, . . ., �I to some parametric
function, such as polynomial function, splines, etc., on the grid

{
ki, θi, k′

i

}
i=1,...,I).

In the above example, we had to compute values for labor using a numerical solver.
We now show how to “invert” the problem and to precompute the same manifold but
without using a solver.

Example 20. Assume (17). Rewrite system (112), (113) as follows

k =
[

u2 (c, �)

u1 (c, �) θ (1 − α) (1 − �)1−α

]1/α

, (115)

k′ = θ f (k, �) + (1 − δ) k − c. (116)

We proceed as follows:
– Outside the main iterative cycle:

(i) Take a grid {θi, ci, �i}i=1,...,I within the relevant range.
(ii) For each grid point i, compute analytically the values of ki, k′

i from (115), (116).
(iii) Construct a labor manifold L̃ (k, θ , k′) (by fitting the values �1, . . ., �I to a polyno-

mial function, splines, etc., on the grid
{
ki, θi, k′

i

}
i=1,...,I).

Numerical Methods for Large-Scale Dynamic Economic Models 411

Maliar and Maliar (2005b) show an example of precomputation of the labor choice
in a similar model but assuming that the intertemporal choice is parameterized with a
consumption decision function instead of a capital decision function. In this case, the
labor choice can be precomputed in terms of just one artificial variable and, thus, is easier
to construct in the main iterative cycle; see the example below.

Example 21. Assume (17). Consider the system (112), (113). Let us define a new
variable z by

�−μ (1 − �)α = [
Ĉ (k, θ; b)

]−γ (1 − α) θkα/B ≡ z. (117)

We proceed as follows:
– Outside the main iterative cycle:

(i) Take a grid {zi}i=1,...,I within the relevant range.
(ii) For each grid point i, compute the value of variable �i satisfying (117).
(iii) Construct a labor manifold L̃ (z) (by fitting the values �1, . . ., �I to a polynomial

function, splines, etc., on the grid zi, i = 1, . . ., I).

Inside the main iterative cycle, given a value of z = Ĉ (k, θ; b)−γ (1 − α) θkα/B, we
compute � using the precomputed manifolds � = L̃ (z), and we compute k′ using (113).

We can also invert the task and construct the same manifold by choosing a grid for
{�i}i=1,...,I and by solving for z using (117), in which case a numerical solver is not
needed. See Maliar et al. (2011) for examples of precomputation of the intratemporal
choice manifolds for heterogeneous-agent economies.

Three comments are in order: First, the solution manifold L̃ depends on three argu-
ments (k, θ , k′) instead of the conventional decision function that depends on two argu-
ments (k, θ): the relation between these objects is given by L (k, θ) = L̃ (k, θ , K (k, θ)),
where K is the optimal capital decision function; see Maliar et al. (2011) for a discussion.
Second, there are many ways to define the intertemporal (and thus, intratemporal) choice
manifolds; it is possible to fix any three variables in (112), (113) and solve for the remain-
ing two variables; for example, we can fix (�, k, θ) and find c, k′. Finally, precomputation
of the intratemporal choice can also be implemented in the context of DP methods
described in Section 7.

8.3 Precomputation of Aggregate Decision Rules
Maliar and Maliar (2001,2003a) study complete-market heterogeneous-agents economies
in which agents differ in initial endowments and labor productivities (under some param-
eterizations, their model is identical to the multicountry model studied in Section 11).
In particular, they show that under the standard assumptions of the CRRA or addilog
utility functions and the Cobb-Douglas production function, it is possible to character-
ize the aggregate behavior of a heterogeneous-agents economy in terms of a one-agent
model.This kind of result is referred to as imperfect aggregation and is in effect an analytical
precomputation of some aggregate decision functions outside the main iterative cycle.

412 Lilia Maliar and Serguei Maliar

Imperfect aggregation is not an aggregation result in the traditional sense of Gorman
(1953) since the behavior of the composite consumer does depend on a joint distribution
of heterogeneity parameters. It is a special case of the aggregation in equilibrium point by
Constantinides (1982) in which the social utility function can be constructed analytically.
(In general, such utility function depends on the distribution of individual characteristics
in a manner which is difficult to characterize). Models derived from aggregation are
of additional interest because having explicit conditions relating aggregate variables is
convenient for numerical work. See Maliar et al. (2011) for imperfect aggregation results
in the context of the multicountry models studied in the JEDC comparison analysis.

9. LOCAL (PERTURBATION) METHODS

A local perturbation method computes a solution to an economic model in just one
point—a deterministic steady state—using Taylor expansions of optimality conditions.
Perturbation methods are introduced to economics in Judd and Guu (1993) and became
a popular tool in the literature. The main advantage of perturbation methods is their
low computational expense. The main shortcoming is that the accuracy of perturbation
solutions may decrease rapidly away from the steady state. In this section, we discuss two
techniques that can increase the accuracy of perturbation methods: a change of variables
introduced in Judd (2003) and a hybrid of local and global solutions advocated in Maliar
et al. (2013).16 We present these techniques in the context of Euler equation methods;
however, our results apply to DP methods as well. See Judd (1998) for perturbation
methods in the context of value function iteration.

9.1 Plain Perturbation Method
To present the perturbation techniques, we use a version of the one-agent model (1)–(3)
with inelastic labor supply:

max{kt+1,ct}t=0,...,∞
E0

{ ∞∑
t=0

β tu (ct)

}
(118)

s.t. ct + kt+1 = kt + θt f (kt) , (119)

ln θt+1 = ρ ln θt + σεt+1, εt+1 ∼ N (0, 1) , (120)

where (k0, θ0) is given. This model’s presentation differs from that in (1)–(3) in two
respects: First, we use a separate notation for a net of depreciation production function

16 There is another technique that can help us to increase the accuracy of perturbation methods, namely,
computing Taylor expansions around stochastic steady state instead of deterministic one. Two variants
of this technique are developed in Juillard (2011) and Maliar and Maliar (2011): the former paper
computes the stochastic steady state numerically, while the latter paper uses analytical construction based
on precomputation of integrals of Judd et al. (2011d).We do not survey this technique in detail because
it is not yet tested in the context of large-scale models.

Numerical Methods for Large-Scale Dynamic Economic Models 413

θt f (kt) ≡ θtF (kt) − δkt , where F is the gross production function.This helps us to sim-
plify the presentation. Second,we explicitly introduce σ into the process for productivity
(120). This is done because we compute a Taylor expansion not only with respect to the
two state variables (kt , θt) but also with respect to parameter σ . In addition, we assume

that u (ct) = c1−γ
t −1
1−γ

.

We approximate the capital decision function in the form k′ = K (k, θ; σ) using the
Taylor expansion around the deterministic steady state k∗ = K (k∗, 1; 0) , θ∗ = 1, σ ∗ = 0,
as follows:

k′ = K (k, θ; σ) = k∗ + Kk (k, θ; σ)|k∗,1;0
(
k − k∗)+ Kθ (k, θ; σ)|k∗,1;0 (θ − 1)

+ Kσ (k, θ; σ)|k∗,1;0 (σ − 0) + 1

2
Kkk (k, θ; σ)|k∗,1;0

(
k − k∗)2

+ Kkθ (k, θ; σ)|k∗,1;0
(
k − k∗) (θ − 1) + Kkσ (k, θ; σ)|k∗,1;0

(
k − k∗) (σ − 0)

+ · · · + 1
2

Kσσ (k, θ; σ)|k∗,1;0 (σ − 0)2 + · · ·

In this section, notation of type Gx and Gxy stands for the first-order partial derivative
of a function G (. . ., x, y, . . .) with respect to a variable x and the second-order partial
derivative with respect to variables x and y, respectively. The steady-state value θ∗ = 1
follows by (120).

To identify the derivatives of K (k, θ; σ), we use a procedure suggested by an implicit
function theorem. We write the Euler equation of problem (118)–(120) as follows:

! (k, θ; σ) ≡ c−γ − βE
{(

c ′
)−γ [

1 + θ ′fk (K (k, θ; σ))
]} = 0, (121)

where θ ′ is determined by (120), and c and c ′ are determined by (119) in the current and
next periods, respectively,

θ ′ = θρ exp
(
σε′) ,

c = θ f (k) + k − K (k, θ; σ) ,

c ′ = θ ′f (K (k, θ; σ)) + K (k, θ; σ) − K
(
K (k, θ; σ) , θ ′; σ) .

By definition, ! (k, θ; σ) is a zero function in the true solution since the Euler
equation must be satisfied exactly for any (k, θ; σ). In particular, the value of ! must
be zero in the steady state,! (k∗, 1; 0) = 0, and all the derivatives of ! must be also zero
in the steady state, !k (k, θ; σ)|k∗,1;0 = 0, !θ (k, θ; σ)|k∗,1;0 = 0, !σ (k, θ; σ)|k∗,1;0 =
0, !kk (k, θ; σ)|k∗,1;0 = 0, etc.This fact suggests a procedure for approximating a solution
to the model. Namely, we evaluate the value of ! and its derivatives in the steady state
and set them to zero to identify the unknown coefficients in the capital decision function
K (k, θ; σ).

414 Lilia Maliar and Serguei Maliar

We start by finding the steady state. Given !k (k, θ; σ)|k∗,1;0 = 0, (121) implies 1 +
fk (k∗) = 1/β, which identifies k∗ = f −1

k (1/β − 1) and c∗ = f (k∗)). Let us show how to
derive the first-order perturbation solution.

First,!k (k, θ; σ) is given by

!k (k, θ; σ) = −γ c−γ−1 ∂c
∂k

− βE
{(

c ′
)−γ

θρ exp
(
ε′σ

)
fkk
(
k′)Kk (k, θ; σ)

}
+βE

{
γ
(
c ′
)−γ−1 ∂c ′

∂k′ Kk (k, θ; σ) · [1 + θ ′fk (K (k, θ; σ))
]}

,

where
∂c
∂k

= 1 + θ fk (k) − Kk (k, θ; σ) .

Note that ∂c
∂k

∣∣
k∗,1;0 = ∂c ′

∂k′

∣∣∣
k∗,1;0

. Evaluating !k (k, θ; σ) in the steady state and equalizing

it to zero, we obtain

!k
(
k∗, 1; 0

) = −γ
(
c∗
)−γ−1

[
1

β
− Kk

(
k∗, 1; 0

)]− β
(
c∗
)−γ

fkk
(
k∗)Kk

(
k∗, 1; 0

)
+γ

(
c∗
)−γ−1

[
1

β
− Kk

(
k∗, 1; 0

)]
Kk
(
k∗, 1; 0

) = 0.

Rearranging the terms yields

γ
(
c∗
)−γ−1

[
− (

Kk
(
k∗, 1; 0

))2 + Kk
(
k∗, 1; 0

) (
1 + 1

β
− βc∗

γ
fkk
(
k∗))− 1

β

]
= 0.

This is a quadratic equation in one unknown, Kk (k∗, 1; 0).
Second,!θ (k, θ; σ) is given by

!θ (k, θ; σ) = −γ c−γ−1 ∂c
∂θ

− βE
{

(−γ)
(
c ′
)−γ−1 ∂c ′

∂θ

[
1 + θ ′fk

(
k′)]

−βc−γ

[
∂θ ′

∂θ
fk
(
k′)+ θ ′fkk

(
k′)Kθ (k, θ; σ)

]}
,

where

∂c
∂θ

= f (k) − Kθ (k, θ; σ) ,

∂c ′

∂θ
= Kθ (k, θ; σ)

[
1 + θ ′fk

(
k′)]− Kk

(
k′, θ ′; σ)

+ρθρ−1 exp
(
σε′) · [Kθ

(
k′, θ ′; σ)+ f

(
k′)] ,

∂θ ′

∂θ
= ρθρ−1 exp

(
σε′) .

Numerical Methods for Large-Scale Dynamic Economic Models 415

Evaluating !θ (k, θ; σ) in the steady state and equalizing it to zero, we obtain

!θ

(
k∗, 1; 0

) = −γ
(
c∗
)−γ−1

[
f
(
k∗)−

(
1 + 1

β
+ ρ − βc∗

γ
fkk
(
k∗))Kθ

(
k∗, 1; 0

) ·

+ρf
(
k∗)+ βc∗

γ
ρfk

(
k∗)− Kk

(
k∗, 1; 0

)] = 0.

This gives us a solution for Kθ (k∗, 1; 0):

Kθ

(
k∗, 1; 0

) = f (k∗) (1 − ρ) − βc∗
γ
ρfk (k∗)

1 + 1
β

− ρ − Kk (k∗, 1; 0) − βc∗
γ

fkk (k∗)
.

Finally,!σ (k, θ; σ) is given by

!σ (k, θ; σ) = −γ c−γ−1 ∂c
∂σ

− βE
{

(−γ)
(
c ′
)−γ−1 ∂c ′

∂σ

[
1 + θ ′fk

(
k′)]

− c−γ θ ′fkk
(
k′)Kσ (k, θ; σ) + ∂θ ′

∂σ
k′
}

,

where

∂c
∂σ

= −Kσ (k, θ; σ) ,

∂c ′

∂σ
= [

1 + θ ′fk
(
k′)− Kk

(
k′, θ ′; σ)]Kσ (k, θ; σ) − Kσ

(
k′, θ ′; σ)

+∂θ ′

∂σ

[
f
(
k′)− Kθ ′

(
k′, θ ′; σ)] ,

∂θ ′

∂σ
= θρε′ exp

(
σε′) ,

∂c ′

∂σ
= ∂θ ′

∂σ
f (k′) + θ ′fk(k′)Kσ (k, θ; σ) + Kσ (k, θ; σ)

−
[
Kk′

(
k′, θ ′; σ)Kσ (k, θ; σ) + Kθ ′

(
k′, θ ′; σ) ∂θ ′

∂σ
+ Kσ

(
k′, θ ′; σ)] .

Evaluating !σ (k, θ; σ) in the steady state and equalizing it to zero, we obtain

!σ

(
k∗, 1; 0

) = Kσ

(
k∗, 1; 0

)
γ
(
c∗
)−γ−1

.

.

[
βc∗

γ
fkk
(
k∗)− 1

β
+ Kk

(
k∗, 1; 0

)] = 0.

This implies Kσ (k∗, 1; 0) = 0.

416 Lilia Maliar and Serguei Maliar

After all the derivatives of K (k, θ; σ) are found,we can form a first-order perturbation
solution for capital,

k′ ≈ k∗ + Kk
(
k∗, 1; 0

) (
k − k∗)+ Kθ

(
k∗, 1; 0

)
(θ − 1) + Kσ

(
k∗, 1; 0

)
(σ − 0) . (122)

Similarly, we can write a first-order perturbation solution for consumption C (k, θ; σ),

c ≈ c∗ + Ck
(
k∗, 1; 0

) (
k − k∗)+ Cθ

(
k∗, 1; 0

)
(θ − 1) + Cσ

(
k∗, 1; 0

)
(σ − 0) , (123)

where Ck (k∗, 1; 0) ≡ ∂c
∂k

∣∣
k∗,1;0 , Cθ (k∗, 1; 0) ≡ ∂c

∂θ

∣∣
k∗,1;0, and Cσ (k∗, 1; 0) ≡ ∂c

∂σ

∣∣
k∗,1;0.

Finally, the first-order perturbation approximation for the productivity shocks
" (θ; σ) is

θ ′ ≈ θ∗ + "θ (1; 0) (θ − 1) + "σ (1; 0) (σ − 0) , (124)

where "θ (1; 0) ≡ ∂θ ′
∂θ

∣∣∣
1;0

= ρθρ−1 exp (σε′)
∣∣
1;0 = ρ and "θ (1; 0) ≡ ∂θ ′

∂σ

∣∣∣
1;0

=
θρε′ exp (σε′)

∣∣
1;0 = 0.The first-order terms Kσ (k∗, 1; 0) , Cσ (k∗, 1; 0),and"σ (1; 0) are

equal to zero in (122), (123) and (124), respectively. However, the higher-order derivatives
of K , C, and " with respect to σ are not equal to zero, which makes higher-order
perturbation solutions depend on the volatility of shocks.

9.2 Advantages and Shortcomings of Perturbation Methods
Constructing perturbation solutions by hand is tedious even in the case of first-order
approximation, as our example demonstrates. Fortunately, perturbation methods can be
easily automated. Perturbation software commonly used in economics is Dynare. This
software platform can solve, simulate, and estimate a wide class of economic models
and delivers standard perturbation solutions up to the third order.17 Automated software
for solving economic models is also developed by Jin and Judd (2002), Swanson et al.
(2002), and Schmitt-Grohé and Uribe (2004). There are perturbation methods that can
solve models with kinks using penalty functions; see Kim et al. (2010) and Mertens and
Judd (2013).

An important advantage of perturbation methods is that they have low computational
expense, which makes them an ideal candidate for solving problem with high dimen-
sionality.The shortcoming of perturbation methods is that the accuracy of local solutions
may decrease rapidly away from the steady state.To provide an illustration, we reproduce
some results from Judd and Guu (1993). In Figure 8,we plot the size of unit-free residuals
in the Euler equation (in log 10 units) depending on how far we deviate from the steady
state where the solution is computed (in this figure,n denotes an order of approximation).

We observe that the linear perturbation solutions are very inaccurate. The quadratic
perturbation solutions are more accurate but are still not acceptable even in a relatively
small range around the steady state (e.g., k ∈ [0.8, 1.2]). The perturbation solutions of

17 See http://www.dynare.org and Adjemian et al. (2011) for more details on Dynare.

http://www.dynare.org

Numerical Methods for Large-Scale Dynamic Economic Models 417

Figure 8 Global Quality of Asymptotic Approximations. Notes: Reproduced from Judd and Guu (1993)
with kind permission from Springer Science+Business.

order 10 are of acceptable accuracy in a large range (e.g.,k ∈ [0.6, 1.4]).Thus,high-order
approximations are needed to attain accurate solutions. See also Kollmann et al. (2011b)
and Judd et al. (2012) for the accuracy results of perturbation methods in the context of
a large-scale multicountry model and a new Keynesian model, respectively.18

9.3 Change of Variables
Judd (2003) shows that the accuracy of perturbation methods can be considerably increased
using a nonlinear change of variables. Specifically,he shows that the ordinaryTaylor series
expansion can be dominated in accuracy by other expansions implied by changes of vari-
ables. All the expansions are locally equivalent but differ globally. We must choose the
one that performs best in terms of accuracy on the domain of interest. In the context
of a deterministic optimal growth model, Judd (2003) finds that using alternative expan-
sions can increase the accuracy of the conventional perturbation method by two orders
of magnitude. Fernández-Villaverde and Rubio-Ramírez (2006) show how to apply the
method of change of variables to a model with uncertainty and elastic labor supply.

9.3.1 An Example of the Change of Variables Technique
Let us consider the one-agent model (118)–(120) with inelastic labor supply as an exam-
ple. Suppose k′ = K (k, θ; σ) is approximated as was discussed in Section 9 and that
we have computed all the derivatives Kk (k∗, 1; 0) , Kθ (k∗, 1; 0), and Kσ (k∗, 1; 0). The

18 In particular, in the comparison analysis of Kollmann et al. (2011b), the first- and second-order perturba-
tion methods of Kollmann et al. (2011a) produce maximum residuals of 6.3% and 1.35% on a stochastic
simulation, and they produce maximum residuals of 65% and 50% on a 30% deviation from the steady
state. Moreover, perturbation quadratic solutions are up to three orders of magnitude less accurate than
global quadratic solutions.

418 Lilia Maliar and Serguei Maliar

objective is to find a change of variables x = ϕ (k) and x′ = ϕ (k′), with x being a new
variable, such that a Taylor approximation (122) of x′ in terms of a new variable x has
two properties: (i) the derivatives are the same in the steady state; and (ii) the accuracy
declines less rapidly when we deviate from the steady state.

Using the identity, k = ϕ−1 (ϕ (k)), we rewrite the capital function k′ = K (k, θ; σ)
as ϕ−1 (ϕ (k′)) = K

(
ϕ−1 (ϕ (k)) , θ; σ). With this result, we obtain a decision function

for x
x′ = ϕ

(
K
(
ϕ−1 (x) , θ; σ)) . (125)

Let us find a first-order Taylor expansion of the decision function for x (125) around
x∗, θ∗ = 1, and σ ∗ = 0:

x′ ≈ x∗ + ∂x′

∂x

∣∣∣∣
x∗,1;0

(
x − x∗)+ ∂x′

∂θ

∣∣∣∣
x∗,1;0

(
θ − θ∗)+ ∂x′

∂σ

∣∣∣∣
x∗,1;0

(σ − 0)

= x∗ + ϕ′ (K (
ϕ−1 (x) , θ; σ))∣∣x∗,1;0 ×

{
Kk
(
ϕ−1 (x) , θ; σ)∣∣x∗,1;0

ϕ′ (k)|k∗

(
x − x∗)

+ Kθ

(
ϕ−1 (x) , θ; σ)∣∣x∗,1;0 (θ − 1) + Kσ

(
ϕ−1 (x) , θ; σ)∣∣x∗,1;0 σ

}
.

Substituting the steady-state value k∗ instead of ϕ−1 (x∗), we obtain the formula for the
change of variables

x′ ≈ ϕ
(
k∗)+ Kk

(
k∗, 1; 0

) (
x − x∗)+ ϕ′ (k∗) {Kθ

(
k∗, 1; 0

)
(θ − 1) + Kσ

(
k∗, 1; 0

)
σ
}
.

(126)
Consider now specific examples. In the trivial case,x = k = ϕ (k),we haveϕ′ (k∗) = 1,

and we are back to (122). Under a logarithmic transformation of, i.e., x = ϕ (k) = ln (k),
condition (126) implies

ln k′ ≈ ln k∗ + Kk
(
k∗, 1; 0

) (
ln k − ln k∗)

+Kθ (k∗, 1; 0)

k∗ (θ − 1) + Kσ (k∗, 1; 0)

k∗ σ. (127)

For a power transformation x = ϕ (k) = kη, we obtain(
k′)η ≈ (

k∗)η + Kk
(
k∗, 1; 0

) (
kη − (

k∗)η)
+ η

Kθ (k∗, 1; 0)

(k∗)1−η
(θ − 1) + η

Kσ (k∗, 1; 0)

(k∗)1−η
σ. (128)

In this way, we can try many different transformations (at a low cost). For each candidate
change of variables, we evaluate accuracy using a selected accuracy test (e.g., we can
evaluate the Euler equation residuals on a stochastic simulation), and we choose the
representation that yields the most accurate solution globally.

Numerical Methods for Large-Scale Dynamic Economic Models 419

Table 15 Perturbation in levels and logarithms in the one-agent model.a

Order Perturbation in levels Perturbation in logarithms

1 −1.25 −1.50
2 −1.50 −3.29
3 −1.72 −3.92
4 −1.92 −4.50

aNotes: The numbers in the table are the maximum absolute Euler equation residuals (in
log10 units); u(c) = ln c; f (k) = k + 4/19k1/4. These results are reproduced from Judd
(2003), Table 2.

Three observations are in order. First, we need not compute anything new to imple-
ment the change of variables: the derivatives Kk, Kθ , and Kσ which determine the coef-
ficients in (127) and (128) are the same as that we found in Section 9.1 using the plain
perturbation method. Second, in the above example, we apply the same change of vari-
ables to k and k′. More generally, we can use other transformations. For example, for
k, we may keep the same transformation as before, x = ϕ (k), but for k′, we may use a
different transformation z′ = φ (k′) so that k′ = φ−1 (z′). Finally,we may also apply some
changes of variables to c and θ . Ideally, a selection of the right change of variables must
be automated; see Judd (2003) for more details.

9.3.2 Numerical Illustration of the Change of Variables Technique
For a simple one-agent model with inelastic labor supply, Judd (2003) shows that loga-
rithmic and power transformations of the variables may decrease the maximum residuals
in the optimality conditions by several orders of magnitude. In Table 15, we reproduce
his results for the logarithmic transformations of k and k′ (perturbation in logarithms)
compared to ordinary perturbation in levels. As we can see, perturbation in logarithms
produces significantly more accurate approximations than perturbation in levels;however,
this accuracy ranking is model-specific and does not need to hold for other models.

9.4 Hybrid of Local and Global Solutions
Maliar et al. (2013) develop a hybrid perturbation-based solution method that combines
local and global approximation techniques. (The term hybrid method indicates that we
combine policy functions produced by different solution methods.) This hybrid method
computes a plain perturbation solution, fixes some perturbation functions, and replaces
the rest of the perturbation functions by new functions that are constructed to satisfy the
model’s conditions exactly.The construction of these new functions mimics global solu-
tion methods: for each point of the state space considered, we solve nonlinear equations
either analytically (when closed-form solutions are available) or with a numerical solver.
If the perturbation functions that were used to construct a hybrid solution are accurate,

420 Lilia Maliar and Serguei Maliar

then the entire hybrid solution will inherit their high accuracy; such a hybrid solution
may be far more accurate than the original perturbation solution.The cost of the hybrid
method is essentially the same as that of the standard perturbation method. The hybrid
method of Maliar et al. (2013) encompasses previous examples constructed on the basis of
the standard loglinearization method in Dotsey and Mao (1992) and Maliar et al. (2011).

9.4.1 Description of the HybridMethod
To exposit the idea of the hybrid method, we use the one-agent model (118)–(120) with
inelastic labor supply.We assume that a plain perturbation method delivers an approximate
solution in the form of two decision functions K̂ ≈ K and Ĉ ≈ C, such as (122), (123)
constructed in Section 9.1. Let us assume that the decision functions are not sufficiently
accurate for our purpose.

We attempt to improve on the accuracy in the following way. We fix one decision
function from the benchmark solution,for example,K̂ ,and we solve for the other decision
function, C̃ ≡ C̃(K̂), to satisfy some model’s nonlinear optimality conditions taking K̂
as given.

For model (118)–(120), we have two optimality conditions,

u′ (ct) = βEt
{
u′ (ct+1)

[
1 + θt+1 f ′ (kt+1)

]}
, (129)

kt+1 = kt + θt f (kt) − ct . (130)

By considering all possible combinations of the two decision functions and the two opti-
mality conditions, we construct four hybrid solutions

{
K̂ , C̃BC

}
,
{
K̂ , C̃EE

}
,
{
Ĉ, K̃BC

}
,

and
{
Ĉ, K̃EE

}
, as follows:

HYB1: Fix K̂ and define C̃BC using (130),

C̃BC (kt , θt) = kt + θt f (kt) − K̂ (kt , θt) .

HYB2: Fix K̂ and define C̃EE using (129),

u′ (C̃EE (kt , θt)
) = βEt

{
u′ [C̃EE

(
K̂ (kt , θt) , θt+1

)] [
1 + θt+1 f ′ (K̂ (kt , θt)

)]}
.

HYB3: Fix Ĉ and define K̃BC using (130),

K̃BC (kt , θt) = kt + θt f (kt) − Ĉ (kt , θt) .

HYB4: Fix Ĉ and define K̃EE using (129),

u′ (Ĉ (kt , θt)
) = βEt

{
u′ (Ĉ (

K̃EE (kt , θt) , θt+1
)) [

1 + θt+1 f ′ (K̃EE (kt , θt)
)]}

.

On the basis of this example, we can make the following observations: first, multiple
hybrid solutions can be constructed for a given benchmark solution; in our example, there
are four hybrid solutions. Second, the hybrid method mimics global solution methods in

Numerical Methods for Large-Scale Dynamic Economic Models 421

a sense that functions C̃BC , C̃EE , K̃BC , and K̃EE are defined to satisfy the corresponding
nonlinear optimality conditions globally,for any point (kt , θt) of the state space considered.
Third, a hybrid solution can be either more accurate or less accurate than the benchmark
solution. Assume that in the benchmark solution, K̂ is accurate and Ĉ is not. Then,
the hybrid solutions based on K̂ (i.e., HYB1 and HYB2) will be more accurate, while
the hybrid solutions based on Ĉ (i.e., HYB3 and HYB4) will be less accurate than
the benchmark solution. Finally, hybrid solutions can differ in cost considerably. In our
example, HYB1 and HYB3 are obtained using simple closed-form expressions, while
HYB2 and HYB4 are defined implicitly and are far more costly to compute.

9.4.2 Numerical Illustration of the HybridMethod
A potential usefulness of the hybrid solution method is well seen in examples constructed
using the standard loglinearization method. In particular, Maliar et al. (2011) take the
capital decision function produced by the standard loglinearization method and accu-
rately solve for consumption and labor to satisfy the intertemporal choice conditions
(using the iteration-on-allocation method) in the context of a two-agent version studied
in the JEDC comparison analysis. In Table 16, we compare the accuracy of the resulting
hybrid method, HYB, with that of the plain first-order and second-order perturbation
methods (in levels), denoted PER1 and PER2, respectively. As the table indicates, the
first-order hybrid method produces more accurate linear approximations (by more than
an order of magnitude) than PER1. In terms of the maximum residuals, it is even more
accurate than PER2.

9.5 Numerical Instability of High-Order Perturbation
Solutions in Simulation
An important shortcoming of plain perturbation methods is a numerical instability in
simulation.The instability occurs because perturbation methods produce an approxima-
tion that is valid only locally, i.e., in the steady-state point and its small neighborhood.
If we use this approximation for simulation, there is a chance that the simulated series
become explosive when some realizations of shocks drive the process outside the accu-
racy range.The chance of nonstationary behavior is higher if the model has a high degree
of nonlinearity.

Table 16 Perturbation method versus hybrid method in the two-agent model.a

PER1 PER2 HYB

L1 L∞ L1 L∞ L1 L∞

−3.53 −1.45 −4.84 −2.30 −4.56 −2.84

aNotes: L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality conditions and test
points (in log10 units). PER1 and PER2 are the first- and second-order perturbation solutions (in levels), and HYB are
the hybrid solutions. These results are reproduced from Maliar et al. (2011), Table 5.

422 Lilia Maliar and Serguei Maliar

Pruning methods try to address this shortcoming of the standard perturbation meth-
ods.The term pruning is introduced by Kim et al. (2008) who point out that a simulation of
high-order perturbation solutions may produce explosive time series.To restore numerical
stability, they propose to replace cross-products of variables in the second-order perturba-
tion solution with cross-products of variables obtained from the first-order perturbation
solution. Other papers that focus on stabilizing perturbation methods are Lombardo
(2010) and Den Haan and De Wind (2012). In particular, the latter paper uses a fixed-
point iteration technique that is similar in spirit to iteration-on-allocation described in
Maliar et al. (2010, 2011) for constructing hybrid-like solutions.

10. PARALLEL COMPUTATION

Technological progress constantly increases the speed of computers. Moore (1965)
made an observation that the number of transistors on integrated circuits doubles approx-
imately every 2 years,and the speed of processors doubles approximately every 18 months
(both because the number of transistors increases and because transistors become faster).
The Moore law continues to hold meaning that in 10 years,computers will become about
100 times faster.

What happens if we cannot wait for 10 years or if a 100-time increase in speed is not
sufficient for our purpose?There is another important source of growth of computational
power that is available at present, namely, parallel computation: we connect a number of
processors together and use them to perform a single job. Serial desktop computers have
several central processing units (CPUs) and may have hundreds of graphics processing
units (GPUs), and a considerable reduction in computational expense may be possible.
Supercomputers have many more cores (hundreds of thousands) and have graphical cards
with a huge number of GPUs. Each processor in a supercomputer is not (far) more
powerful than a processor on our desktop but pooling their efforts gives them a high
computational power. Running a job on 10,000 cores in parallel can increase the speed
of our computation up to a factor of 10,000. This is what supercomputers are.

Early applications of parallel computation to economic problems are Amman (1986,
1990), Chong and Hendry (1986), Coleman (1992), Nagurney (1996), Nagurney and
Zhang (1998). More recent applications include Doornik et al. (2006), Creel (2005,
2008), Creel and Goffe (2008), Sims et al. (2008), Aldrich et al. (2011), Morozov and
Mathur (2012), Durham and Geweke (2012), Cai et al. (2012),Valero et al. (2013), and
Maliar (2013), among others.

The possibility of parallel computation raises new issues. First, to take advantage of this
technology, we must design algorithms in a manner which is suitable for parallelization.
Second, we need hardware and software that support parallel computation. Finally, we
must write a code that splits a large job into smaller tasks, that exchanges information
between different cores in the process of computation, and that gathers the information
to produce final output. We discuss these issues in the remainder of the section.

Numerical Methods for Large-Scale Dynamic Economic Models 423

10.1 Serial Versus Parallel Computation
Assume that we must execute N tasks. Traditional, one-core serial computation requires
us to process the tasks one-by-one. The running time for executing N tasks is N times
larger than that for executing one task. If we have multiple cores, we can parallelize the
computation. The easiest case for parallelization is when tasks are independent and no
information is shared (exchanged) during the process of computation.This case is known
in computer science literature as naturally parallelizable jobs. A more general case requires
us to exchange information between the cores (implementing different tasks) during the
computational process; see Table 17.

A coordinating unit, called a core 0 or master, assigns tasks to multiple cores (workers)
and performs the information exchange if needed. Assuming that the implementation of
parallel computation has no additional cost, the parallelized algorithm is N times faster
than the serial one if tasks are independent. When the information exchange is needed,
the gain from parallelization depends on a specific application and a specific way in which
the code is implemented.

10.1.1 Applications with Independent Tasks
The restriction that tasks are independent is obviously limiting. Still, there are many inter-
esting applications for which this restriction is satisfied. In econometrics, we may need
to run many regressions of a dependent variable on different combinations of indepen-
dent variables, and we may run each such a regression on a separate core; see Doornik
et al. (2006) for a review of applications of parallel computation in econometrics. In a
similar vein, we may need to solve an economic model under a large number of different
parameterizations either because we want to study how the properties of the solution
depend on a specific parameterization (sensitivity analysis) or because we want to produce
multiple data sets for estimating the model’s parameters (e.g., nested fixed-point estima-
tion; see Fernández-Villaverde and Rubio-Ramírez (2007),Winschel and Krätzig (2010),
and Su and Judd (2012) for related examples). In this case, we solve a model under each
given parameter vector on a separate core. Other examples of naturally parallelizable jobs

Table 17 Serial versus parallel computation.

Serial computation Parallel computation Parallel computation
with independent tasks with dependent tasks

424 Lilia Maliar and Serguei Maliar

are matrix multiplication, exhaustive search over a discrete set of elements, optimization
of a function over a region of state space, etc.

10.1.2 Applications with Dependent Tasks
In general, a given problem will contain some tasks that can be parallelized, some tasks
that cannot be parallelized, and some tasks that can be parallelized but will require infor-
mation exchange during their implementation (dependence). This is in particular true
for the solution methods described in Sections (4)–(9). Loops are an obvious candidate
for parallelization. However, after each iteration on a loop, we must typically gather the
output produced by all workers and to combine it in order to produce an input for
the next iteration. Some of the surveyed computational techniques are designed to be
parallelizable. In particular, Maliar et al. (2011) and Maliar and Maliar (2013) propose
a separation of the model’s equations into the intratemporal and intertemporal choice
equations under the Euler equation and dynamic programming methods. Such a sepa-
ration provides a simple way to parallelize computation. Namely, we can first produce
current and future endogenous state variables in all grid points and or integration nodes,
and we can then solve for the intratemporal choice in each grid point and integration
node using a separate core; see Sections 6 and 7 for a discussion.

10.1.3 Speedup and Efficiency of Parallelization
Two measures that are used to characterize gains from parallelization are the speedup and
efficiency of parallelization. The speedup is defined as a ratio

S (N) = τ1/τN , (131)

where τ1 and τN are the times for executing a job on one core and N cores, respectively.
In turn, the efficiency of parallelization is defined as

E (N) = τ1/τN

N
. (132)

The efficiency shows gains from parallelization τ1/τN relative to the number of cores
used N . The upper bounds of (131) and (132) are S (N) ≤ N and E (N) ≤ 1, and they
are attained if a job is perfectly parallelizable and the cost of information transfers is zero.

The typical code has some parts that are parallelizable and other parts that must be
executed serially. Nonparallelizable parts of the code restrict the speedup and efficiency
of parallelization that can be attained in a given application. Moreover, the speedup
and efficiency of parallelization depend on the cost of implementing the parallelization
procedure and information transfers.

Consider the case when the parallelizable part of the code consists of a number of tasks
that require the same execution time.The following condition can be used to characterize

Numerical Methods for Large-Scale Dynamic Economic Models 425

the speedup

S (N) = τ1

τ
p
1/N + τ

np
1 + τ tf (N)

, (133)

where τ
p
1 and τ

np
1 denote the execution times for parallelizable and nonparallelizable parts

of the code, respectively, τ p
1 + τ

np
1 = τ1, and τ tf (N) denotes the time for information

transfers. The measure (133) is a version of Amdahl’s (1967) law, which we augment
to include the cost of information transfers τ tf (N); see Nagurney (1996) for a further
discussion.

Two implications of the Amdahl’s (1967) law are the following. First, (133) implies
that S (N) ≤ τ1

τ
np
1

, i.e., the fraction of the code that is not parallelizable, τ1
τ

np
1

, is a bottleneck
for the speedup. For example, if 50% of the code is not parallelizable, i.e., τ

np
1
τ1

= 0.5, we
can reduce the running time of a code at most by a factor of 2, no matter how many
cores we employ. Second, (133) shows that the speedup can be smaller than 1 (which is
parallel slowdown) if the cost of information transfers τ tf (N) is very large.

It is straightforward to describe the implications of Amdahl’s (1967) law for the effi-
ciency measure (132). Namely, efficiency of parallelization decreases with the number
of cores E (N) = τ1

τ
p
1 +N(τ np

1 +τ if (N)) reaching zero in the limit N → ∞, which is another

way to say that the gains from parallelization are bounded from above by the execution
time of tasks that cannot be parallelized. Furthermore, E (N) decreases with the costs of
parallelization and transfer, and it can be arbitrary close to zero if such costs are very large.

Finally, different tasks executed in a parallel manner may differ in the amount of time
necessary for their execution. For example,when searching for a maximum of a function
over different regions of state space, a numerical solver may need considerably more time
for finding a maximum in some regions than in others. The most expensive region will
determine the speedup and efficiency of parallelization since all the workers will have to
wait until the slowest worker catches up.The cost of information transfers may also differ
across parallelizable tasks in some applications. These issues must be taken into account
when designing codes for parallel computation.

10.2 Parallel Computation on a Desktop Using MATLAB
Most economic researchers write codes for solving dynamic economic models using
a desktop and serial MATLAB software. The advantages of this choice are three: first,
the user can concentrate exclusively on computations without being concerned with
all subtle issues related to the operational system and computer architecture. Second,
communication among multiple cores of a desktop is very fast,and can be much faster than
that among cores in a cluster or supercomputer. Finally, MATLAB itself is a convenient
choice. It is widespread,well-supported, and has an extensive documentation; it is easy to
learn and to use; and it has many preprogrammed routines that can be easily integrated
into other codes.

426 Lilia Maliar and Serguei Maliar

In particular, MATLAB provides a simple way to parallelize computations on either
CPUs or GPUs; no additional software is needed. Valero et al. (2013) survey parallel
computation tools available in MATLAB;below,we reproduce some discussion from this
paper.

First, MATLAB has a “Parallel Computing Toolbox” which allows us to allocate the
computational effort in different CPUs on multicore computers; see MATLAB (2011).
Parallelizing in MATLAB is simple, we just need to replace “for” with its parallel com-
puting version “parfor.”To use it, we must tell to the computer what part of the code
we want to parallelize and when we want to finish parallel computation and to gather
the output; this is done using “matlabpool open/matlabpool close.” Some restrictions must
be imposed on variables that are used in parallel computing.

Second, MATLAB has tools for working with GPUs. Functions “gpuArray” and
“gather” transmit data from CPUs to GPUs and vice versa, respectively. It is also pos-
sible to generate the data directly in GPUs which can help to save on transfer time, for
example, “parallel.gpu.GPUArray.zeros (d)” creates an array of zeros of dimension d in
GPUs. Once you allocate an array in a GPU, MATLAB has many functions which allow
you to work directly there. A useful function in MATLAB is “arrayfun” which, instead of
multiple calls to perform separate GPU operations, makes one call to a vectorized GPU
operation (it is analogous to MATLAB’s vectorized operations). MATLAB has functions
that allow us to use native languages for GPU programming; for example, it allows us to
use CUDA with the NVIDIA graphical card.19

Finally, MATLAB has other tools that are useful for parallel computation. “Jacket”
and “GPUMat” toolboxes are useful alternatives to the standard “Parallel Computation
Toolbox.”Another useful tool is “deploytool” which allows us to convert MATLAB codes
into executable files. Also, MATLAB codes can be translated to other languages such as
C/C++ or Fortran source code using the“mex” tool. Depending on a specific version of
MATLAB, different software may be needed to create the mex files; we use a Microsoft
Windows SDK 7.1 with NET Framework 4.0. Function“coder.extrinsic”makes it possible
to export to other languages some functions that are specific to MATLAB, e.g.,“tic” and
“toc.”The above tools allow us to run MATLAB codes on machines that do not have
MATLAB installed.

The drawbacks of MATLAB are typical for high-level programming languages: it is
relatively slow and does not take into account the hardware characteristics to optimize
computations. Also, MATLAB is not free software and can be executed only on those
machines that have licenses.

Many other programming languages can be used on a desktop instead of MATLAB.
Octave is almost identical to MATLAB and is freeware. Another freeware is Python, a

19 Currently,NVIDIA graphical cards are the most developed ones for scientific computation, and they use
a language that has a basis in C, called CUDA; see Sanders and Kandrot (2010).

Numerical Methods for Large-Scale Dynamic Economic Models 427

high-level language that is growing in popularity. Significant speedups of calculations can
be obtained using low-level languages such as C or Fortran. However, these languages
may be more complicated to learn and to use. There are also languages that are specially
designed to work with GPUs. A pioneering paper by Aldrich et al. (2010) shows how to
apply GPUs using CUDA for solving economic problems; see also Morozov and Mathur
(2012). CUDA can only be used with NVIDIA GPUs. However, there is software that
can manage other kinds of GPUs,for example,OPEN CL (see http://www.khronos.org),
VIENNA CL (http://viennacl.sourceforge.net); see Gallant’s (2012) conference slides for
a concise and informative discussion and further references.

10.2.1 Numerical Example of GPU Computation UsingMATLAB
The following example is borrowed fromValero et al. (2013). Consider a function with
a unique input x, which is randomly drawn from a uniform distribution [0, 1]

y = sin (3x) + cos (πx) + x5

5
+ √

x arccos (x) + 8x exp(x). (134)

We approximate the expectation of y using a Monte Carlo integration method E (y) ≈
1
n

∑n
i=1 yi.

The calculations are implemented in GPUs using MATLAB.We report separately the
cases with a single and double precision because the precision significantly affects the
speed of GPU computations.To illustrate the cost of transfers between CPUs and GPUs,
we report two speedups (a ratio of CPU to GPU running times, see definition (131)):
the speedup without information transfers between CPUs and GPUs and that with such
transfers.20 We first report the results obtained with “gpuArray” and “gather” functions in
Figure 9a and b for the single and double precision cases, respectively.

0 2 4 6 8
x 107

0
1
2
3
4
5
6
7
8

n

Sp
ee

du
p

GPU without transfers
GPU with transfers

0 0.5 1 1.5 2 2.5 3 3.5
x 107

0

0.5

1

1.5

2

2.5

3

n

Sp
ee

du
p

GPU without transfers
GPU with transfers

(a) (b)

Figure 9 (a) Speedup with GPUs: single precision. (b) Speedup with GPUs: double precision.

20 The comparison here is not completely fair. By default, MATLAB makes the use of multithreading
capabilities of the computer. If we limit MATLAB to a single computational thread, all the reported
speedups will increase by around a factor of 3–4.

http://www.khronos.org
http://viennacl.sourceforge.net

428 Lilia Maliar and Serguei Maliar

0 2 4 6 8
x 107 x 107

0
2
4
6
8

10
12
14

n

Sp
ee

du
p

GPU without transfers
GPU with transfers

0 0.5 1 1.5 2 2.5 3 3.51

1.5

2

2.5

3

3.5

n

Sp
ee

du
p

GPU without transfers
GPU with transfers

(a) (b)

Figure 10 (a) Speedup with GPUs (vectorized): single precision. (b) Speedup with GPUs (vectorized):
double precision.

If the transfer time is included, we observe speedups of order 4.5 and 1.7 under the
single and double precision, respectively, when n is sufficiently large (for small n, the
speedup is negative as the gain from GPUs does not compensate for the high cost of
transferring information between CPUs and GPUs).

We next repeat the computations using a vectorized version of the code built on
“arrayfun”; see Figure 10a and 10b for single and double precision, respectively.

This improves the performance of GPUs considerably. Now, the speedups are of order
7 and 2.4 under the single and double precision, respectively. “Arrayfun” also allows for
better allocations of memory. Our hardware for GPU computations is: Intel(®) Core(™)

i7-2600 CPU @ 3.400 GHz with RAM 12.0 GB and GPU GeFoce GT 545, and we
use MATLAB 2012a.

10.3 Parallel Computation on Supercomputers
Clusters of computers and supercomputers can solve certain problems of very large size.
Clusters are networks that have 16–1,000 cores, and supercomputers may have hundreds
of thousands of cores, as well as graphical cards with a huge number of GPUs. However,
two issues must be mentioned. First, the information exchange between CPUs or GPUs
is generally slower than that between cores on a desktop, which may reduce the gains
from parallelization in some applications. Second, using supercomputers requires certain
knowledge of the computer architecture and the operational system (typically, Unix), as
well as software that distributes and exchanges information among different cores, and
the programming can be a nontrivial task.

Three different types of supercomputers are distinguished in the computer science
literature; see Blood (2011).

1. High-performance computing (HPC) runs one large application across multiple cores.
The user is assigned a fixed number of processors for a fixed amount of time, and this
time is over if not used.

Numerical Methods for Large-Scale Dynamic Economic Models 429

2. High-throughput computing (HTC) runs many small applications at once. The user
gets a certain number of cores that are available at that time, and this computer time
would be wasted otherwise.

3. Data-intensive computing focuses on input-output operations, where data manipula-
tion dominates computation.
We are primarily interested in the first two types of supercomputing,HPC and HTC.

An important issue for parallel computation is how to share the memory. Two main
alternatives are shared memory and distributed memory.
• Shared memory programming. There is a global memory which is accessible by all pro-

cessors, although processors may also have their local memory. For example,OpenMP
software splits loops between multiple threads and shares information through com-
mon variables in memory; see http://www.openmp.org.

• Distributed memory programming. Processors possess their own memory and must send
messages to each other in order to retrieve information from memories of other pro-
cessors. MPI is a commonly used software for passing messages between the processors;
see http://www.mpi-forum.org.
The advantage of shared memory is that it is easier to work with and it can be used

to parallelize already existing serial codes. The drawbacks are that the possibilities of
parallelization are limited and that sharing memory between threads can be perilous.
The advantage of distributed memory is that it can work with a very large number of
cores and is ubiquitous but it is also more difficult to program. There are also hybrids
that use distributed memory programming for a coarse parallelization and that use shared
memory programming for a fine parallelization.

High computational power becomes increasingly accessible to economists.
In particular, the eXtreme Science and Engineering Discovery Environment (XSEDE)
portal financed by the NSF provides access to supercomputers for US academic/nonprofit
institutions. Currently, XSEDE is composed of 17 service providers around the
world; see https://portal.xsede.org. We discuss two examples of supercomputers
within the XSEDE portal, namely, Blacklight and Condor; see http://www.psc.edu/
index.php/computing-resources/blacklight and https://www.xsede.org/purdue-condor,
respectively.

Blacklight is an example of an HPC machine. It consists of 256 nodes each of which
holds 16 cores, 4096 cores in total. Each core has a clock rate of 2.27 GHz and 8 Gbytes
of memory. The total floating point capability of the machine is 37 Tflops, and the total
memory capacity of the machine is 32 Tbytes. Blacklight has many software packages
installed including C, C++, Fortran, R, Python, MATLAB, etc., as well as facilities for
running MPI and OpenMP programs. See Maliar (2013) for an assessment of the effi-
ciency of parallelization using MPI and OpenMP on a Blacklight supercomputer.

Condor is an example of an HTC machine. It is composed of a large net of computers.
Computers in the net belong to priority users and are not always free (our own computers

http://www.openmp.org
http://www.mpi-forum.org
http://https://portal.xsede.org
http://www.psc.edu/index.php/computing-resources/blacklight
http://https://www.xsede.org/purdue-condor

430 Lilia Maliar and Serguei Maliar

can become a part of the Condor network if we give them a permission). Condor software
detects computers that are not currently occupied by priority users and assigns tasks to
them. It passes messages between masters and workers,queues the tasks,detects failures and
interruptions, collects the output, and delivers it to users.The Condor network is slower
than that of HPC machines but the speed of communication is not essential for many
applications, in particular, for those that are naturally parallelizable. Cai et al. (2013a,b)
show how to use the Condor network to solve dynamic programming problems.

Computer time can be also bought in the Internet at relatively low prices. For example,
Amazon Elastic Compute Cloud provides the possibility to pay for computing capacity
by the hour; see http://aws.amazon.com/ec2/#pricing.

MATLAB is of a limited use on supercomputers. For example, at the moment,Black-
light has MATLAB licenses just on 32 cores, meaning that only a tiny fraction of its total
capacity is available to MATLAB users. Such users have two alternatives. The first one
is to convert MATLAB files into executable files as was discussed earlier (this can work
well if we have independent tasks). The other alternative is to use Octave, which is a
freeware clone of MATLAB.The problem is that there are still some differences between
MATLAB and Octave, and it could happen that the MATLAB code does not work
under Octave as expected. For working with a supercomputer, a better alternative is to
use languages that are freeware and have no restrictions on the number of licenses (C,
R, Python, etc.).These languages have developed parallel programming tools that can be
used with MPI or OpenMP.

10.3.1 Numerical Example of Parallel Computation Using
a Blacklight Supercomputer

For desktops, the information exchange between CPUs is very fast. For supercomput-
ers, the information exchange is far slower and may reduce dramatically gains from
parallelization even in applications that are naturally suitable for parallelization. It is there-
fore of interest to determine how large a task per core should be to obtain sufficiently
high gains from parallelization on supercomputers.

In the following example, we assess the efficiency of parallelization using MPI on a
Blacklight supercomputer; this example is borrowed from Maliar (2013). Let us again
consider the problem of approximating the expectation of y, defined in (134) using
Monte Carlo integration. The calculations are implemented on Blacklight using C and
MPI (with point-to-point communication). In the code, each core (process) runs a copy
of the executable (single program,multiple data), takes the portion of the work according
to its rank, and works independently of the other cores, except when communicating.
For each simulation length n (the size of the problem), we run four experiments in
which we vary the number of cores, 1, 16, 32, and 128. In each experiment, we solve the
problem of the same size n. That is, depending on the number of cores assumed, each
core performs tasks of the corresponding size. For example, if the number of cores is 16,

http://aws.amazon.com/ec2/#pricing

Numerical Methods for Large-Scale Dynamic Economic Models 431

103 104 105 106 107 108 109
0

0.2

0.4

0.6

0.8

1

n

Ef
fic

ie
nc

y
of

 p
ar

al
le

liz
at

io
n

 8 cores
16 cores
32 cores
128 cores

Figure 11 Efficiency of parallelization on Blacklight supercomputer.

each core processes n/16 observations (we use n which are multiples of 128).The results
are provided in Figure 11.

In the figure, we compute the efficiency of parallelization as defined in (132). For
small n, the efficiency of parallelization is low because the cost of information trans-
fer overweighs the gains from parallelization. However, as n increases, the efficiency of
parallelization steadily increases, approaching unity. We also observe that the efficiency
of parallelization depends on the number of cores used: with 16 cores, the efficiency of
parallelization of 90% is reached for 20 s problem (2.5 s per core), while with 128 cores,
a comparable efficiency of parallelization is reached only for 2,000 s problem (15.6 s per
core). Our sensitivity experiments (not reported) had shown that for larger numbers
of cores, the size of the task per core must be a minute or even more to achieve high
efficiency of parallelization.

11. NUMERICAL ANALYSIS OF A HIGH-DIMENSIONALMODEL

In the previous sections, we have surveyed a collection of efficient computational
techniques in the context of simple examples. Now, we show how these techniques can
be combined into numerical methods that are suitable for solving large-scale economic
models.

11.1 The Model
As an example of a high-dimensional problem, we consider a stylized stochastic growth
model with N heterogeneous agents (interpreted as countries). Each country is charac-
terized by a capital stock and a productivity level, so that there are 2N state variables. By
varying N ,we can control the dimensionality of the problem. In addition to a potentially
large number of state variables, the model features elastic labor supply, heterogeneity in
fundamentals, and adjustment cost for capital.

Time is discrete, and the horizon is infinite, t = 0, 1,The world economy consists
of a finite number of countries, N ≥ 1, and each country is populated by one (repre-
sentative) consumer. A social planner maximizes a weighted sum of expected lifetime

432 Lilia Maliar and Serguei Maliar

utilities of the consumers

max
{kh

t+1,cht ,�h
t }h=1,...,N

t=0,...,∞
E0

{
N∑

h=1

τ h

(∞∑
t=0

β tuh (ch
t , �h

t

))}
(135)

subject to the aggregate resource constraint, i.e.,
N∑

h=1

ch
t =

N∑
h=1

[
θ h

t f h (kh
t , �h

t

)− φ

2
kh

t

(
kh

t+1

kh
t

− 1
)2

+ kh
t − kh

t+1

]
, (136)

where Et is the operator of conditional expectation conditional on kt and θt; ch
t , �h

t , kh
t+1,

θ h
t , uh, f h, and τ h are consumption, labor, end-of-period capital, productivity level, utility

function, production function, and welfare weight of a country h ∈ {1, . . ., N }, respec-
tively; ch

t , �h
t , kh

t+1 ≥ 0;β ∈ [0, 1) is the discount factor;φ is the adjustment-cost parame-
ter;and δ ∈ (0, 1] is the depreciation rate. Initial condition,

(
k1

0, . . ., kN
0

)
and

(
θ1

0 , . . ., θN
0

)
,

is given. We assume that τ h > 0 and that uh and f h are strictly increasing and strictly
concave and satisfy the Inada types of conditions for all h.To simplify the presentation,we
consider the production function net of depreciation θ h

t f h
(
kh

t , �h
t

) ≡ θ h
t Fh

(
kh

t , �h
t

)−δkh
t ,

where Fh is a gross production function and δ is the depreciation rate, δ ∈ [0, 1].
Future productivity levels of countries are unknown and depend on randomly drawn

productivity shocks,
ln θ h

t+1 = ρ ln θ h
t + σεh

t+1, (137)

where ρ ∈ (−1, 1) is the autocorrelation coefficient of the productivity level; σ > 0
determines the standard deviation of the productivity level; and

(
ε1

t+1, . . ., ε
N
t+1

)
 ∼
N (0N ,�) is a vector of productivity shocks with 0N ∈ R

N being a vector of zero
means and � ∈ R

N×N being a variance-covariance matrix. Thus, we allow for the case
when productivity shocks of different countries are correlated. A planner’s solution is
given by decision functions ch

t = Ch (kt , θ t) , �h
t = Lh (kt , θ t) , kh

t+1 = Kh (kt , θ t), and
λt = � (kt , θ t), where kt ≡ (

k1
t , . . ., kN

t

)
and θ t ≡ (

θ1
t , . . ., θN

t

)
.

11.2 Methods Participating in the JEDC Project
Model (135)–(137) has been studied in the February 2011 special issue of the Journal
of Economic Dynamics and Control. Detailed descriptions of the numerical methods that
participate in the JEDC comparison analysis can be found in the individual papers of the
participants of the JEDC project. In this section, we provide a brief description of these
algorithms and summarize their main implementation details in Table 18.

Perturbation Methods, PER
The first- and second-order perturbation methods (PER1) and (PER2) of Kollmann et al.
(2011a) compute perturbation solutions in logarithms of the state variables. These two
methods approximate the decision functions of all individual variables (consumption,

Numerical Methods for Large-Scale Dynamic Economic Models 433

Ta
b
le
18

Im
p
le
m
en

ta
tio

n
of

th
e
al
go

rit
hm

s
p
ar
tic

ip
at
in
g
in

th
e
JE
D
C
p
ro
je
ct
.a

PE
R

SS
A

C
G
A

M
RG

A
L

SM
O
L-
M
K
K

In
di

vi
du

al
ar

tic
le

K
ol

lm
an

n
et

al
.

(2
01

1b
)

M
al

ia
r

et
al

.
(2

01
1)

M
al

ia
r

et
al

.
(2

01
1)

Pi
ch

le
r

(2
01

1)
M

al
in

et
al

.
(2

01
1)

Pr
og

ra
m

.l
an

gu
ag

e
M

A
T

LA
B

M
A

T
LA

B
M

A
T

LA
B

M
A

T
LA

B
Fo

rt
ra

n

Fu
nc

tio
ns

pa
ra

m
et

er
iz

ed
C

h ,
Lh ,

K
h ,

Ih ,
�

in
lo

gs
,f

or
al

lh
K

h ,
fo

r
al

lh
K

h ,
fo

r
al

lh
K

h ,
fo

r
al

lh
an

d
C

K
h

(·)
fo

r
al

lh
an

d
C

1

Fu
nc

tio
na

lf
or

m
1st

an
d

2d
de

gr
ee

co
m

pl
.o

rd
in

.
po

ly
n.

1st
de

gr
ee

co
m

pl
.

or
di

n.
po

ly
n.

2d
de

gr
ee

co
m

pl
.

C
he

b.
po

ly
n.

2d
de

gr
ee

co
m

pl
.

or
di

n.
po

ly
n.

Su
bs

et
of

4th

de
gr

ee
co

m
pl

.
C

he
by

.p
ol

y.

#
B

as
is

fu
nc

tio
ns

1
+

d
an

d
1

+
d

+
d(

d+
1)

2

1
+

d
1

+
d

+
d(

d+
1)

2
1

+
d

+
d(

d+
1)

2
1

+
4d

+
4

d(
d+

1)
2

N
um

be
r

of
gr

id
po

in
ts

–
10

,0
00

50
0

2d
2
+

1
1

+
4d

+
4

d(
d+

1)
2

In
tr

at
em

.c
ho

ic
e

–
It

er
at

io
n-

on
-

al
lo

ca
tio

n
It

er
at

io
n-

on
-

al
lo

ca
tio

n
Pr

ec
om

pu
ta

tio
n

N
ew

to
n’

s
so

lv
er

In
te

gr
at

io
n

–
M

on
te

C
ar

lo
M

on
om

ia
l

M
on

om
ia

l
M

on
om

ia
l

So
lv

in
g

fo
r

po
ly

.c
oe

ff
.

T
ay

lo
r

ex
pa

ns
io

ns
FP

I
FP

I
N

ew
to

n’
s

so
lv

er
T

im
e

ite
ra

tio
n

a N
ot

es
:I

h
is

th
e

de
ci

sio
n

fu
nc

tio
n

fo
r

in
ve

st
m

en
t

of
co

un
tr

y
h;

C
is

th
e

de
ci

sio
n

fu
nc

tio
n

fo
r

ag
gr

eg
at

e
co

ns
um

pt
io

n;
d

=
2N

is
th

e
m

od
el

’s
di

m
en

sio
na

lit
y.

A
pa

rt
of

th
is

ta
bl

e
is

re
pr

od
uc

ed
fr

om
K

ol
lm

an
n

et
al

.(
20

11
b)

,T
ab

le
2.

434 Lilia Maliar and Serguei Maliar

labor, capital, investment) and the Lagrange multiplier associated with the aggregate
resource constraint using Taylor expansions of the equilibrium conditions.

Stochastic Simulation Algorithm, SSA
The stochastic simulation algorithm (SSA) of Maliar et al. (2010) is a variant of GSSA that
computes linear polynomial approximations using a one-node Monte Carlo integration
method. It parameterizes the capital decision functions of all countries, solves for poly-
nomial coefficients of approximating functions using FPI, and solves for consumption
and labor nonparameterically, using iteration-on-allocation.

Cluster Grid Algorithm, CGA
The cluster grid algorithm (CGA) of Maliar et al. (2011) constructs a grid for finding a
solution using methods from cluster analysis; see our discussion in Section 4.3.3. CGA
computes quadratic polynomial approximations. It parameterizes the capital decision
functions of all countries and it finds the coefficients using FPI. For integration, it
uses a monomial rule. CGA computes consumption and labor nonparameterically, using
iteration-on-allocation.

Monomial Rule Galerkin Method, MRGAL
The monomial rule Galerkin algorithm (MRGAL) of Pichler (2011) uses a set of points
produced by monomial rules both as a grid for finding a solution and as a set of nodes
for integration. MRGAL uses second-degree Chebyshev polynomials of state variable
to approximate the decision functions for capital of all countries and the aggregate con-
sumption function. It solves for the polynomial coefficients using a Newton-type solver
that minimizes a weighted sum of residuals in the equilibrium conditions.

Smolyak Method, SMOL-MKK
The Smolyak-collocation method (SMOL-MKK) of Malin et al. (2011) solves the model
on a Smolyak grid with an approximation level μ = 2. SMOL-MKK approximates
the capital decision functions of all countries and the consumption decision function of
the first country using a second-degree Smolyak polynomial function of state variables.
It uses monomial rules to approximate integrals, and it uses time iteration to compute
fixed-point polynomial coefficients.

11.3 Global Euler Equation Methods
We implement several other methods for solving model (135)–(137), in addition to the
six solution methods studied in the JEDC comparison analysis. Below, we elaborate a
description of the three global Euler equation methods, SMOL-JMMV, GSSA, and EDS,
outlined in Sections 4.1, 4.2, and 4.3, respectively. We compute both second- and third-
degree polynomial approximations whereas the solution methods of the JEDC project are
limited to second-degree polynomial approximations.We summarize the implementation
of these methods in Table 19.

Numerical Methods for Large-Scale Dynamic Economic Models 435

Ta
b
le
19

Im
p
le
m
en

ta
tio

n
of

ou
rE

ul
er

eq
ua

tio
n
al
go

rit
hm

s.
a

SM
O
L-
JM

M
V

G
SS

A
ED

S

A
rt

ic
le

s
Ju

dd
et

al
.(

20
13

)
Ju

dd
et

al
.(

20
11

b)
Ju

dd
et

al
.(

20
12

)
Pr

og
ra

m
.l

an
gu

ag
e

M
A

T
LA

B
M

A
T

LA
B

M
A

T
LA

B
Fu

nc
tio

ns
pa

ra
m

et
er

iz
ed

K
h

fo
r

al
lh

K
h

fo
r

al
lh

K
h

fo
r

al
lh

Fu
nc

tio
na

lf
or

m
Su

bs
et

of
4th

de
gr

ee
2d

an
d

3d
de

gr
ee

2d
an

d
3d

de
gr

ee
co

m
pl

.C
he

b.
po

ly
.

co
m

pl
.o

rd
in

.p
ol

yn
.

co
m

pl
.o

rd
in

.p
ol

y.
#

B
as

is
fu

nc
tio

ns
1

+
4d

+
4

d(
d+

1)
2

1
+

d
+

d(
d+

1)
2

an
d

n 3
1

+
d

+
d(

d+
1)

2
an

d
n 3

N
um

be
r

of
gr

id
po

in
ts

1
+

4d
+

4
d(

d+
1)

2
20

00
2
(1

+
d

+
d(

d+
1)

2

) an
d

2n
3

In
tr

at
em

po
ra

lc
ho

ic
e

It
er

at
io

n-
on

-a
llo

ca
tio

n
It

er
at

io
n-

on
-a

llo
ca

tio
n

It
er

at
io

n-
on

-a
llo

ca
tio

n
In

te
gr

at
io

n
M

on
om

ia
l

M
C

,m
on

om
ia

l,
qu

ad
ra

tu
re

M
on

om
ia

l
So

lv
in

g
fo

r
po

ly
n.

co
ef

f.
FP

I
FP

I
FP

I

a N
ot

es
:“

M
C

”
m

ea
ns

M
on

te
C

ar
lo

in
te

gr
at

io
n;

d
is

th
e

m
od

el
’s

di
m

en
sio

na
lit

y,
d

=
2N

;F
PI

m
ea

ns
fix

ed
-p

oi
nt

ite
ra

tio
n;

n 3
=

1
+

d
+

d(
d

+
1)
/
2

+
d2

+
d(

d−
1)

(d
−2

)
6

is
th

e
nu

m
be

r
of

ba
sis

fu
nc

tio
ns

in
co

m
pl

et
e

or
di

na
ry

po
ly

no
m

ia
lo

fd
eg

re
e

3.

436 Lilia Maliar and Serguei Maliar

11.3.1 First-Order Conditions
We assume that the planner’s solution to model (135)–(137) is interior and,hence, satisfies
the FOCs given by

λt

[
1 + φ

(
kh

t+1

kh
t

− 1
)]

= βEt

{
λt+1

[
1 + φ

2

((
kh

t+2

kh
t+1

)2

− 1

)
+ θ h

t+1 f h
k

(
kh

t+1, �
h
t+1

)]}
, (138)

uh
c

(
ch
t , �h

t

)
τ h = λt , (139)

uh
�

(
ch
t , �h

t

)
τ h = −λtθ

h
t f h

�

(
kh

t , �h
t

)
, (140)

where λt is the Lagrange multiplier associated with aggregate resource constraint (136).
Here, and further on, notation of type Fx stands for the first-order partial derivative of a
function F (. . ., x, . . .) with respect to a variable x.

11.3.2 Separating the Intertemporal and Intratemporal Choices
The global Euler equation methods aim at solving (136)–(140). We separate the equilib-
rium conditions into the intertemporal and intratemporal choice conditions as described
in Section 6.

Regarding the intertemporal choice, we combine (138) and (139) to eliminate λt ,
premultiply both sides with kh

t+1, and rearrange the terms to obtain

kh
t+1 = βEt

{
uh

c

(
ch
t+1, �

h
t+1

)
uh

c

(
ch
t , �h

t

)
oh

t

[
π h

t+1 + θ h
t+1 f h

k

(
kh

t+1, �
h
t+1

)]
kh

t+1

}
≈ K̂ h (kt , θ t; bh) ,

(141)
where new variables oh

t and π h
t are introduced for compactness,

oh
t ≡ 1 + φ

(
kh

t+1

kh
t

− 1
)

, (142)

π h
t ≡ +φ

2

((
kh

t+1

kh
t

)2

− 1

)
. (143)

We parameterize the right side of (141) with a flexible functional form. Our goal is to find
parameters vectors

{
bh
}h=1,...,N

such that K̂ h
(
kt , θ t; bh

)
solves (141) for h = 1, . . ., N .

This representation of the intratemporal choice follows Example 11 in Section 6 and
allows us to implement FPI without the need of a numerical solver. All three global Euler
equation methods described in this section use parameterization (141) for characterizing
the intertemporal choice.

Numerical Methods for Large-Scale Dynamic Economic Models 437

Concerning the intratemporal choice, we do not use state contingent functions but
solve for quantities {ct , �t} that satisfy (136), (139),and (140). In principle, this can be done
with any numerical method that is suitable for solving systems of nonlinear equations,
for example, with a Newton’s method. However, we advocate the use of derivative-free
solvers; see Section 6 for a discussion. In Section 11.6, we show how to implement one
such method, iteration-on-allocation, for the studied multicountry model.

11.3.3 SmolyakMethodwith Iteration-on-Allocation and FPI
We consider a version of the Smolyak algorithm, SMOL-JMMV, that builds on Judd
et al. (2013). Also,Valero et al. (2013) test this algorithm in the context of a similar
multicountry model. This method differs from the SMOL-MKK of Malin et al. (2011)
in three respects. SMOL-JMMV solves for the intratemporal choice in terms of quantities
(instead of state-contingent functions); this increases the accuracy of solutions. SMOL-
JMMV solves for equilibrium decision rules using FPI (instead of time iteration); this
decreases computational expense. Finally, SMOL-JMMV constructs the interpolation
formula in a way that avoids costly repetitions of grid points and polynomial terms and
computes the polynomial coefficients from a linear system of equations (instead of the
conventional interpolation formula with repetitions); see Section 4 for a discussion.

Steps of SMOL-JMMV
• Initialization:

(a) Choose approximation level μ.

(b) Parameterize
(
kh
)′ = Kh (k, θ) with Smolyak polynomials K̂ h

(
k,θ; bh

)
con-

structed using Chebyshev unidimensional basis functions.
(c) Construct a Smolyak grid H2N ,μ = {(

xm, ym

)}
m=1,...,M on the hypercube

[−1, 1]2N using the Smolyak interpolation method described in Section 4.1,
where xm ≡ (

x1
m, . . ., xN

m

)
and ym ≡ (

y1
m, . . ., yN

m

)
.

(d) Compute the Smolyak basis functions P2N ,μ in each grid point m.The resulting
M × M matrix is B.

(e) Choose the relevant ranges of values for (k, θ) on which a solution is computed.

The resulting hypercube is
[
k1, k

1
]

× · · · ×
[
θN , θ

N
]
.

(f) Construct a mapping between points (km, θm) in the original hypercube[
k1, k

1
]

× · · · ×
[
θN , θ

N
]

and points
(
xm, ym

)
in the normalized hypercube

[−1, 1]2N using a linear change of variables:

xh
m = 2

kh
m − kh

k
h − kh

− 1 and yh
m = 2

θ h
m − θ h

θ
h − θ h

− 1, (144)

where km ≡ (
k1

m, . . ., kN
m

)
and θm ≡ (

y1
m, . . ., yN

m

)
.

438 Lilia Maliar and Serguei Maliar

(g) Choose integration nodes, ε j = (
ε1

j , . . ., εN
j

)
, and weights,ωj , j = 1, . . ., J .

(h) Construct next-period productivity, θ ′
m, j = ((

θ h
m, j

)′
, . . .,

(
θ h

m, j

)′)
with

(
θ h

m, j

)′ =(
θ h

m

)ρ
exp

(
εh

j

)
for all j and m.

(i) Make an initial guess on the coefficient vectors
(
b1
)(1)

, . . .,
(
bN
)(1)

.

• Iterative cycle.At iteration i, given
(
b1
)(i)

, . . .,
(
bN
)(i)

, perform the following steps.
• Step 1. Computation of the capital choice.

Compute
(
kh

m

)′ = Bm
(
bh
)(i)

, where Bm is the mth row of B for m = 1, . . ., M .
• Step 2. Computation of the intratemporal choice.

Compute {cm, �m} satisfying (136), (139), and (140) given
{
km, θm, k′

m

}
for m =

1, . . ., M .
• Step 3. Approximation of conditional expectation.

For m = 1, . . ., M ,

(a) compute:
–
(
x′

m, j , y′
m, j

)
that correspond to

(
k′

m, θ ′
m, j

)
using the inverse of the trans-

formation (144);
– the Smolyak basis functions P2N ,μ in each point

(
x′

m, y′
m, j

)
; the resulting

M × M × J matrix is B′
m, j ;

–
(
kh

m, j

)′′ = B′
m, j

(
bh
)(i)

, where B′
m, j is a vector of basis functions evaluated

in
(
k′

m, θ ′
m, j

)
using the transformation (144) for all j;

–
{
c′
m, j , �

′
m, j

}
satisfying (136), (139),and (140) given

{
k′

m, θ ′
m, j , k′′

m, j

}
for m =

1, . . ., M ;
(b) evaluate conditional expectation:

eh
m ≡ β

J∑
j=1

⎧⎪⎪⎨
⎪⎪⎩ωj

⎛
⎜⎜⎝

uh
c

((
ch
m, j

)′
,
(
�h

m, j

)′)
uh

c

(
ch
m, �h

m

)
oh

m

[(
π h

m, j

)′ +
(
θ h

m, j

)′
f h
k

((
kh

m

)′
,
(
�h

m, j

)′)] (
kh

m

)′
⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ ,

where oh
m and

(
π h

m, j

)′
are given by (142) and (143), respectively.

• Step 4. Computation of the intertemporal choice.

Find
{

b̂ h
}h=1,...,N

that solves eh
m = Bm̂b h, i.e., b̂ h = B−1

m eh
m.

Numerical Methods for Large-Scale Dynamic Economic Models 439

• Step 5. Updating of the coefficient vectors.
For each h = 1, . . ., N , compute the coefficient vector for the subsequent iteration
i + 1 using fixed-point iteration,(

bh)(i+1) = (1 − ξ)
(
bh)(i) + ξ b̂ h, (145)

where ξ ∈ (0, 1) is a damping parameter.
Iterate on Steps 1–5 until convergence of the solution,

1
MNξ

M∑
m=1

N∑
h=1

∣∣∣∣∣∣∣
((

kh
m

)′)(i+1) −
((

kh
m

)′)(i)

((
kh

m

)′)(i)

∣∣∣∣∣∣∣ < 10−ϑ , (146)

where
((

kh
m

)′)(i+1)
and

((
kh

m

)′)(i)
are the hth country’s capital choices on the grid obtained

on iterations i + 1 and i, respectively, and ϑ > 0.

Computational Details
To start iterations,we use an arbitrary initial guess on the capital decision function,kh

t+1 =
0.9kh

t + 0.1θ h
t , for all h = 1, . . ., N (this guess matches the steady-state level of capital).

We use a Smolyak polynomial function with an approximation level μ = 2 (such a
function has four times more coefficients than the ordinary polynomial function of
degree two). We transform (km, θm) into (xm, ym) using a linear change of variable (144)
because unidimensional Chebyshev basis functions are defined in the interval [−1, 1] and,
thus, the Smolyak grid (xm, ym) is constructed inside a hypercube [−1, 1]2N , whereas the
original capital and productivity levels are not necessarily in this range. To approximate
integrals, we use a monomial integration rule M1 with 2N nodes. We set the damping
parameter in FPI (145) at ξ = 0.05, and we set the tolerance parameter at ϑ = 7 in
convergence criterion (147).

11.3.4 Generalized Stochastic Simulation Algorithm
In the JEDC comparison analysis, Maliar et al. (2011) implement a version of the GSSA
algorithm that computes linear solutions using a one-node Monte Carlo integration
method (we refer to this method as SSA). In this section, we implement other versions
of GSSA, those that use Monte Carlo, Gauss-Hermite quadrature and monomial rules.
Also,we compute polynomial approximations up to degree 3. In particular, these choices
allow us to assess the role of approximation and integration methods in the accuracy and
speed of GSSA.

Steps of GSSA
• Initialization:

(a) Parameterize kh
t+1 = Kh (kt ,θ t) with a flexible functional form K̂ h

(
kt ,θ t; bh

)
.

440 Lilia Maliar and Serguei Maliar

(b) Fix simulations length T and initial condition (k0, θ0). Draw a sequence of
productivity shocks {ε t}t=1,...,T . Compute and fix the sequence of productivity
levels {θ t+1}t=0,...,T−1 using equation (137).

(c) Choose integration nodes, ε j = (
ε1

j , . . ., εN
j

)
, and weights,ωj , j = 1, . . ., J .

(d) Construct next-period productivity, θ t+1,j = (
θ h

t+1,j , . . ., θ
h
t+1,j

)
with θ h

t+1,j =(
θ h

t

)ρ
exp

(
εh

j

)
for all j.

(e) Make an initial guess on the coefficient vectors
(
b1
)(1)

, . . .,
(
bN
)(1)

.
Iterative cycle.At iteration i, given

(
b1
)(i)

, . . .,
(
bN
)(i)

, perform the following steps.
• Step 1. Simulation of the solution.

Use the assumed capital decision functions kh
t+1 = K̂ h

(
kt ,θ t; (bh)(i)

)
, h = 1, . . ., N ,

to recursively calculate a sequence of capital stocks {kt+1}t=0,...,T corresponding to a
given sequence of productivity levels {θ t}t=0,...,T .

• Step 2. Computation of the intratemporal choice.
Compute {ct , �t} satisfying (136), (139),and (140) given {kt , θ t , kt+1} for t = 0, . . ., T .

• Step 3. Approximation of conditional expectation.
For t = 0, . . ., T − 1,
(a) compute:

– kh
t+2,j = K̂ h

(
kt+1, θ t+1,j; (bh)(i)

)
for all j ;

–
{
ct+1,j , �t+1,j

}
satisfying (136), (139), and (140) for given

{
kt+1, θ t+1,j , kt+2,j

}
;

(b) evaluate conditional expectation:

eh
t ≡ β

J∑
j=1

⎧⎨
⎩ωt,j·

⎛
⎝uh

c

(
ch
t+1,j , �

h
t+1,j

)
uh

c

(
ch
t , �h

t

)
oh

t

[
π h

t+1,j + θ h
t+1,j f

h
k

(
kh

t+1, �
h
t+1,j

)]
kh

t+1

⎞
⎠
⎫⎬
⎭ ,

where oh
t and π h

t+1,j are given by (142) and (143).

• Step 4. Computation of the intertemporal choice.

Find
{

b̂h
}h=1,...,N

such that

b̂h ≡ arg min
bh

T∑
t=1

∥∥eh
t − K̂ h (kt , θ t; bh)∥∥ .

• Updating of the coefficients vectors.
For each h = 1, . . ., N , compute the coefficient vector for the subsequent iteration
i + 1 using FPI (145).

Numerical Methods for Large-Scale Dynamic Economic Models 441

Iterate on Steps 1–5 until convergence,

1
TNξ

T∑
t=1

N∑
h=1

∣∣∣∣∣
(
kh

t+1

)(i+1) − (
kh

t+1

)(i)
(
kh

t+1

)(i)
∣∣∣∣∣ < 10−ϑ , (147)

where
(
kh

t+1

)(i+1)
and

(
kh

t+1

)(i)
are the hth country’s capital stocks obtained on iterations

i + 1 and i, respectively, and ϑ > 0.

Computational Details
To start the iterative process, we use the same (arbitrary) initial guess as in the Smolyak
method: kh

t+1 = 0.9kh
t + 0.1θ h

t for all h = 1, . . ., N . The simulation length for finding
solutions is T = 2, 000. Initial capital and productivity level are set at their steady-
state values: kh

0 = 1 and θ h
0 = 1 for all h = 1, . . ., N . We compute complete ordinary

polynomial approximations of degrees 2/3. In Step 4, we approximate integrals using
three different methods:a one-node Monte Carlo integration method,a one-node Gauss-
Hermite quadrature rule (i.e.,we assume that the future has just one possible state εh = 0
for all h), and a monomial rule M1 with 2N nodes. In Step 5, we use a least-squares
truncated QR factorization method, which is robust to ill-conditioning. We set the
damping parameter in FPI (145) at ξ = 0.05 and we set the tolerance parameter at
ϑ = 7 in convergence criterion (147).

11.3.5 ε-Distingishable Set Algorithm
We consider a version of the EDS algorithm studied in Judd et al. (2012). The number
of grid points in the EDS grid is smaller than the number of simulated points considered
by GSSA; namely, we set the number of grid points, which is two times larger than the
number of polynomial coefficients to estimate. This allows us to substantially reduce the
cost relative to GSSA.

Steps of EDS
• Initialization:

(a) Parameterize kh
t+1 = Kh (kt , θ t) with a flexible functional form K̂ h

(
kt ,θ t; bh

)
.

(b) Fix simulations length T and initial condition (k0, θ0). Draw {ε t}t=1,...,T . Com-
pute and fix {θ t+1}t=0,...,T−1 using equation (137).

(c) Choose integration nodes, ε j = (
ε1

j , . . ., εN
j

)
, and weights,ωj , j = 1, . . ., J .

(d) Make an initial guess on the coefficient vectors
(
b1
)(1)

, . . .,
(
bN
)(1)

.
• Step 1. Construction of a grid and the corresponding next-period productivity.

(a) Use the assumed capital decision functions kh
t+1 = K̂ h

(
kt , θ t; bh

)
, h = 1, . . ., N ,

to recursively calculate a sequence of capital stocks {kt+1}t=0,...,T corresponding
to a given sequence of productivity levels {θ t}t=0,...,T .

442 Lilia Maliar and Serguei Maliar

(b) Construct a grid ! = {km, θm}m=1,...,M using the EDS algorithm described in
Section 4.3.

(c) Construct next-period productivity, θ ′
m, j ≡ ((

θ h
m, j

)′
, . . .,

(
θ h

m, j

)′)
with(

θ h
m, j

)′ = (
θ h

m

)ρ
exp

(
εh

j

)
for all j and m.

Iterative cycle.At iteration i, given
(
b1
)(i)

, . . .,
(
bN
)(i)

, perform the following steps.

• Step 2. Computation of the capital choice.
Compute k′

m = K̂ h
(
km, θm; (bh)(i)

)
for m = 1, . . ., M .

• Step 3. Computation of the intratemporal choice.
Compute {cm, �m} satisfying (136), (139), and (140) given

{
km, θm, k′

m

}
for

m = 1, . . ., M .
• Step 4. Approximation of conditional expectation.

For m = 1, . . ., M ,

(a) compute:
–
(
kh

m, j

)′′ = K̂ h
(
k′

m, θ ′
m, j; (bh)(i)

)
for all j;

–
{
c′
m, j , �

′
m, j

}
satisfying (136), (139), and (140) given

{
k′

m, θ ′
m, j , k′′

m, j

}
for

m = 1, . . ., M ;
(b) evaluate conditional expectation:

eh
m ≡ β

J∑
j=1

⎧⎪⎪⎨
⎪⎪⎩ωj

⎛
⎜⎜⎝

uh
c

((
ch
m, j

)′
,
(
�h

m, j

)′)
uh

c

(
ch
m, �h

m

)
oh

m

[(
π h

m, j

)′ +
(
θ h

m, j

)′
f h
k

((
kh

m

)′
,
(
�h

m, j

)′)] (
kh

m

)′
⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ ,

where oh
m and

(
π h

m, j

)′
are given by (142) and (143), respectively.

• Step 5. Computation of the intertemporal choice.

Find
{

b̂h
}h=1,...,N

such that

b̂ h ≡ arg min
bh

M∑
m=1

∥∥eh
m − K̂ h (km, θm; bh)∥∥ .

• Step 6. Updating of the coefficient vectors.
For each h = 1, . . ., N , compute the coefficient vector for the subsequent iteration
i + 1 using FPI (145).

Numerical Methods for Large-Scale Dynamic Economic Models 443

Iterate on Steps 2–6 until convergence of the solution,

1

MNξ

M∑
m=1

N∑
h=1

∣∣∣∣∣∣∣
((

kh
m

)′)(i+1) −
((

kh
m

)′)(i)

((
kh

m

)′)(i)

∣∣∣∣∣∣∣ < 10−ϑ ,

where
((

kh
m

)′)(i+1)
and

((
kh

m

)′)(i)
are the hth country’s capital choices on the grid

obtained on iterations i + 1 and i, respectively, and ϑ > 0. Iterate on Steps 1–6 until
convergence of the grid.

Computational Details
As in the case of the previous two algorithms, we start simulation from the steady state
and assume kh

t+1 = 0.9kh
t + 0.1θ h

t as an initial guess for all h = 1, . . ., N . We use com-
plete ordinary polynomial functions of degrees two and three.The simulation length for
constructing the EDS grid is T = 10,000, and the number of grid points is twice as large
as the number of polynomial coefficients to estimate; for example, for the second-degree
polynomial case, we have M = 2

(
1 + 4d + d(d+1)

2

)
grid points. In Step 4, to approximate

integrals, we use a monomial integration rule M1 with 2N nodes as in (63). In Step 5,
we estimate the regression equation by using a least-squares truncated QR factorization
method. The damping parameter is ξ = 0.05 and the tolerance parameter is ϑ = 7.

11.4 Dynamic ProgrammingMethods
We next implement dynamic programming methods. Specifically, we consider two ver-
sions of ECM, one that approximates the value function and the other that approximates
derivatives of the value function. As introduced in Maliar and Maliar (2013), the ECM
methods rely on a product grid for in two-dimensional examples. In a following-up paper,
Maliar and Maliar (2012a,b) implement simulation-based versions of the ECM method
that are tractable in high-dimensional applications. These versions of ECM are applied
to solve multiagent models studied in the JEDC comparison analysis of Kollmann et al.
(2011b).The design of ECM follows the design of GSSA,namely,we combine simulation-
based grids with monomial integration rules, numerically stable regression methods, and
an FPI method for finding the polynomial coefficients. The results of Maliar and Maliar
(2012a,b) are reproduced below. We summarize the implementation of the ECM algo-
rithms in the first two columns of Table 20.

11.4.1 Bellman Equation, FOCs, and Envelope Condition
Let us write problem (135)–(137) in the DP form

V (k, θ) = max{
(kh)′

,ch ,�h
}h=1,...,N

{
N∑

h=1

τ huh (ch, �h)+ βE
[
V
(
k′, θ ′)]} (148)

444 Lilia Maliar and Serguei Maliar

Ta
b
le
20

Im
p
le
m
en

ta
tio

n
of

ou
rB

el
lm

an
eq

ua
tio

n
al
go

rit
hm

s
an

d
hy

b
rid

al
go

rit
hm

.a

EC
M
-V
F

EC
M
-D
V
F

H
Y
B

A
rt

ic
le

s
M

al
ia

r
an

d
M

al
ia

r
(2

01
2)

M
al

ia
r

an
d

M
al

ia
r

(2
01

2)
M

al
ia

r
et

al
.(

20
12

)
Pr

og
ra

m
.l

an
gu

ag
e

M
A

T
LA

B
M

A
T

LA
B

C
+

+
,D

yn
ar

e
Fu

nc
tio

ns
pa

ra
m

et
er

iz
ed

K
h

fo
r

al
lh

,a
nd

V
K

h
fo

r
al

lh
,V

kh
fo

r
al

lh
K

h
fo

r
al

lh
Fu

nc
tio

na
lf

or
m

2d
an

d
3d

de
gr

ee
2d

an
d

3d
de

gr
ee

1st
,2

d ,
an

d
3d

de
gr

ee
co

m
pl

.o
rd

in
.p

ol
yn

.
co

m
pl

.o
rd

in
.p

ol
yn

.
co

m
pl

.o
rd

in
.p

ol
yn

.
#

B
as

is
fu

nc
tio

ns
1

+
d

+
d(

d+
1)

2
an

d
n 3

1
+

d
+

d(
d+

1)
2

an
d

n 3
1

+
d,

1
+

d
+

d(
d+

1)
2

an
d

n 3
N

um
be

r
of

gr
id

po
in

ts
20

00
20

00
–

In
tr

at
em

po
ra

lc
ho

ic
e

It
er

at
io

n-
on

-a
llo

ca
tio

n
It

er
at

io
n-

on
-a

llo
ca

tio
n

It
er

at
io

n-
on

-a
llo

ca
tio

n
In

te
gr

at
io

n
M

on
om

ia
l

M
on

om
ia

l
–

So
lv

in
g

fo
r

po
ly

n.
co

ef
f.

FP
I

FP
I

–

a N
ot

es
:d

=
2N

is
th

e
m

od
el

’s
di

m
en

sio
na

lit
y;

n 3
is

th
e

nu
m

be
ro

fb
as

is
fu

nc
tio

ns
in

co
m

pl
et

e
or

di
na

ry
po

ly
no

m
ia

lo
fd

eg
re

e
3,

n 3
=

1+
d+

d(
d+

1)
/
2+

d2
+d

(d
−1

)(
d−

2)
/
6.

Numerical Methods for Large-Scale Dynamic Economic Models 445

s.t.
N∑

h=1

ch =
N∑

h=1

[
θ hf h (kh, �h)− φ

2
kh

((
kh
)′

kh
− 1

)2

+ kh − (
kh)′] , (149)

(
θ h)′ = ρ ln θ h + σ

(
εh)′ , (150)

where V is the optimal value function,
((

ε1
)′

, . . .,
(
εN
)′)
 ∼ N (0N ,�);

k ≡ (
k1, . . ., kN

)
and θ ≡ (

θ1, . . ., θN
)
.

Again, we assume that the solution to DP problem (148)–(150) is interior and, hence,
satisfies the FOCs and envelope condition, which are, respectively, given by

βE
[
Vkh

(
k′, θ ′)] = λ

[
1 + φ ·

(
kh

t+1

kh
t

− 1
)]

, (151)

τ huh
c

(
ch, �h) = λ, (152)

uh
�

(
ch, �h) τ h = −λθ hf h

�

(
kh, �h) , (153)

Vkh (k,θ) = λ

[
1 + θ hf h

k

(
kh, �h)+ φ

2

(((
kh
)′

kh

)2

− 1

)]
, (154)

where λ is the Lagrange multiplier associated with aggregate resource constraint (149).
A solution to dynamic programming problem (148)–(150) is an optimal value function

V that satisfies (148)–(154). For our planner’s problem, the Bellman equation implies
the Euler equation: by updating envelope condition (154) for the next period and by
substituting the resulting condition into (151), we obtain Euler equation (138).

11.4.2 Separating the Intertemporal and Intratemporal Choices
The value function iteration aims at approximating a solution to (148)–(154). As in
the case of the Euler equation methods, we separate the optimality conditions into the
intertemporal and intratemporal choice conditions; see Section 7.

Regarding the intertemporal choice, we combine (152) and (154) to obtain

uh
c

(
ch
t , �h

t

) [
π h

t + θ h
t f h

k

(
kh

t , �h
t

)] = Vkh (kt , θ t) , (155)

where oh
t and π h

t are given by (142) and (143), respectively. We next obtain a condition
that relates today’s and tomorrow’s derivatives of the value function by combining FOC
(151) and envelope condition (154) to eliminate λt ,

Vkh (kt , θ t) = β
[
π h

t + θ h
t f h

k

(
kh

t , �h
t

)]
oh

t
Et [Vkh (kt+1, θ t+1)] , (156)

where oh
t and π h

t are given by (142) and (143), respectively. This condition is parallel
to (95) for the one-agent model. We next premultiply (156) from both sides with kh

t+1,

446 Lilia Maliar and Serguei Maliar

rearrange the terms, and parameterize it with a flexible functional form to obtain

kh
t+1 = βEt [Vkh (kt+1, θ t+1)]

oh
t Vkh (kt , θ t)

[
π h

t + θ h
t f h

k

(
kh

t , �h
t

)]
kh

t+1 ≈ K̂ h (kt,θ t; bh) . (157)

The above condition is similar to Euler equation (141) and is written in a way that is
convenient for an iterative process.

As far as the intratemporal choice is concerned, conditions (149), (152), and (153)
under DP methods are identical to (136), (139), and (140) under the Euler equation
methods. As a result, we can use an identical solver for finding the intratemporal choice
(we use the iteration-on-allocation procedure described in Section 11.6). We shall recall
an important advantage of the DP approaches over the Euler equation approaches. In the
former case, we only need to know the intratemporal choice in the current state, while
in the latter case, we must also find such a choice in J possible future states (integration
nodes).To be more specific,GSSA,EDS, and SMOL-JMMV have to solve for

{
c′
m, j , �

′
m, j

}
satisfying (136), (139), and (140), which is expensive. We do not need to solve for those
quantities under the DP approach described in this section.

11.4.3 Envelope ConditionMethod Iterating on Value Function
ECM-VF is a variant of the ECM method that iterates on value function.

Steps of ECM-VF
• Initialization:

(a) Parameterize Kh (kt,θ t) and V (kt , θ t) with flexible functional forms K̂ h
(
kt,θ t; bh

)
and V̂ (kt,θ t;�), respectively.

(b) Fix simulation length T and initial condition (k0, θ0). Draw and fix for all sim-
ulations a sequence of productivity levels {θ t}t=1,...,T using (137).

(c) Choose integration nodes, ε j = (
ε1

j , . . ., εN
j

)
, and weights,ωj , j = 1, . . ., J .

(d) Construct next-period productivity, θ t+1,j = (
θ h

t+1,j , . . ., θ
h
t+1,j

)
with θ h

t+1,j =(
θ h

t

)ρ
exp

(
εh

j

)
for all j.

(e) Make an initial guess on the coefficient vectors
(
b1
)(1)

, . . .,
(
bh
)(1)

.
Iterative cycle.At iteration i, given

(
b1
)(i)

, . . .,
(
bN
)(i)

, perform the following steps.
• Step 1. Simulation of the solution.

Use the assumed capital decision functions kh
t+1 = K̂ h

(
kt , θ t; (bh)(i)

)
, h = 1, . . ., N ,

to recursively calculate a sequence of capital stocks {kt+1}t=0,...,T corresponding to a
given sequence of productivity levels {θ t}t=0,...,T .

• Step 2. Computation of the intratemporal choice.
Compute {ct , �t} satisfying (136),(139),and (140),given {kt , θ t , kt+1} for t = 0, . . ., T .

• Step 3. Approximation of conditional expectation.
For t = 0, . . ., T − 1,

Numerical Methods for Large-Scale Dynamic Economic Models 447

(a) compute kh
t+1 = K̂ h

(
kt , θ t; (bh)(i)

)
and π h

t ;

(b) find �̂ satisfying V (kt , θ t; �̂) = ∑N
h=1 τ

huh
(
ch
t , �h

t

) + β
∑J

j=1 ωjV(
kt+1, θ t+1,j; �̂

)
;

(c) use V (·; �̂) to find Vkh (kt , θ t; �̂) and to infer Vkh

(
kt+1, θ t+1,j; �̂

)
for

j = 1, . . ., J ;
(d) evaluate conditional expectation in (157) and compute

eh
t ≡ β

∑J
j=1 ωj · Vkh

(
kt+1, θ t+1,j; �̂

)
oh

t Vkh (kt , θ t; �̂)

[
π h

t + θ h
t f h

k

(
kh

t , �h
t

)]
kh

t+1,

where oh
t and π h

t are given by (142) and (143), respectively.
• Step 4. Computation of bh that fits the values k̂h

t+1 on the grid.

Find
{

b̂h
}h=1,...,N

such that

b̂h ≡ arg min
bh

T∑
t=1

∥∥eh
t − K̂ h (kt , θ t; bh)∥∥ .

• Step 5. Updating of the coefficient vectors. For each country h = 1, . . ., N , compute the
coefficient vector for the subsequent iteration i + 1 using FPI (145).
Iterate on Steps 1–5 until the convergence criterion (147) is satisfied.

Computational Details
To start the iterative process, we use an initial guess: kh

t+1 = 0.9kh
t + 0.1θ h

t for all h =
1, . . ., N , and we assume kh

0 = 1 and θ h
0 = 1 for all h = 1, . . ., N . The simulation length

is T = 2, 000. We use complete ordinary polynomials of degrees two and three. To
approximate integrals in Step 3, we use a monomial integration rule M1 with 2N nodes
as in (63). In Step 4, we use a least-squares truncated QR factorization method. The
damping parameter is ξ = 0.05 and the tolerance parameter is ϑ = 7.

11.4.4 Envelope ConditionMethod Solving for Derivatives of Value Function
ECM-DVF is a variant of the ECM method that iterates on derivatives of value function.
We use (155) to approximate the derivative of value function, Vkh (·) ≈ V̂ kh

(·;� h
)
.

The Steps of ECM-DVF
The steps that are identical to those in ECM-VF are omitted.
• Initialization:

(a) Parameterize Kh (kt , θ t) and Vkh (kt , θ t) with flexible functional forms K̂ h
(
kt , θ t;

bh
)

and V̂ kh

(
kt , θ;� h

)
,respectively (in both cases,we use ordinary polynomials).

…
Iterative cycle.At iteration i, given

(
b1
)(i)

, . . .,
(
bN
)(i)

, perform the following steps.

448 Lilia Maliar and Serguei Maliar

• Step 1.
…

• (b) find dh
t ≡ uh

c

(
ch
t , �h

t

) [
π h

t + θ h
t f h

k

(
kh

t , �h
t

)]
and find �̂ h ≡ arg min� h∥∥dh

t − Vkh

(
kt , θ t;� h

)∥∥ , h = 1, . . ., N ;
(c) use Vkh

(·; �̂ h
)

to infer Vkh

(
kt+1, θ t+1,j; �̂ h

)
for j = 1, . . ., J ;

…
• Step 3. Approximation of conditional expectation.

For t = 0, . . ., T − 1,
(a) compute kh

t+1 = K̂ h
(
kt , θ t; (bh)(i)

)
and π h

t ;
(b) find derivative of value function in (155), dh

t ≡ uh
c

(
ch
t , �h

t

) [
π h

t + θ h
t f h

k

(
kh

t , �h
t

)]
;

(c) find
{
�̂ h
}h=1,...,N

such that

�̂ h ≡ arg min
� h

∥∥dh
t − V̂ kh

(
kt , θ t;� h)∥∥ ;

(d) evaluate conditional expectation in (157) and compute

eh
t ≡

β
∑J

j=1 ωj · V̂ kh

(
kt+1,

(
θ h

t+1,j

)′ ;� h

)
oh

t V̂ kh

(
kt , θ t;� h

) [
π h

t + θ h
t f h

k

(
kh

t , �h
t

)]
kh

t+1,

where oh
t and π h

t are given by (142) and (143), respectively.
• …

Computational Details
The computational choice for ECM-DVF is the same as that for ECM-VF.

11.5 Hybrid of Local and Global Solutions
We consider a version of the hybrid perturbation-based method of Maliar et al. (2013)
who implement this algorithm for model (135)–(137) studied here; we reproduce the
results from that paper.The implementation of the hybrid perturbation-based method is
summarized in the last column of Table 20.

As a first step, we compute a solution to model (135)–(137) using the standard per-
turbation method in levels; to this purpose, we use the Dynare software. We keep the
capital policy functions K̂ h

(
kt , θ t; bh

)
, h = 1, . . ., N that are delivered by Dynare and

we discard all the other policy functions (i.e., consumption and labor).
When simulating the solutions and evaluating their accuracy, we proceed as under

global Euler equation methods. Namely,we first construct a path for capital,{ki+1}τ=0,...,T ,
and subsequently fill in the corresponding intratemporal allocations {ci, �i}i=1,...,I by solv-
ing (136), (139), and (140) for each given {ki, θ i, ki+1}. In this step, we use the iteration-
on-allocation solver as described in Section 11.6.

Numerical Methods for Large-Scale Dynamic Economic Models 449

11.6 Solving for Consumption and Labor Using Iteration-on-Allocation
Maliar et al. (2011) emphasize the importance of solving accurately for intratemporal
choice for the overall accuracy of solutions; see their Table 1 and see our Table 11 and
a related discussion. Also, the comparison results of Kollmann et al. (2011b) lead to the
same conclusion: the residuals in the intratemporal choice conditions are larger than the
residuals in the intertemporal choice conditions by an order of magnitude and they drive
the overall accuracy down for all the methods. An exception is two methods described
in Maliar et al. (2011), which solve for all the intratemporal choice variables exactly (up
to a given degree of accuracy). Below, we describe the iteration-on-allocation method
which is used by the two methods studied in Maliar et al. (2011), as well as by all methods
presented in Section 11.

Parameterization of the Model
We solve one of the multicountry models studied in the comparison analysis of Kollmann
et al. (2011b),namely,Model II with an asymmetric specification.21 The parameterization
of this model is described in Juillard and Villemot (2011). The utility and production
functions are given by

uh (ch
t , �h

t

) =
(
ch
t

)1−1/γ h

1 − 1/γ h
− Bh

(
�h

t

)1+1/ηh

1 + 1/ηh
, θ h

t f h (kh
t , �h

t

) ≡ θ h
t A
(
kh

t

)α (
�h

t

)1−α − δkh,

(158)
where

{
γ h, Bh, ηh

}
are the utility-function parameters;α is the capital share in production;

A is the normalizing constant in output.The country-specific utility-function parameters
γ h and ηh are uniformly distributed in the intervals [0.25, 1] and [0.1, 1] across countries
h = 1, . . ., N , respectively. The values of common-for-all-countries parameters are α =
0.36,β = 0.99, δ = 0.025, σ = 0.01, ρ = 0.95,φ = 0.5. The steady-state level of

productivity is normalized to one, θ
h = 1. We also normalize the steady-state levels

of capital and labor to one, k
h = 1, �

h = 1, which implies ch = A, λ = 1 and leads
to A = 1−β

αβ
, τ h = uh (A, 1), and Bh = (1 − α) A1−1/γ h

. We chose this parameterization
because it represents all challenges posed in the JEDC comparison analysis,namely,a large
number of state variables,endogenous labor-leisure choice,heterogeneity in fundamentals,
and the absence of closed-form expressions for next-period state and control variables in
terms of the current state variables.22

Iteration-on-Allocation
We now show how to solve for the intratemporal choice under assumptions (158) using
the iteration-on-allocation solver. Our objective is to solve for {c, �} that satisfy (136),

21 In total, there are four models,Models I–IV, studied in Kollmann et al. (2011b), and each of these models
has symmetric and asymmetric specifications.

22 Model I has a degenerate labor-leisure choice and Models III and IV are identical to Model II up to specific
assumptions about preferences and technologies. Juillard andVillemot (2011) provide a description of all
models studied in the comparison analysis of Kollmann et al. (2011b).

450 Lilia Maliar and Serguei Maliar

(139), and (140) for given {k, θ , k′}. Under parameterization (158), these conditions can
be represented as

�h =
[
θ h
(
kh
)α

τ 1B1

θ1 (k1)α τ hBh

] ηh

1+αηh (
�1) ηh(1+αη1)

η1(1+αηh) h = 2, . . ., N , (159)

ch =
[

(1 − α) θ hA
(
kh
)α (

�h
)−α

Bh
(
�h
)1/ηh

]γ h

, (160)

�̂1 =

⎡
⎢⎢⎢⎢⎣
∑N

h=1

[
ch + (

kh
)′ − kh + φ

2 kh

(
(kh)′

kh − 1
)2
]

−∑N
h=2 θ

hA
(
kh
)α (

�h
)1−α

θ1A (k1)α

⎤
⎥⎥⎥⎥⎦

1
1−α

,

(161)
where �̂1 is a new value of labor of country 1. Condition (159) is obtained by finding a
ratio of (139) for two agents, condition (160) follows by combining (139) and (140), and
condition (161) follows from (136). For given {k, θ , k′}, equations (159)–(161) define
a mapping �̃1 = !

(
�1
)
. We iterate on labor of the first country, �1, as follows: assume

some initial �1; compute �h, h = 2, . . ., N , from (159); find ch, h = 1, . . ., N , from (160);
obtain �̂1 from (161) and stop if �1 = �̂1 with a given degree of accuracy; compute the
next-iteration input as (1 − ς) �1 + ς�̂1 and go to the next iteration, where ς = 0.01
is a damping parameter. Our criterion of convergence is that the average difference of
labor choices in two subsequent iterations is smaller than 10−10.

When Iteration-on-Allocation is Used
Iteration-on-allocation allows us to solve for {c, �} that satisfy (136), (139), and (140)
for any given triple {k, θ , k′}. For stochastic simulation methods, we use iteration-on-
allocations twice:first,we find {ct , �t} that solve (136), (139), and (140) for all (kt , θ t , kt+1)
that are realized in simulation. Second, we find

{
ct+1,j , �t+1,j

}
that solve the same system

(136),(139),and (140) in J integration nodes that correspond to each simulation point,i.e.,
we find the intratemporal choice for all possible state (kt+1, θ t+1,j , kt+2,j) that may occur at
t+1 given the state (kt , θ t , kt+1) at t.Thus,in the inner loop,we solve for the intratemporal
choice T × (J + 1) times: for T simulated points and for T × J possible future states.

Similarly, for projection methods operating on a prespecified grid, we use iteration-
on-allocation twice:first,we find {c, �} that solve (136), (139), and (140) for all grid points(
km, θm, k′

m

)
, where k′

m is determined by an intertemporal choice function. Second, we
find

{
c′
m, j , �

′
m, j

}
that solve the same system (136), (139), and (140) for J integration nodes

that correspond to each grid point, i.e., for all
(
k′

m, θ ′
m, j , k′′

m, j

)
where k′′

m, j is also known.
Thus, in the inner loop, we solve for the intratemporal choice M × (J + 1) times: for M
grid points and for M × J possible future states.

Numerical Methods for Large-Scale Dynamic Economic Models 451

Finally,we also use iteration-on-allocation when simulating the model and evaluating
the accuracy of solutions. Namely, we first construct a path for capital, {kτ+1}t=0,...,T , and
subsequently fill in the corresponding intratemporal allocations {cτ , �τ }τ=1,...,T by solving
(136), (139), and (140) for each given {kτ , θ τ , kτ+1}.This procedure leads to very accurate
solutions. However, since the intratemporal choice is defined implicitly, simulating the
model is more expensive than under explicitly defined intratemporal choice functions.
We use a vectorized version of the iteration-on-allocation method that is very fast in
MATLAB.

Initial Guess and Bounds
To start the iteration-on-allocation method, we assume that consumption and labor are
equal to their steady-state values. To enhance the numerical stability on initial iterations
when the solution is inaccurate, we impose fixed lower and upper bounds (equal to 50%
and 150% of the steady-state level, respectively) on labor.This technique is similar to the
moving bounds used in Maliar and Maliar (2003b) to restrict explosive simulated series.
With the bounds imposed, the iteration-on-allocation procedure was numerically stable
and converged to a fixed point at a good pace in all of our experiments.

Partial Convergence
We shall draw attention to an important aspect of the implementation of iteration-on-
allocation in iterative cycles. Finding consumption and labor allocations with a high
degree of accuracy on each outer-loop iteration has a high computational cost and is in
fact of no use, since on the next iteration we must recompute consumption and labor
allocations for a different intratemporal choice.We thus do not target any accuracy criteria
in consumption and labor allocations in each iteration of the outer loop, but instead
perform 10 subiterations on (159)–(161). We store in memory consumption and labor
allocations obtained at the end of the outer loop, and we use these allocations as inputs
for the next round of the iteration-on-allocation process.Thus, as the decision functions
for capital are refined along the iterations, so do our consumption and labor allocations.

11.7 Accuracy Measures
The measure of accuracy of solutions is the size of residuals in 3N + 1 optimality condi-
tions, namely,optimality conditions (138)–(140) for h = 1, . . ., N and aggregate resource
constraint (136). We represent all the conditions in a unit-free form by

REE,h
i = βE

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
λ′

i

[
1 + φ

2

((
(kh

i)
′

kh
i

)2

− 1

)
+ (

θ h
i

)′
f h
k

((
kh

i

)′
,
(
�h

i

)′)]

λi

[
1 + φ

(
(kh

i)
′

kh
i

− 1
)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

− 1, (162)

RMUC,h
i = λi

uh
c

(
ch
i , �h

i

)
τ h

− 1, (163)

452 Lilia Maliar and Serguei Maliar

RMUL,h
i = λiθ

h
i f h

�

(
kh

i , �h
i

)
uh
�

(
ch
i , �h

i

)
τ h

+ 1, (164)

RBC
i =

∑N
h=1

[
φ

2 kh
i

(
(kh

i)
′

kh
i

− 1
)2
]

∑N
h=1

[
ch
i + (

kh
i

)′ − kh
i − θ h

i f h
(
kh

i , �h
i

)] − 1. (165)

We report two accuracy statistics, namely, the average and maximum absolute residuals
across 3N + 1 conditions computed in a given set of points.

Domains on Which Accuracy Is Evaluated
We use two alternatives for a choice of points {(ki, θ i)}i=1,...,I in which the residuals are
evaluated: one is deterministic and the other is simulated. Our definition of implemen-
tation of accuracy checks is the same as the one used in Juillard andVillemot (2011).

Test 1. A deterministic set of points constructed to represent a given area of the state space. We fix
a value of r > 0 and draw 1,000 points {(ki, θ i)}i=1,...,1,000 such that the Euclidean distance
between each point and the steady state is exactly r , i.e., ‖(ki, θ i) − (1, 1)‖ = r , where
1 ∈ R

N represents the steady state, and ‖·‖ is the Euclidean norm. We consider three
different values for r = {0.01, 0.10, 0.30}. These values allow us to judge how accurate
the solution is on a short, medium, and long distance from the steady state.

Test 2. A set of simulated points constructed to represent an essentially ergodic set. We
draw a sequence of I = 10,200 shocks, calculate {θ i}i=1,...,10,200 using (137), and simulate
{ki}i=1,...,10,200 using the approximate solution

(
kh

i

)′ = K̂ h (ki, θ i). We start simulation
from the steady state (k0, θ0) = (1, 1), and we disregard the first 200 points to eliminate
the effect of the initial conditions.

11.8 Explicit Versus Implicit Solutions
Suppose a numerical algorithm has delivered a solution to model (135)–(137) in the

form of the capital decision functions
(
kh
)′ = K̂ h

(
k,θ; bh

)
, h = 1, . . ., N . Consider two

alternative methods for simulating the intratemporal choice:
1. Construct a parametric function �h = L̂h

(
k,θ; bh

)
and use this function to find

�h for each given (kt , θ t) in simulation (the corresponding ch can be found from FOC
(140)).

2. Find �h and ch that solve system (136), (139), and (140) using a numerical solver
(i.e., Newton’s method, iteration-on-allocation, etc.) for each given (kt , θ t).

It is clear that there is a trade-off between the accuracy and cost: providing explicit
decision functions allows us to simulate a solution more rapidly; however, it may result
in lower accuracy compared to the case when the intratemporal choice is characterized
implicitly. In the context of the studied model, Maliar et al. (2011) find that alternative 1
reduces accuracy by almost an order of magnitude compared to Alternative 2.The cost of

Numerical Methods for Large-Scale Dynamic Economic Models 453

Alternative 2 is moderate if one uses the iteration-on-allocation solver; see Maliar et al.
(2011),Table 2.

The same kind of trade-off is observed in the context of DP methods.That is, we can
construct explicitly both the value function, V , and some decision rules such as Kh, Ch,
and Lh, or we can construct explicitly only the value function V and define the decision
rules implicitly as a solution to optimality conditions in each point considered.

12. NUMERICAL RESULTS FOR THEMULTICOUNTRYMODEL

In this section, we assess the performance of the surveyed numerical methods in
the context of the multicountry model (135)–(137). We end the section by providing
practical recommendations on how to apply numerical solution methods more efficiently
in high-dimensional problems.

12.1 Projection Methods
We consider five projection methods; we list them in Table 21. CGA and MRGAL
compute a second-degree polynomial approximation; the EDS method computes both
second- and third-degree polynomial approximations (we call them EDS2 and EDS3,
respectively); and SMOL-JMMV and SMOL-MKK compute an approximation that uses
a mixture of the second- and fourth-degree Chebyshev polynomial terms.

Running Times
For each method inTable 22,we report the running times needed to solve the models with
N = 2, 4, 6, 8 countries. A precise comparison of the computational cost of the studied
methods is not possible because different methods are implemented using different hard-
ware and software. Nonetheless, the running times in the table provide us with some idea
about the cost of different methods. MRGAL and SMOL-MKK use Newton’s solvers
which are fast for small N (i.e., N = 2 and N = 4) but expensive for large N (MRGAL
uses a Newton’s method to solve for the coefficients of the approximating polynomials,
and SMOL-MKK uses such a method to implement time iteration). In turn, the SMOL-
JMMV,EDS, and CGA methods use FPI that avoids the need of numerical solvers. EDS2
becomes fastest for larger N (i.e.,N = 6 and N = 8). Overall,the cost of the EDS method

Table 21 Participating projection algorithms.

Abbreviation Name and the article

SMOL-JMMV Smolyak method with iteration-on-allocation and FPI of Judd et al. (2013)
EDS ε-distiguishable set algorithm of Judd et al. (2012)
CGA Cluster grid algorithm of Maliar et al. (2011)
MRGAL Monomial rule Galerkin method of Pichler (2011)
SMOL-MKK Smolyak method of Malin et al. (2011)

454 Lilia Maliar and Serguei Maliar

Table 22 Running times (in seconds) for the projection methods.a

N SMOL-JMMV EDS2 EDS3 CGA MRGAL SMOL-MKK

2 109.5 13 20 1602.1 1.4 2.2
4 526.3 80 40 3293.4 16.0 117.1
6 1491.6 135 152 7155.7 197.3 1674.9
8 4216.7 496 4279 27785.8 2373.8 12126.8

aNotes: The following software and hardware are employed:MATLAB 7 on an Intel(R) Core(TM) 2 CPU,3 GHz, 4 GB
RAM (for MRGAL); Intel Fortran 8.0 on an Intel (R) Xeon (TM) 2.80 GHz CPU, 12 GB RAM (for SMOL-MKK);
MATLAB 7 on a Quad Intel(R) Core(TM) i7 CPU920, 2.67 GHz, 6 GB RAM (for EDS and CGA); MATLAB 7
on Intel(R) Core(TM) i7 CPU920 2.67 GHz, 6 GB RAM (for SMOL-JMMV). The results for MRGAL, CGA, and
SMOL-MKK are reproduced from Kollmann et al. (2011b), Table 3. The remaining results are our own computations.

grows slowly with N even under third-degree polynomials.The difference between CGA
and EDS consists not only in using distinct grid points (cluster grid versus EDS grid) but
also in using different integration formulas (EDS uses a cheap monomial formula M1 and
CGA implements a two-step procedure,first using M1 and then using Q (2));the differing
cost of integration accounts for most of the difference in cost between EDS and CGA.

Accuracy on a Sphere
InTable 23, we report the absolute size of unit-free residuals on spheres of different radii;
see Test 1 in Section 11.7. There are several differences across the methods that criti-
cally affect their accuracy. First, the EDS and CGA methods find a solution in a high-
probability area of the state space while SMOL-JMMV, MRGAL, and SMOL-MKK
operate on hypercubes that are exogenous to the model. Second, SMOL-JMMV, EDS,
and CGA solve for the intratemporal choice exactly (using iteration-on-allocation),while
MRGAL and SMOL-MKK approximate some of the intratemporal choice variables with
state contingent functions. Finally, SMOL-JMMV and SMOL-MKK have more flexible
approximating functions than do EDS2,CGA, and MRGAL methods (Smolyak polyno-
mial consists of a mixture of second- and fourth-degree polynomial terms and has four
times more terms than a complete second-degree polynomial).

The accuracy ranking of the studied methods is affected by all the above factors. The
ergodic set methods (EDS and CGA) fit polynomials in a smaller area than do the SMOL-
JMMV,MRGAL,and SMOL-MKK methods that operate on exogenous grids.As a result,
the former methods tend to deliver more accurate solutions near the steady state than
the latter methods.The SMOL-JMMV,EDS3, and SMOL-MKK have an advantage over
the other methods because they use more flexible approximating functions. However,
the overall accuracy of the MRGAL and SMOL-MKK methods is dominated by large
errors in the intratemporal choice conditions. In particular, Kollmann et al. (2011b)
compare the size of residuals across the model’s equations and find that the residuals in
the intratemporal choice conditions are larger than those in the intertemporal choice
conditions for the MRGAL and SMOL-MKK methods. In contrast, for the SMOL-
JMMV, EDS, and CGA methods, such errors are zero by construction. Finally, EDS2

Numerical Methods for Large-Scale Dynamic Economic Models 455

performs somewhat better than CGA, which suggests that a uniform EDS grid leads to

Table 23 Accuracy of the projection methods on a sphere.

N SMOL-JMMV EDS2 EDS3 CGA MRGAL SMOL-MKK

Radius r = 0.01

2 −6.75 −6.00 −6.94 −6.02 −5.00 −5.00
4 −6.30 −6.24 −7.65 −6.26 −5.11 −4.78
6 −6.47 −6.31 −7.62 −6.13 −4.95 −4.66
8 −6.36 −5.95 −7.48 −6.03 −4.98 −4.52

Radius r = 0.10

2 −5.85 −4.55 −5.86 −4.28 −4.19 −4.40
4 −5.61 −4.78 −5.95 −4.58 −4.40 −4.53
6 −5.67 −5.07 −6.14 −4.88 −4.43 −4.52
8 −5.80 −5.10 −6.16 −4.96 −4.52 −4.45

Radius r = 0.30

2 −4.60 −3.18 −4.11 −2.82 −2.50 −3.29
4 −4.61 −3.47 −4.30 −3.12 −2.91 −3.73
6 −4.68 −3.50 −4.39 −3.43 −3.23 −3.86
8 −4.83 −3.63 −4.46 −3.71 −3.57 −4.07

Notes: The numbers reported are maximum absolute residuals (in log10 units) across all equilibrium conditions and 1,000
draws of state variables located on spheres in the state space (centered at steady state) with radii 0.01, 0.10, and 0.30,
respectively. The results for MRGAL, CGA, and SMOL-MKK are reproduced from Kollmann et al. (2011b), Table 4.
The remaining results are our own computations.

Table 24 Accuracy of the projection methods on a stochastic simulation.

N SMOL-JMMV EDS2 EDS3 CGA MRGAL SMOL-MKK

Average residuals

2 −6.70 −6.20 −7.40 −6.38 −5.69 −5.78
4 −6.24 −6.23 −7.42 −6.42 −5.92 −5.93
6 −6.13 −6.28 −7.50 −6.45 −6.05 −5.99
8 −6.13 −6.31 −7.45 −6.40 −6.09 −5.96

Maximum residuals

2 −4.42 −4.34 −5.33 −4.50 −3.50 −3.64
4 −4.27 −4.43 −5.30 −4.48 −3.80 −3.63
6 −4.35 −4.46 −5.40 −4.39 −3.85 −3.83
8 −4.41 −4.63 −5.48 −4.54 −3.91 −3.77

Notes: The numbers reported are average (top panel) and maximum (bottom panel) absolute residuals (log10 units),
taken across all equilibrium conditions and all periods for a stochastic simulation of 10,000 periods. The results for
MRGAL, CGA, and SMOL-MKK are reproduced from Kollmann et al. (2011b), Table 5. The remaining results are our
own computations.

456 Lilia Maliar and Serguei Maliar

more accurate approximations than a grid of clusters, which is less uniform and mimics
the density function of the underlying distribution.

Accuracy on a Stochastic Simulation
In Table 24, we report the absolute size of unit-free residuals on a stochastic simulation;
see Test 2 in Section 11.7. The tendencies here are similar to those we observed in
the test on the spheres. Focusing on the essentially ergodic set, having a more flexible
approximating function, and solving for the intratemporal choice accurately are factors
that increase the accuracy of solutions. Moreover, since the accuracy is evaluated on a
stochastic simulation, the ergodic set methods,EDS and CGA,have the highest chance to
be accurate (because the area in which the accuracy is evaluated coincides with the area in
which their polynomials are fit) and as a result,overperform the SMOL-JMMV,MRGAL,
and SMOL methods which are designed to perform well on exogenous domains.

12.2 Generalized Stochastic Simulation Methods
Stochastic simulation methods find solutions by recomputing the series of endogenous
state variables on each iteration (the exogenous state variables are held fixed). We con-
sider two stochastic simulation methods, SSA and GSSA. The former is a version of the
GSSA algorithm that participated in the comparison analysis of Kollmann et al. (2011b);
it computes linear solutions using a one-node Monte Carlo integration rule. The latter
version of GSSA is implemented exclusively in this chapter; we compute second- and
third-degree polynomial approximations using three alternative integration rules,namely,
one-node Monte Carlo, one-node Gauss-Hermite quadrature, and 2N -node monomial
rules described in Sections 5.3, 5.1, and 5.2, respectively. The corresponding methods
are referred to as GSSA-MC, GSSA-Q(1), and GSSA-M1, respectively. For SSA stud-
ied in Kollmann et al. (2011b), a simulation is of length T = 10,000 observations. For
GSSA-MC,GSSA-Q(1), and GSSA-M1,we use a shorter simulation length,T = 2, 000.

We list the studied methods in Table 25. A detailed description of SSA is provided
in Maliar et al. (2011). A general description of GSSA is provided in Section 4.2; in

Table 25 Participating stochastic simulation methods.

Abbreviation Name

SSA Stochastic simulation algorithm of Maliar et al. (2011)
GSSA-MC Generalized stochastic simulation algorithm of Judd et al. (2011b) using a

one-node MC integration
GSSA-Q(1) Generalized stochastic simulation algorithm of Judd et al. (2011b) using a

one-node quadrature
GSSA-M1 Generalized stochastic simulation algorithm of Judd et al. (2011b) using a

monomial rule

Numerical Methods for Large-Scale Dynamic Economic Models 457

Table 26 Running times (in seconds) of the stochastic simulation methods.

N SSA GSSA2-MC GSSA3-MC GSSA2-Q(1) GSSA3-Q(1) GSSA2-M1 GSSA3-M1

2 1118.1 930 1560 1134 1759 5062 24530
4 2248.0 2355 10516 2475 12002 14018 22391
6 3360.4 5052 – 5694 67407 19612 34457
8 4833.4 10057 – 11654 282437 34171 110041

Notes: The software and hardware employed are as follows: MATLAB 7 on a Quad Intel(®) Core(™) i7 CPU920,
2.67GHz, 6 GB RAM. The results for SSA are reproduced from Kollmann et al. (2011b), Table 3 (in terms of notations
used for the other methods, SSA means GSSA1-MC). The remaining results are our own computations.

Section 11.3.4, we elaborate a description of this method for the studied multicountry
model. More details about GSSA are available in Judd et al. (2011b).

Running Times
Table 26 reports the running times for the GSSA methods considered. All the results
are produced by employing the same software and hardware, so that the comparison of
running times across the studied methods is informative. The table shows that having
more integration nodes and polynomial terms increases the cost, and the higher is the
dimensionality of the problem, the larger is the increase in cost. For example,while under
N = 2, the difference in the running time between GSSA2-Q(1) and GSSA3-Q(1) is
by a factor less than 2, and under N = 8, this difference is larger than by a factor 20.

Accuracy on a Sphere
The results for the accuracy test on a sphere are presented inTable 27.The following ten-
dencies are observed: First, the accuracy of solutions increases with both the degree of an
approximating polynomial function and the accuracy of integration methods (GSSA3-M1
is the most accurate method in the table). Second,Monte Carlo integration is substantially
less accurate than the quadrature and monomial rules, especially for r = 0.3. Moreover,
GSSA3-MC explodes for N = 6, 8. Among the three methods that use Monte Carlo
integration, SSA (that computes linear solutions) is the most accurate, and GSSA3-MC is
the least accurate. In this case, large integration errors dominate the accuracy of solutions
and a higher degree of polynomials does not lead to more accurate solutions. Further-
more, a simple one-node deterministic rule Q(1) leads to sufficiently accurate solutions,
in particular, for a large radius, r = 0.3. Finally, under accurate monomial integration
rule M1, the accuracy levels produced by stochastic simulation methods are comparable
to those produced by the projection methods studied in Section 12.1.

Accuracy on a Stochastic Simulation
The results for the accuracy test on a stochastic simulation are presented inTable 28.Again,
the tendencies are similar to those we have observed in the test on the spheres. Accurate

458 Lilia Maliar and Serguei Maliar

Table 27 Accuracy of the stochastic simulation methods on a sphere.

N SSA GSSA2-MC GSSA3-MC GSSA2-Q(1) GSSA3-Q(1) GSSA2-M1 GSSA3-M1

Radius r = 0.01

2 −4.21 −4.33 −4.05 −4.98 −5.04 −6.11 −7.59
4 −4.00 −3.63 −3.63 −5.11 −4.85 −6.35 −7.69
6 −4.12 −3.58 – −4.97 −4.81 −6.43 −7.78
8 −4.02 −3.52 – −4.94 −4.79 −6.45 −7.13

Radius r = 0.10

2 −2.97 −3.26 −2.92 −4.50 −5.01 −4.60 −5.96
4 −3.03 −2.58 −2.57 −4.41 −4.84 −5.09 −5.96
6 −3.14 −2.48 – −4.42 −4.80 −5.05 −6.07
8 −3.15 −2.30 – −4.47 −4.78 −5.13 −5.55

Radius r = 0.30

2 −2.03 −2.31 −1.57 −3.20 −4.06 −3.21 −4.19
4 −2.20 −1.51 −1.20 −3.23 −4.29 −3.60 −4.38
6 −2.43 −1.53 – −3.22 −4.38 −3.49 −4.38
8 −2.41 −1.21 – −3.33 −4.43 −3.64 −4.00

Notes: The numbers reported are maximum absolute residuals (in log10 units) across all equilibrium conditions and 1,000
draws of state variables located on spheres in the state space (centered at steady state) with radii 0.01, 0.10, and 0.30. The
results for SSA are reproduced from Kollmann et al. (2011b), Table 4.

Table 28 Accuracy of the stochastic simulation methods on a simulation.

N SSA GSSA2-MC GSSA3-MC GSSA2-Q(1) GSSA3-Q(1) GSSA2-M1 GSSA3-M1

Average residuals

2 −4.79 −4.77 −4.56 −5.70 −5.72 −6.31 −7.48
4 −4.69 −4.05 – −5.71 −5.51 −6.32 −7.45
6 −4.71 −3.90 – −5.59 −5.46 −6.39 −7.39
8 −4.65 −3.83 – −5.54 −5.44 −6.41 −6.87

Maximum residuals

2 −3.12 −3.10 −2.53 −4.24 −4.82 −4.28 −5.22
4 −3.17 −2.57 – −3.91 −4.71 −4.45 −5.27
6 −3.05 −2.42 – −4.13 −4.74 −4.50 −5.19
8 −3.14 −2.30 – −4.26 −4.73 −4.58 −5.14

Notes: The numbers reported are averages (top panel) and maximum (bottom panel) absolute residuals (in log10 units),
computed across all equilibrium conditions and all periods for a stochastic simulation of 10,000 periods. The results for
SSA are reproduced from Kollmann et al. (2011b), Table 5.

Numerical Methods for Large-Scale Dynamic Economic Models 459

integration methods and flexible approximating functions are important for accurate
solutions. The performance of the Monte Carlo integration method is poor, while a
simple Q(1) method produces sufficiently accurate solutions in the studied examples.

12.3 Dynamic ProgrammingMethods
In this section, we study the ECM method. Recall that the ECM method has the advan-
tage over the Euler equation methods that it solves for control variables only at present
and does not need to find such variables in all integration nodes. This advantage can be
especially important in high-dimensional problems as the number of integration nodes
grows with dimensionality. We consider two versions of ECM, one that solves for value
function,ECM-VF,and the other that solves for derivatives of value function,ECM-DVF.
We use a 2N -node monomial integration rule and we assume the simulation length of
T = 2, 000 observations. The considered methods are listed in Table 29.

A general description of ECM-VF and ECM-DVF methods is provided in Section 7;
in Sections 11.4.3 and 11.4.4,we elaborate a description of these methods for the studied
multicountry model. More details about these methods are available from Maliar and
Maliar (2012a,b, 2013). Both ECM-VF and ECM-DVF compute second- and third-
degree polynomial approximations.

Running Times
In Table 30, we provide running times for the ECM methods. We observe that the
convergence of ECM-VF is considerably faster than that of ECM-DVF.

Table 29 Participating Bellman methods.

Abbreviation Name and the article

ECM-VF Envelope condition method iterating on value function of Maliar and
Maliar (2012a)

ECM-DVF Envelope condition method iterating on derivatives of value function
of Maliar and
Maliar (2012a)

Table 30 Running times (in seconds) of the ECMmethods.

N ECM2-VF ECM3-VF ECM2-DVF ECM3-DVF

2 29 34 1189 1734
4 155 1402 2039 8092
6 629 21809 2723 38698
8 2888 89872 4541 165911

Notes: The software and hardware employed are as follows: MATLAB 7 on a Quad Intel(®) Core(™) i7 CPU920,
2.67 GHz, 6 GB RAM. These results are reproduced from Maliar and Maliar (2012a), Table 2.

460 Lilia Maliar and Serguei Maliar

Table 31 Accuracy of the ECMmethods on a sphere.

N ECM2-VF ECM3-VF ECM2-DVF ECM3-DVF

Radius r = 0.01

2 −3.66 −3.71 −5.73 −6.95
4 −3.66 −3.68 −5.61 −6.52
6 −3.64 −3.66 −5.71 −6.37
8 −3.62 −3.68 −5.65 −6.46

Radius r = 0.10

2 −2.69 −2.72 −4.49 −5.56
4 −2.70 −2.74 −4.61 −5.51
6 −2.68 −2.69 −4.48 −5.12
8 −2.65 −2.66 −4.34 −4.82

Radius r = 0.30

2 −2.13 −2.18 −3.14 −4.08
4 −2.13 −2.20 −3.53 −3.98
6 −2.08 −2.16 −3.44 −3.74
8 −2.04 −2.01 −3.31 −3.40

Notes: The numbers reported are maximum absolute residuals (in log10 units) across all equilibrium conditions and 1,000
draws of state variables located on spheres in the state space (centered at steady state) with radii 0.01, 0.10, and 0.30.These
results are reproduced from Maliar and Maliar (2012a), Tables 3 and 4, respectively.

Table 32 Accuracy of the ECMmethods on a simulation.

N ECM2-VF ECM3-VF ECM1-DVF ECM2-DVF ECM3-DVF

Average residuals

2 −3.97 −4.01 −4.82 −6.06 −7.10
4 −3.86 −3.90 −4.82 −6.01 −6.87
6 −3.84 −3.88 −4.83 −5.88 −6.61
8 −3.83 −3.90 −4.84 −5.72 −6.46

Maximum residuals

2 −2.51 −2.51 −3.01 −4.21 −4.93
4 −2.48 −2.50 −3.19 −4.32 −4.89
6 −2.47 −2.51 −3.26 −4.27 −4.76
8 −2.48 −2.48 −3.39 −4.16 −4.71

Notes: The numbers reported are averages (top panel) and maximum (bottom panel) absolute residuals (in log10 units),
computed across all equilibrium conditions and all periods for a stochastic simulation of 10,000 periods.These results are
reproduced from Maliar and Maliar (2012a), Table 2.

Numerical Methods for Large-Scale Dynamic Economic Models 461

Accuracy on a Sphere
InTable 31,we report the results for the accuracy test on a sphere.We observe that ECM-
VF is considerably less accurate than ECM-DVF given the same degree of approximating
the polynomial.This is because if we approximate V with a polynomial of some degree,
we effectively approximate Vk with a polynomial of one degree less, i.e., we “lose” one
polynomial degree.

Accuracy on a Stochastic Simulation
InTable 32, we provide the results for the accuracy test on a stochastic simulation. Again,
ECM-DVF is considerably more accurate than ECM-DVF. The ECM-DVF solutions
are comparable in accuracy to the GSSA solutions; for comparison, see GSSA-M1 in
Table 28 that uses the same integration method, M1, as does ECM-DVF. We conclude
that value function iteration methods that approximate derivatives of value function can
successfully compete with the Euler equation methods.

12.4 Local Solution Methods
We assess the performance of perturbation methods and show that the accuracy of local
solutions can be considerably increased by using the techniques of a change of variables of
Judd (2003) and a hybrid of local and global solutions of Maliar et al. (2013). InTable 33,
we list the three perturbation-based methods considered. PER-LOG is a perturbation
method in logarithms of Kollmann et al. (2011a) which participate in the JEDC compar-
ison analysis. PER-L and HYB-L are the standard and hybrid perturbation methods in
levels that are described in Sections 9.1 and 9.4, respectively; see Maliar et al. (2011) for
a detailed description of these methods. PER-LOG computes perturbation solutions of
orders one and two,while PER-L and HYB-L compute perturbation solutions of orders
one, two, and three.

Running Times
The running times for all the perturbation methods are small; seeTable 34. For example,
the running time for PER1-LOG is one or two milliseconds, and that for PER2-LOG
is a few seconds.

Table 33 Participating perturbation methods.

Abbreviation Name

PER-LOG Perturbation method in logs of variables of Kollmann et al. (2011b)
PER-L Perturbation method in levels of variables of Maliar et al. (2012)
HYB-L Perturbation-based hybrid method of Maliar et al. (2012)

462 Lilia Maliar and Serguei Maliar

Table 34 Running times (in seconds) for the perturbation methods.

N PER1-L PER2-L PER3-L PER1-LOG PER2-LOG

2 0.0 0.0 0.0 0.1 0.3
4 0.1 0.1 0.5 0.1 0.5
6 0.1 1.1 1.6 0.2 1.8
8 0.0 0.1 1.3 0.2 4.3

Notes: The following software and hardware are employed: MATLAB 7 on an Intel(®) Pentium(®) 4 CPU,
3.06 GHz, 960 MB RAM (for PER-LOG); Dynare and C++ on workstation with two quad-core Intel®
Xeon X5460 processors (clocked at 3.16 GHz), 8 GB of RAM, and running 64 bit Debian GNU/Linux
(for PER-L and HPER-L). The results for PER-L and HPER-L are reproduced from Maliar et al. (2012),
Tables 1 and 2, and the results for PER-LOG are reproduced from Kollmann et al. (2011b), Table 5.

12.4.1 The Importance of the Change of Variables
The importance of the change of variables can be seen by comparing the results produced
by the loglinear perturbation solution methods of Kollmann et al. (2011a) and the linear
perturbation solution methods of Maliar et al. (2013).

Table 35 Accuracy of the perturbation methods on a sphere.

N PER1-L PER2-L PER3-L PER1-LOG PER2-LOG

Radius r = 0.01

2 −4.32 −5.26 −6.69 −3.04 −5.01
4 −4.34 −5.25 −6.34 −3.26 −4.92
6 −4.43 −5.29 −6.26 −3.50 −5.10
8 −4.60 −5.34 −6.23 −3.65 −5.35

Radius r = 0.10

2 −2.25 −3.64 −4.76 −1.07 −2.29
4 −2.27 −3.73 −5.26 −1.27 −1.93
6 −2.42 −3.88 −5.37 −1.48 −2.22
8 −2.55 −3.93 −5.48 −1.65 −2.41

Radius r = 0.30

2 −1.11 −1.99 −2.03 −0.29 −0.68
4 −1.13 −2.10 −3.13 −0.41 −0.53
6 −1.31 −2.36 −3.41 −0.54 −0.79
8 −1.47 −2.46 −3.51 −0.69 −1.02

Notes: The numbers reported are maximum absolute residuals (in log10 units) across all equilib-
rium conditions and 1,000 draws of state variables located on spheres in the state space (centered
at steady state) with radii 0.01, 0.10, and 0.30. The results for PER-LOG are reproduced from
Kollmann et al. (2011b), Table 4, and those for PER-L are reproduced from Maliar et al. (2012),
Tables 1 and 2.

Numerical Methods for Large-Scale Dynamic Economic Models 463

Table 36 Accuracy of the perturbation methods on a stochastic simulation.

N PER1-L PER2-L PER3-L PER1-LOG PER2-LOG

Average residuals

2 −3.05 −4.21 −5.18 −3.53 −4.84
4 −3.10 −4.37 −5.39 −3.67 −4.82
6 −3.22 −4.58 −5.65 −3.78 −4.92
8 −3.12 −4.43 −5.48 −3.86 −4.99

Maximum residuals

2 −1.55 −2.25 −2.97 −1.45 −2.30
4 −1.58 −2.54 −3.39 −1.44 −2.32
6 −1.64 −2.48 −3.34 −1.55 −2.16
8 −1.58 −2.40 −3.22 −1.67 −2.38

Notes: The numbers reported, in log10 units, are averages (top panel) and maxima (bottom
panel) of absolute values of the model’s residuals, where the averages/maxima are taken across all
equilibrium conditions and all dates for a stochastic simulation run of 10,000 periods.The results
for PER-LOG are reproduced from Kollmann et al. (2011b), Table 5, and those for PER-L are
reproduced from Maliar et al. (2012),Tables 1 and 2.

Accuracy on a Sphere
The results for the accuracy test on a sphere are reported in Table 35. Two tendencies
are observed from the table. First, the perturbation method in levels, PER-L, performs
very well; it delivers accuracy levels that are comparable to those produced by global
projection and stochastic simulation methods (given the same degree of an approximating
polynomial function); for a comparison, see Tables 23 and 27, respectively. However, the
performance of the perturbation method in logarithms, PER-LOG, is relatively poor.
Even for the second-order method PER2-LOG, the maximum residuals can be as large
as 8.5%,and they can be even larger for the first-order method PER1-LOG.We therefore
conjecture that for this specific model, a change of variables from logarithms to levels
increases the accuracy of solutions, especially for large deviations from the steady state.

Accuracy on a Stochastic Simulation
The results for the accuracy test on a stochastic simulation are provided in Table 36.
Surprisingly, there is not much difference between PER-L and PER-LOG when the
accuracy is evaluated on a stochastic simulation: the maximum residuals for the two
methods are practically identical.

12.4.2 The Benefits of Hybrid Solutions
To implement the hybrid perturbation-based method, we fix the capital decision func-
tions kh

t+1 = Kh
(
kt , θ t; bh

)
, h = 1, . . ., N that are produced by the PER-L method,

and we find 2N + 1 allocations {ct , �t , λt} satisfying (136), (139), and (140) using the

464 Lilia Maliar and Serguei Maliar

Table 37 Perturbation versus hybrid perturbation-based methods in the multicountry model with
N = 8.

1st order 2nd order 3rd order

PER HYB PER HYB PER HYB

Solution time 0.03 0.03 0.06 0.06 1.32 1.32

Radius r = 0.01

EulerEq −6.26 −3.85 −7.07 −6.36 −7.85 −7.37
MUCons −5.28 – −5.41 – −6.23 –
MULabor −4.60 – −5.34 – −6.57 –
WorResConst −5.25 – −6.22 – −7.65 –
Overall −4.60 −3.85 −5.34 −6.36 −6.23 −7.37

Radius r = 0.10

EulerEq −4.20 −3.23 −5.04 −4.63 −6.76 −6.11
MUCons −3.28 – −4.54 – −6.02 –
MULabor −2.55 – −3.93 – −5.48 –
WorResConst −3.25 – −4.75 – −6.18 –
Overall −2.55 −3.23 −3.93 −4.63 −5.48 −6.11

Radius r = 0.30

EulerEq −3.17 −2.14 −3.57 −3.06 −4.68 −4.22
MUCons −2.32 – −3.77 – −4.74 –
MULabor −1.47 – −2.46 – −3.51 –
WorResConst −2.29 – −3.38 – −4.29 –
Overall −1.47 −2.14 −2.46 −3.06 −3.51 −4.22

Stochastic simulation

EulerEq −3.53 −2.30 −3.49 −3.45 −4.37 −5.02
MUCons −1.79 – −2.66 – −3.52 –
MULabor −1.58 – −2.40 – −3.22 –
ResConst −2.22 – −3.44 – −4.48 –
Overall −1.58 −2.30 −2.40 −3.45 −3.22 −5.02

Notes: Both PER and HYB compute solutions in levels. For each model equation (listed in the first column), the table
reports maximum absolute errors in log10 units across countries and test points. For panels “Radius r = 0.01,”“Radius
r = 0.10,” and “Radius r = 0.30,” the set of test points is 1,000 draws of state variables located on spheres with radii
0.01, 0.10, and 0.30, respectively; for panel “stochastic simulation,” the set of test points is a stochastic simulation of 10,000
periods. An entry “–” is used if accuracy measure is below −10 (such errors are viewed as negligible), PER is PER-L, and
HYB is HYB-L.

Model equations are as follows:“EulerEq” is Euler equation (74);“MUCons” equates the (scaled) marginal utility of
consumption to the Lagrange multiplier, see (72);“MULabor” equates the (scaled) marginal utility of labor to marginal
productivity of labor multiplied by the Lagrange multiplier, see (73);“WorResConst” is world resource constraint (136);
“Overall” is the maximum error across all the model’s equations; “Solution time” is time for computing a solution.
The results for PER and HYB are reproduced from Maliar et al. (2012),Table 2 with kind permission from Springer
Science+Business Media B.V.

Numerical Methods for Large-Scale Dynamic Economic Models 465

iteration-on-allocation numerical solver as described in Section 11.6.The results are pre-
sented in Table 37. We observe that the plain perturbation method, PER-L, produces
nonnegligible residuals in all the model’s equations,while the hybrid method,HYB,pro-
duces nonnegligible residuals only in the Euler equations (the quantities delivered by
the iteration-on-allocation solver, by construction, satisfy the intratemporal conditions
exactly). In terms of maximum size of the residuals, the hybrid solutions are sufficiently
more accurate than the plain perturbation solutions.The difference in accuracy between
PER-L and HYB-L reaches almost two orders of magnitude in the test on a stochastic
simulation.

12.5 Speeding up Computations in MATLAB
In this section, we provide some results on how the cost of numerical methods can be
reduced in large-scale applications using MATLAB. Our presentation closely follows
Valero et al. (2013), who explore several options for reducing the cost of a Smolyak
solution method in the context of model (135)–(137). We focus on three different tools
available in MATLAB: parallel computation on multiple CPUs using a “parfor” routine;
automated translations of the code to C using a “mex” routine; and parallel computation
using multiple GPUs. We refer to the standard MATLAB and these three alternative
implementations as “standard,”“parfor,”“mex,” and “GPU,” respectively.

The literature on parallel computing often considers examples in which gains from
parallelization are readily obtained. In contrast, the Smolyak method studied in Valero
et al. (2013) is a challenging case for parallelization. First,there are large information trans-
fers between the outer and inner loops in the Smolyak method and second,a large fraction
of the Smolyak code must be implemented in a serial manner.The running times for our
experiments are provided in Table 38 (the solutions delivered are identical in all cases).

Our main finding is that parallel computation using multiple CPUs can speed up the
methods for solving dynamic economic models if the dimensionality of the problem is
high. To be specific, the parfor implementation does not speed up computations under
N = 2; however, it is almost four times faster under N = 8.The efficiency of paralleliza-

Table 38 Running times (in seconds) depending on the implementaion in MATLAB: parfor, mex, GPU.

N standard parfor mex GPU

2 109.5 106.8 11.9 24453
4 526.3 302.4 202.9 150800
6 1491.6 517.8 1545.5 –
8 4216.7 1206.6 9272.7 –

Notes:The following software and hardware are employed:MATLAB 2012a,Intel(®) Core(™) i7-2600 CPU @ 3.400 GHz
with RAM 12.0 GB and GPU GeFoce GT 545. Also, to compile mex functions, we use Microsoft Windows SDK 7.1
with NET Framework 4.0. These results are reproduced fromValero et al. (2013), Table 2.

466 Lilia Maliar and Serguei Maliar

tion (132) in the last case is nearly 90% on our four-core machine,namely, 4216.7
1206.6×4 ≈ 0.88.

The mex translation brings speedups in problems with low dimensionality but performs
poorly when dimensionality increases. This is because for large problems, nonoptimized
C code produced by a mex routine is less efficient than a vectorized MATLAB code.
Finally, parallel computation using multiple GPUs does poorly in our case because of
standard limitations of GPUs (namely, a high cost of transfers) and because of limitations
of the MATLAB language in operating GPUs.

12.6 Practical Recommendations About Solving High-Dimensional
Problems: Summary

When designing a solution method, we pursue two main objectives: a high accuracy
of solutions and a low computational expense. There is a nontrivial trade-off between
these two objectives. We now provide some considerations on how to take into account
such a trade-off in order to make solution methods more effective in high-dimensional
applications.

(i) Producing accurate solutions is costly in high-dimensional applications.The num-
bers of grid points, integration nodes, and polynomial terms, as well as the number
and complexity of the model’s equations, grow rapidly all together with dimen-
sionality of the state space.Accuracy levels of 10−9 that one easily achieves in some
model with two state variables are unlikely to be feasible in a similar model with
one hundred state variables. Therefore, the first question one must ask is: “How
much accuracy do I need in a given application?” The answer depends on the
economic significance of the approximation errors. Solutions that are accurate for
one purpose may be inaccurate for another purpose. For example, a perturbation
method that has large 5% errors in the model’s variables may still be sufficiently
accurate for the purpose of evaluating second moments, since a typical sampling
error in empirical data is still larger. However, this accuracy level is not sufficient
for forecasting; for example, predicting that the US growth rate could be anything
within the 5% interval [−3%, 7%] is too loose to be useful.

(ii) Given a target accuracy level, the second question one must ask is: “What com-
bination of techniques can attain the given accuracy level at the lowest possible
cost?” Here, the cost must be understood as the sum of both running time and
programmer’s time. Perturbation methods (incorporated, e.g., in the Dynare plat-
form) are often the cheapest possible alternative in all respects and can deliver
accurate solutions to many smooth problems, especially if one uses changes of
variables and hybrids of local and global solutions described in this section. Global
solution methods are more accurate and flexible but also more costly in terms of
both the running time and the programmer’s efforts.

(iii) In the case of global solution methods, coordination in the choice of computa-
tional techniques is important for making a solution method cost-efficient. All

Numerical Methods for Large-Scale Dynamic Economic Models 467

computational techniques employed must be suitable for high-dimensional appli-
cations. For example, if one uses a tensor-product grid, the cost will be prohibitive
no matter how efficiently we compute integrals or solve for the intratemporal
choice. Moreover, all the techniques used must match each other in terms of
attainable accuracy. For example, if one uses Monte Carlo integration, the solu-
tions will be inaccurate no matter how sophisticated is the grid and how flexible
is the approximating function.

(iv) Among the global solution methods considered, GSSA delivers a high accuracy of
solutions and is very simple to program. It is an especially convenient choice if one
needs a solution to be accurate in the high-probability area of the state space (i.e.,
on a set of points produced by stochastic simulation). The EDS and cluster grid
methods require more programming efforts but are also faster. A Smolyak method
produces solutions that are uniformly accurate in a hypercube (at the cost of a
somewhat lower accuracy in the high-probability area). It is an especially useful
choice when the solution must be accurate not only inside but also outside the
high-probability area of the state space, for example,when modeling the evolution
of a development economy that starts off far below the steady state.

(v) To keep the exposition simple,we limit ourselves to solving stylized one- and mul-
tiagent growth models. However, the surveyed techniques can be used to solve
a variety of other interesting economic models, such as new Keynesian models,
life-cycle models, heterogeneous-agents models, asset-pricing models, multisector
models, multicountry models, climate change models, etc. The solution proce-
dures will be similar to those we described in the chapter. Namely, under global
solution methods, we parameterize some model’s variables (such as decision func-
tions of heterogeneous agents,firms,countries,etc.) with flexible functional forms,
approximate integrals using some discretization method, and solve the resulting
systems of the model’s equations with respect to parameters of the approximating
functions. Under local solution methods, we produce a perturbation solution and
modify this solution to increase its accuracy. Examples of solution procedures for
life-cycle models can be found in Krueger and Kubler (2004), and those for new
Keynesian models can be found in Judd et al. (2011d,2012),Fernández-Villaverde
et al. (2012), and Aruoba and Schorfheide (2012).

(vi) Orthogonal polynomial families (such as Chebyshev or Hermite) are convenient
for numerical work. They prevent us from having ill-conditioned inverse prob-
lems, ensure well-defined interpolation, and allow us to derive the interpolation
coefficients analytically. However, they are also more costly to construct than the
ordinary polynomials and require data transformations. Ordinary polynomials are
a possible choice if combined with numerically stable regression methods and if
the number of grid points is somewhat larger than the number of polynomial
coefficients.

468 Lilia Maliar and Serguei Maliar

(vii) In the fitting step,we recommend avoiding standard least-squares regression meth-
ods (OLS, Gauss-Newton method) and using instead methods that can handle
ill-conditioned problems, such as least-squares methods using either QR factor-
ization or SVD orTikhonov regularization. If the problem is not ill-conditioned,
these methods give the same (or almost the same) answer as the standard least-
squares method. However, if the problem is ill-conditioned, the standard least-
squares methods will fail, while these other methods will succeed.

(viii) For approximating integrals, we recommend using monomial formulas (com-
bined with Cholesky decomposition in the case of serially correlated shocks).
The monomial formula with 2N nodes produces very accurate approximations;
the formula with 2N 2 + 1 is even more accurate. We recommend avoiding the
use of simulation-based integration methods (such as Monte Carlo, learning, and
nonparametric ones) because their convergence rate (accuracy) is low.

(ix) For solving systems of nonlinear equations, we recommend using a fixed-point
iteration method instead of quasi-Newton’s methods, especially if the system of
equations is large. Iteration-on-allocation is a simple and effective way to find a
solution to a system of the intratemporal choice conditions.

(x) In the case of dynamic programming, conventional VFI based on time iteration
is expensive. Using other, cheaper versions of fixed-point iteration for VFI, such
as endogenous grid and envelope condition methods, can help us to substantially
reduce the cost.

(xi) It is important to accurately solve all the model’s equations, in particular the
intratemporal choice ones. If one equation is solved inaccurately,the entire solution
is inaccurate. Furthermore,it is important to solve accurately the model’s equations
not only when computing solutions but also when simulating the model and
evaluating the accuracy of solutions.

(xii) Precomputation can save a lot of time: instead of computing the same thing all
over again, we compute it just once, at the beginning of a solution procedure.

(xiii) It is useful to check for codes that are available on the Internet before writing your
own software. For example, a MATLAB code accompanying the GSSA method
includes generic routines for implementing many numerically stable LS and LAD
methods, a routine for generating multidimensional polynomials, and a routine for
multidimensional Gauss-Hermite quadrature and monomial integration methods.
The code also contains a test suite for evaluating the accuracy of solutions. Not
only can this code solve the studied examples but it can be easily adapted to other
problems in which the reader may be interested.

(xiv) Parallel computation is a promising tool for many problems but it is not automati-
cally useful in every possible context. Not every method is naturally parallelizable.
In some cases, the cost of transfers between the cores can outweigh the gains from
parallelization. Also, we must design numerical methods in a way that is suitable
for parallelization.

Numerical Methods for Large-Scale Dynamic Economic Models 469

(xv) MATLAB is a useful tool when working on a desktop. It is not well suited for
supercomputers, in particular because there is a license limitation.To benefit from
supercomputers, one must first make an investment in learning some lower-level
programming languages (such as Fortran, C, or Python) as well as learning the
Unix operational system and software that supports parallel computation (such as
Open MP or MPI).

(xvi) Last but not least, it is always necessary to check the quality of the approxima-
tions obtained by, for example, evaluating unit-free residuals on a set of points
constructed to represent the domain of interest. The code may have bugs or the
accuracy may be insufficient; we are at risk of producing a bunch of random
numbers if we do not run accuracy checks.

13. CONCLUSION

Recent developments in the field of numerical analysis have extended the horizons
of what was thought unfeasible just a few years ago. First of all, these are novel solution
methods that are tractable, accurate, and reliable in large-scale applications.We build such
methods using nonproduct grids, monomial integration methods, derivative-free solvers,
and numerically stable regression methods.To simplify rootfinding in the Bellman equa-
tion, we employ endogenous grid and envelope conditions methods. To avoid repeating
some computations, we use precomputation techniques. Finally, to increase accuracy of
perturbation methods, we use changes of variables and construct hybrids of local and
global solutions. Taken together, these techniques enable us to accurately solve models
with nearly a hundred of state variables using a standard desktop computer and serial
MATLAB software.

Parallel computing opens another dimension in numerical analysis of economic mod-
els. Gains from parallelization are possible even on desktop computers with few cores.
Supercomputers have thousands and thousands of CPUs and GPUs that can be coordi-
nated for computationally intensive tasks. Also, they have large memories to record the
results. We hope that these new capacities and possibilities will bring economic research
to a qualitatively new level in terms of generality, empirical relevance, and rigor of results.

ACKNOWLEDGMENTS
Lilia Maliar and Serguei Maliar acknowledge support from the Hoover Institution and Department of
Economics at Stanford University, University of Alicante, Ivie, MCI, and FEDER funds under the Projects
SEJ-2007-62656 and ECO2012-36719.We thank the editors Karl Schmedders and Kenneth L. Judd as well
as two anonymous referees for many valuable comments. We thank Eric Aldrich, Markus Baldauf, Phillip
Blood,Yongyang Cai, Kenneth L. Judd, and Rafael Valero for useful discussions of several issues related to
parallel computation. Juan Mora López made useful suggestions about the use of nonparametric statistics
in the context of numerical solution methods. We acknowledge XSEDE Grant TG-ASC120048, and we
thank Phillip Blood and Rick Costa, scientific specialists from the Pittsburgh Supercomputing Center, for
technical support. Much of the material in this chapter builds on our prior joint work with Kenneth L.
Judd, Rafael Valero, and Sébastien Villemot. We benefited from the comments of seminar participants at

470 Lilia Maliar and Serguei Maliar

Autonomous University of Barcelona, Birkbeck University of London, Canadian Central Bank, Center for
Financial Studies at the European Central Bank, Cornell University, Federal Reserve Bank of San Francisco,
Paris School of Economics, Santa Clara University, Stanford University, University of Alicante, University of
Bilbao, University of California at Berkeley, University of Chicago, University of Edinburgh, and University
of Oxford.We used the material from this chapter in the graduate courses at Stanford University, University
of Chicago (ICE 2012), and University of Alicante, and we received a useful feedback from many graduate
students, in particular,Monica Bhole,Daniel-Oliver Garcia-Macia,Moritz Lenel, Jessie Li,Davide Malacrino,
Erik Madsen, Inna Tsener, and RafaelValero.

REFERENCES
Acemoglu, D., Golosov, M., Tsyvinski, A.,Yared, P., 2011. A dynamic theory of resource wars. Quarterly

Journal of Economics 127 (1), 283–331.
Adda, J., Cooper, R., 2003. Dynamic Economics: Quantitative Methods and Applications. The MIT Press,

Cambridge, Massachusetts, London, England.
Adjemian, S., Bastani, H., Juillard, M., Mihoubi, F., Perendia, G., Ratto, M., Villemot, S., 2011. Dynare:

reference manual, version 4. Dynare Working Papers 1, CEPREMAP.
Aiyagari, R., 1994. Uninsured idiosyncratic risk and aggregate saving. Quarterly Journal of Economics 109,

659–684.
Aldrich, E.M., Fernández-Villaverde, J., Gallant, R., Rubio-Ramírez, J., 2011. Tapping the supercomputer

under your desk: solving dynamic equilibrium models with graphics processors. Journal of Economic
Dynamics and Control, Elsevier 35 (3), 386–393.

Altig, D., Christiano, L., Eichenbaum, M., 2004. Firm-specific capital, nominal rigidities and the business
cycle. Review of Economic Dynamics 14 (2), 225–247.

Amador,M.,Weil, P.-O., 2010. Learning from prices: public communication and welfare. Journal of Political
Economy 118 (5), 866–907.

Amdahl, G. 1967. The validity of single processor approach to achieving large scale computing capabilities.
in:AFIPS procedings, pp. 483–485.

Amman,H.,1986.Are supercomputers useful for optimal control experiments? Journal of Economic Dynam-
ics and Control 10, 127–130.

Amman, H., 1990. Implementing stochastic control software on supercomputing machines. Journal of Eco-
nomic Dynamics and Control 14, 265–279.

Anderson, G., Kim, J.,Yun,T., 2010. Using a projection method to analyze inflation bias in a micro-founded
model. Journal of Economic Dynamics and Control 34 (9), 1572–1581.

Aruoba, S.B., Schorfheide, F., 2012. Macroeconomic dynamics near the ZLB: a tale of two equilibria.
<http://www.ssc.upenn.edu/schorf/papers/AS-ZLB.pdf>.

Aruoba, S.B., Fernández-Villaverde, J., Rubio-Ramírez, J., 2006. Comparing solution methods for dynamic
equilibrium economies. Journal of Economic Dynamics and Control 30, 2477–2508.

Attanasio,O.,Pavoni,N.,2011. Risk sharing in private information models with asset accumulation:explain-
ing the asset smoothness of consumption. Econometrica 79 (4), 1027–1068.

Bai,Y., Ríos-Rull, J.-V., Storesletten, K., 2012. Demand shocks as productivity shocks. Manuscript.
Barillas, F., Fernández-Villaverde, J., 2007. A generalization of the endogenous grid method. Journal of

Economic Dynamics and Control, Elsevier 31, 2698–2712.
Barthelmann,V., Novak, E., Ritter, K., 2000. High dimensional polynomial interpolation on sparse grids.

Advances in Computational Mathematics 12, 73–288.
Baryshnikov, Yu., Eichelbacker, P., Schreiber, T., Yukich, J.E., 2008. Moderate deviations for some point

measures in geometric probability. Annales de l’Institut Henri Poincaré – Probabilités et Statistiques 44,
422–446.

Bellman, R.E., 1961. Adaptive Control Processes. Princeton University Press, Princeton, NJ.
Bertsekas, D., Tsitsiklis, J., 1996. Neuro-Dynamic Programming. Optimization and Neural computation

series. Athena Scientific, Belmont, Massachusetts.
Bierens, H.J., 1994. Topics in Advanced Econometrics. Cambridge University Press.
Birge, J.R., Louveaux, F.V., 1997. Introduction to Stochastic Programming. Springer-Verlag, NewYork.

http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0005
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0010
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0020
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0025
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0030
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0035
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0040
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0045
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0050
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0055
http://www.ssc.upenn.edu/schorf/papers/AS-ZLB.pdf
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0065
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0070
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0080
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0085
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0090
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0095
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0100
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0105
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0110

Numerical Methods for Large-Scale Dynamic Economic Models 471

Blood, P. 2011. Getting started using national computing resources. <http://staff.psc.edu/blood/ICE11/
XSEDEICEJuly2011.pdf>.

Bloom, N., 2009. The impact of uncertainty shocks. Econometrica 77 (3), 623–685.
Borovička,Hansen,L.P., 2012. Examining macroeconomic models through the lens of asset pricing. Federal

Reserve Bank of Chicago Working Paper 01.
Cai,Y.,Judd,K.L.,2012. Dynamic programming with shape-preserving rational spline Hermite interpolation.

Economics Letters 117, 161–164.
Cai,Y., Judd,K.L.,Lontzek,T.,2012. DSICE:a dynamic stochastic integrated model of climate and economy.

Manuscript.
Cai,Y., Judd, K.L., Lontzek,T., 2013a. Continuous-time methods for integrated assessment models. NBER

Working Paper 18365.
Cai,Y., Judd, K.L.,Train, G.,Wright, S. 2013b. Solving dynamic programming problems on a computational

grid. NBER Working Paper 18714.
Canova, F., 2007. Methods for Applied Macroeconomic Research. Princeton University Press.
Carroll, K., 2005. The method of endogenous grid points for solving dynamic stochastic optimal problems.

Economic letters 91, 312–320.
Caselli, F., Koren, M., Lisicky, M.,Tenreyro, S., 2011. Diversification through trade. Manuscript.
Chari, V.V., Kehoe, P., McGrattan, E., 2009. New Keynesian models: not yet useful for policy analysis.

American Economic Journal: Macroeconomics 1 (1), 242–266.
Chatterjee, S.,Corbae,D.,Nakajima,M.,Ríos-Rull, J.-V., 2007. A quatitative theory of unsecured consumer

credit with risk of default. Econometrica 75 (6), 1525–1589.
Chen, B., Zadrozny, P., 2009. Multi-step perturbation solution of nonlinear differentiable equations

applied to an econometric analysis of productivity. Computational Statistics and Data Analysis 53 (6),
2061–2074.

Cho,I.C.,Sargent,T.J.,2008. Self-confirming equilibrium. In:Durlauf,S.,Blume,L. (Eds.),The New Palgrave
Dictionary of Economics, Palgrave Macmillan.

Chong,Y., Hendry, D., 1986. Econometric evaluation of linear macroeconomic models. The Review of
Economic Studies 53 (4), 671–690.

Christiano,L.,Fisher,D.,2000.Algorithms for solving dynamic models with occasionally binding constraints.
Journal of Economic Dynamics and Control 24, 1179–1232.

Christiano, L., Eichenbaum, M., Evans, C., 2005. Nominal rigidities and the dynamic effects of a shock to
monetary policy. Journal of Political Economy 113 (1), 1–45.

Christiano,L.,Eichenbaum,M.,Rebelo,S.,2011.When is the government spending multiplier large? Journal
of Political Economy 119 (1), 78–121.

Cogan, J., Taylor, L., Wieland, V., Wolters, M., 2013. Fiscal consolidation strategy. Journal of Economic
Dynamics and Control 37, 404–421.

Cogley,T.,Sargent,T.,Tsyrennikov,V.,2013.Wealth dynamics in a bond economy with heterogeneous beliefs.
Manuscript.

Coibion, O., Gorodnichenko,Y., 2008. What can survey forecasts tell us about informational rigidities?
Journal of Political Economy 120 (1), 116–159.

Coleman,W.,1992. Solving nonlinear dynamic models on parallel computers. Discussion Paper 66, Institute
for Empirical Macroeconomics, Federal Reserve Bank of Minneapolis.

Collard, F., Juillard, M., 2001. Accuracy of stochastic perturbation methods: the case of asset pricing models.
Journal of Economic Dynamics and Control 25, 979–999.

Constantinides, G., 1982. Intertemporal asset pricing with heterogeneous consumers and without demand
aggregation. Journal of Business 55, 253–267.

Creel, M., 2005. User-friendly parallel computations with econometric examples. Computational Eco-
nomics 26 (2), 107–128.

Creel,M.,2008. Using parallelization to solve a macroeconomic model:a parallel parameterized expectations
algorithm. Computational Economics 32, 343–352.

Creel, M., Goffe, W., 2008. Multi-core CPUs, clusters, and grid computing: a tutorial. Computational
Economics 32 (4), 353–382.

http://staff.psc.edu/blood/ICE11/XSEDEICEJuly2011.pdf
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0120
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0130
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0150
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0155
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0165
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0170
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0175
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0180
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0185
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0190
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0195
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0200
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0205
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0215
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0225
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h1075
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0230
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0235
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0240

472 Lilia Maliar and Serguei Maliar

Davidson, R., MacKinnon, J., 1993. Estimation and Inference in-Econometrics. Oxford University Press,
NewYork, Oxford.

Del Negro, M., Schorfheide, F., Smets, F.,Wouters, R., 2007. On the fit of new Keynesian models. Journal
of Business and Economic Statistics 25 (2), 123–143.

Den Haan, W., 1990. The optimal inflation path in a Sidrauski-type model with uncertainty. Journal of
Monetary Economics 25, 389–409.

Den Haan,W., 2010. Comparison of solutions to the incomplete markets model with aggregate uncertainty.
Journal of Economic Dynamics and Control 34, 4–27.

Den Haan,DeWind,J.,2012. Nonlinear and stable perturbation-based approximations. Journal of Economic
Dynamics and Control 36 (10), 1477–1497.

Den Haan,W.,Marcet,A.,1990. Solving the stochastic growth model by parameterized expectations. Journal
of Business and Economic Statistics 8, 31–34.

Den Haan,W., Marcet,A., 1994. Accuracy in simulations. Review of Economic Studies 6, 3–17.
Den Haan,W., Judd, K.L., Juillard, M., 2011. Computational suite of models with heterogeneous agents II:

multicountry real business cycle models. Journal of Economic Dynamics and Control 35, 175–177.
Dmitriev,A., Roberts, I., 2012. International business cycles with complete markets. Journal of Economic

Dynamics and Control 36 (6), 862–875.
Doornik,J.A.,Hendry,D.F.,Shephard,N. 2006. Parallel computation in econometrics: A simplified approach.

In:Kontoghiorghes,E.J. (Ed.),Handbook of Parallel Computing and Statistics. Chapman & Hall/CRC,
London, pp. 449–476.

Dotsey, M., Mao, C.S., 1992. How well do linear approximation methods work? The production tax case.
Journal of Monetary Economics 29, 25–58.

Duffie, D., 2010. Presidential address: asset pricing dynamics with slow-moving capital. Journal of Finance
LXV(4), 1237–1267.

Durham, G., Geweke, J., 2012. Adaptive sequential posterior simulators for massively parallel computing
environments. Manuscript.

Eaves,B., Schmedders,K., 1999. General equilibrium models and homotopy methods. Journal of Economic
Dynamics and Control 23, 1249–1279.

Ellison,M., Sargent,T., 2012. A defence of the FOMC. International Economic Review 53 (4), 1047–1065.
Evans G.W., Honkapohja, S., 2001. Learning and Expectations in Macroeconomics. Princeton University

Press.
Evans, R., Kotlikoff, L., Phillips, K., 2012. Game over: simulating unsustainable fiscal policy. In: Fiscal Policy

after the Financial Crisis National Bureau of Economic Research, NBER Chapters.
Fair,R.,Taylor, J., 1983. Solution and maximum likelihood estimation of dynamic nonlinear rational expec-

tation models. Econometrica 51, 1169–1185.
Feng, Z., Miao, J., Peralta-Alva,A., Santos, M., 2009. Numerical simulation of nonoptimal dynamic equilib-

rium models. Working papers Federal Reserve Bank of St. Louis 018.
Fernández-Villaverde, J., Rubio-Ramírez, J., 2006. Solving DSGE models with perturbation methods and a

change of variables. Journal of Economic Dynamics and Control 30, 2509–2531.
Fernández-Villaverde, J., Rubio-Ramírez, J., 2007. Estimating macroeconomic models: a likelihood

approach. Review of Economic Studies 74, 1059–1087.
Fernández-Villaverde, J.,Gordon,G.,Guerrón-Quintana,P.,Rubio-Ramírez, J., 2012. Nonlinear adventures

at the zero lower bound. NBER Working Paper 18058.
Fudenberg, D., Levine, D., 1993. Self-confirming equilibrium. Econometrica 61, 523–545.
Fukushima, K., Waki,Y., 2011. A Polyhedral Approximation Approach to Concave Numerical Dynamic

Programming. Manuscript.
Gallant, R.A., 2012. Parallelization strategies: hardware and software (two decades of personal experience).

<http://www.duke.edu/ arg>.
Gaspar, J., Judd, K.L., 1997. Solving large-scale rational-expectations models. Macroeconomic Dynamics 1,

45–75.
Gertler, M., Leahy, J., 2008. A Phillips curve with an Ss foundation. Journal of Political Economy 110 (3),

533–572.

http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h1070
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0245
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0250
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0255
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0260
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0265
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0270
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0275
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h1065
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0280
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0285
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0290
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0300
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0305
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0310
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0320
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0330
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0335
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0345
http://www.duke.edu/~arg
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0360
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0365

Numerical Methods for Large-Scale Dynamic Economic Models 473

Gertler, M., Kiyotaki, N., Queralto,A., 2011. Financial crises, bank risk exposure and government financial
policy. Manuscript.

Geweke, J., 1996. Monte Carlo simulation and numerical integration. In:Amman, H., Kendrick, D., Rust, J.
(Eds.), Handbook of Computational Economics. Elsevier Science,Amsterdam, pp. 733–800.

Glover A., Heathcote, J., Krueger, D., Ríos-Rull, J.-V., 2011. Intergenerational redistribution in the great
recession. NBER Working Paper 16924.

Golosov, M., Sargent,T., 2012. Taxation, redistribution, and debt with aggregate shocks. Manuscript.
Golosov, M.,Troshkin, M.,Tsyvinski,A., 2011. Optimal dynamic taxes. NBER Working Paper 17642.
Golub, G.,Van Loan, C., 1996. Matrix Computations. The Johns Hopkins University Press, Baltimore and

London.
Gomes, F., Kotlikoff, L.,Viceira, L., 2008. Optimal life-cycle investing with flexible labor supply: a welfare

analysis of life-cycle funds. American Economic Review: Papers and Proceedings 98 (2), 297–303.
Gomme, P., Klein, P., 2011. Second-order approximation of dynamic models without the use of tensors.

Journal of Economic Dynamics and Control 35, 604–615.
Gorman,W., 1953. Community preference field. Econometrica 21, 63–80.
Graham, L.,Wright, S., 2009. Information, heterogeneity and market incompleteness. Journal of Monetary

Economics 57 (2), 164–174.
Guerrieri, L., Iacoviello, M., 2013. OccBin:A toolkit for solving dynamic models with occasionally binding

constraints easily. Manuscript.
Guerrieri,V.,Lorenzoni,G.,2011. Credit crises,precautionary savings,and the liquidity trap. NBERWorking

Papers 17583.
Guibaud, S.,Nosbusch,Y.,Vayanos,D., forthcoming. Bond market clienteles, the yield curve, and the optimal

maturity structure of government debt. Review of Financial Studies.
Guvenen, F., 2011. Macroeconomics with heterogeneity: a practical guide. NBER Working Papers 17622.
Hall, R.E., 2012. Quantifying the Forces Leading to the Collapse of GDP after the Financial Crisis.

Manuscript.
Hasanhodzic, J., Kotlikoff, L.J., 2013. Generational risk – is it a big deal?: Simulating an 80-period OLG

model with aggregate shocks. NBER 19179.
Heathcote, J., Perri, F., 2013.The international diversification puzzle is not as bad as you think. Manuscript.
Heathcote, J., Storesletten, K.,Violante, G., 2009. Quantitative macroeconomics with heterogeneous house-

holds. Annual Review of Economics,Annual Reviews 1 (1), 319–354.
Heer, B., Maußner,A., 2008. Computation of business cycle models: a comparison of numerical methods.

Macroeconomic Dynamics 12, 641–663.
Heer, B., Maußner,A., 2010. Dynamic General Equilibrium Modeling. Springer-Verlag, Berlin Heidelberg.
Hoerl,A., Kennard, R., 1970. Ridge regression: biased estimation for nonorthogonal problems.Technomet-

rics 12, 69–82.
Horvath, M., 2012. Computational accuracy and distributional analysis in models with incomplete markets

and aggregate uncertainty. Economic Letters 117 (1), 276–279.
Jin, H., Judd, K.L., 2002. Perturbation methods for general dynamic stochastic models. Stanford University.

Manuscript.
Jirnyi,A., Lepetyuk,V., 2011. A reinforcement learning approach to solving incomplete market models with

aggregate uncertainty. IVIE Working Paper, Series AD 21.
Judd, K., 1992. Projection methods for solving aggregate growth models. Journal of Economic Theory 58,

410–452.
Judd, K., 1998. Numerical Methods in Economics. MIT Press, Cambridge, MA.
Judd, K., 2003. Perturbation methods with nonlinear changes of variables. Manuscript.
Judd, K., Guu, S., 1993. Perturbation solution methods for economic growth models. In:Varian, H. (Ed.),

Economic and Financial Modeling with Mathematica, SpringerVerlag, pp. 80–103.
Judd, K.,Yeltekin, S., Conklin, J., 2003. Computing supergame equilibria. Econometrica 71 (1239), 1254.
Judd, K.L., Maliar, L., Maliar, S., 2009. Numerically stable stochastic simulation approaches for solving

dynamic economic models. NBER Working Paper 15296.
Judd,K.L.,Maliar, L.,Maliar, S., 2010. A cluster-grid projection method: solving problems with high dimen-

sionality. NBER Working Paper 15965.

http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0375
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0395
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0400
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0405
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h1060
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0410
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0440
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0445
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0450
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0455
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0460
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0480
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0485
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0495
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0500

474 Lilia Maliar and Serguei Maliar

Judd, K.L., Maliar, L., Maliar, S., 2011a. One-node quadrature beats Monte Carlo: a generalized stochastic
simulation algorithm. NBER Working Paper 16708.

Judd, K.L., Maliar, L., Maliar, S., 2011b. Numerically stable and accurate stochastic simulation approaches
for solving dynamic models. Quantitative Economics 2, 173–210.

Judd, K.L., Maliar, L., Maliar, S., 2011d. How to solve dynamic stochastic models computing expectations
just once. NBER Working Paper 17418.

Judd, K.L., Maliar, L., Maliar, S., 2012a. Merging simulation and projection approaches to solve high-
dimensional problems. NBER Working Paper 18501.

Judd,K.L.,Renner,P., Schmedders,K., 2012b. Finding all pure-strategy equilibria in games with continuous
strategies. Quantitative Economics 3, 289–331.

Judd, K.L., Maliar, L., Maliar, S.,Valero, R., 2013. Smolyak method for solving dynamic economic models:
Lagrange interpolation, anisotropic grid and adaptive domain. NBER 19326.

Juillard, M. 2011. Local approximation of DSGE models around the risky steady state. Wp.comunite 0087,
Department of Communication, University of Teramo.

Juillard, M.,Villemot, S., 2011. Multi-country real business cycle models: accuracy tests and testing bench.
Journal of Economic Dynamics and Control 35, 178–185.

Kabourov,G.,Manovskii, I.,2009. Occupational mobility and wage inequality. Review of Economic Studies
76 (2), 731–759.

Kendrik, D., Ruben Mercado, P., Amman, H.M., 2006. Computational Economics, Princeton University
Press.

Kiefer, J., 1961. On large deviations of the empiric D.F. of vector change variables and a law of the iterated
logarithm. Pacific Journal of Mathematics 11, 649–660.

Kim, J., Kim, S., Schaumburg, E., Sims, C.A., 2008. Calculating and using second-order accurate solu-
tions of discrete time dynamic equilibrium models. Journal of Economic Dynamics and Control 32,
3397–3414.

Kim, S., Kollmann, R., Kim, J., 2010. Solving the incomplete market model with aggregate uncertainty
using a perturbation method. Journal of Economics Dynamics and Control 34, 50–58.

Klenow, P. Kryvtsov, O. 2008. State-dependent or time-dependent pricing: does it matter for recent US
inflation? Quarterly Journal of Economics CXXIII (3), 863–904.

Kocherlakota,N.,Pistaferri,L.,2009.Asset pricing implications of Pareto optimality with private information.
Journal of Political Economy 117 (3), 555–590.

Kollmann, R., Kim, S., Kim, J., 2011a. Solving the multi-country real business cycle model using a pertur-
bation method. Journal of Economic Dynamics and Control 35, 203–206.

Kollmann, R., Maliar, S., Malin, B., Pichler, P., 2011b. Comparison of solutions to the multi-country real
business cycle model. Journal of Economic Dynamics and Control 35, 186–202.

Krueger,D.,Kubler,F.,2004. Computing equilibrium in OLG models with production. Journal of Economic
Dynamics and Control 28, 1411–1436.

Krueger,D.,Kubler,F.,2006. Pareto-improving social security reform when financial markets are incomplete?
American Economic Review 96 (3), 737–755.

Krusell, P., Smith, A., 1998. Income and wealth heterogeneity in the macroeconomy. Journal of Political
Economy 106, 868–896.

Krusell, P., Ohanian, L., Ríos-Rull, J.-V.,Violante, G., 1997. Capital-skill complementarity and inequality: a
macroeconomic analysis. Econometrica 68 (5), 1029–1053

Kubler,F.,Schmedders,K.,2010.Tackling multiplicity of equilibria with Gröbner bases. Operations Research
58, 1037–1050.

Lim, G., McNelis, P., 2008. Computational Macroeconomics for the Open Economy. The MIT Press,
Cambridge, Massachusetts, London, England.

Lombardo,G.,2010. On approximating DSGE models by series expansions. European Central BankWorking
Paper 1264.

Maliar, L., 2013. Assessing gains from parallel computation on supercomputers. Manuscript.
Maliar, L., Maliar, S., 2001. Heterogeneity in capital and skills in a neoclassical stochastic growth model.

Journal of Economic Dynamics and Control 25, 1367–1397.

http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0520
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0545
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0560
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0565
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0570
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0575
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0580
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0585
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0590
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0595
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0600
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0605
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0610
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0615
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0620
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0625
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0630
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0635
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0650

Numerical Methods for Large-Scale Dynamic Economic Models 475

Maliar,L.,Maliar,S.,2003a.The representative consumer in the neoclassical growth model with idiosyncratic
shocks. Review of Economic Dynamics 6, 362–380.

Maliar, L., Maliar, S. 2003b. Parameterized expectations algorithm and the moving bounds. Journal of
Business and Economic Statistics 21, 88–92.

Maliar, L., Maliar, S., 2005a. Solving nonlinear stochastic growth models: iterating on value function by
simulations. Economics Letters 87, 135–140.

Maliar, L., Maliar, S., 2005b. Parameterized expectations algorithm: how to solve for labor easily. Computa-
tional Economics 25, 269–274.

Maliar, L., Maliar, S. 2011. Perturbation with precomputation of integrals. Manuscript.
Maliar,L.,Maliar,S. 2012a. Solving the multi-country real business cycle model using an envelope-condition

method. Manuscript.
Maliar, L., Maliar, S., 2012b.Value function iteration for problems with high dimensionality:An envelope-

condition method. Manuscript.
Maliar,L.,Maliar,S.,2013. Envelope condition method versus endogenous grid method for solving dynamic

programming problems. Economics Letters 120, 262–266.
Maliar, L., Maliar, S.,Valli, F., 2010. Solving the incomplete markets model with aggregate uncertainty using

the Krusell-Smith algorithm. Journal of Economic Dynamics and Control 34 (special issue), 42–49.
Maliar, S., Maliar, L., Judd, K.L., 2011. Solving the multi-country real business cycle model using ergodic

set methods. Journal of Economic Dynamic and Control 35, 207–228.
Maliar, L., Maliar, S.,Villemot, S., 2013. Taking perturbation to the accuracy frontier: a hybrid of local and

global solutions. Computational Economics 42, 307–325.
Malin,B.,Krueger,D.,Kubler,F.,2011. Solving the multi-country real business cycle model using a Smolyak-

collocation method. Journal of Economic Dynamics and Control 35, 229–239.
Manova, K., 2013. Credit constraints, heterogeneous firms, and international trade. Review of Economic

Studies 80, 711–744.
Marcet,A.,1988. Solution of nonlinear models by parameterizing expectations. Carnegie Mellon University,

Manuscript.
Marcet,A.,Lorenzoni,G.,1999.The parameterized expectation approach:some practical issues. In:Marimon,

R.,Scott,A. (Eds.),Computational Methods for Study of Dynamic Economies. Oxford University Press,
NewYork, pp. 143–171.

Marcet, A., Sargent, T., 1989. Convergence of least-squares learning in environments with hidden state
variables and private information. Journal of Political Economy 97, 1306–1322.

Marimon,R.,Scott,A.,1999. Computational Methods for Study of Dynamic Economies. Oxford University
Press, NewYork.

MATLAB,2011. MATLAB parallel computing toolbox. <http://www.mathworks.com/products/parallel-
computing/description5.html>.

Mendoza,E.G.,Bianchi, J., 2011. Overborrowing,financial crises and ‘macro-prudential’ policy? IMFWork-
ing Papers 11/24, International Monetary Fund.

Menzio, G.,Telyukova, I.,Visschers, L., 2012. Directed search over the life cycle. NBER Working Papers
17746.

Mertens,T., Judd, K.L., 2013. Equilibrium existence and approximation for incomplete market models with
substantial heterogeneity. Manuscript.

Mertens, K., Ravn, M., 2011. Credit channels in a liquidity trap. CEPR Discussion Paper 8322.
Michelacci,C.,Pijoan-Mas, J.,2012. Intertemporal labour supply with search frictions. Review of Economic

Studies (2012) 79, 899–931.
Miranda, M., Fackler, P., 2002. Applied Computational Economics and Finance. MIT Press, Cambridge.
Miranda, M., Helmberger, P., 1988. The effects of commodity price stabilization programs. American Eco-

nomic Review 78, 46–58.
Moore, G.E., 1965. Cramming more components onto integrated circuits. Electronics 38 (8), 1965.
Morozov, S., Mathur, S., 2012. Massively parallel computation using graphics processors with application to

optimal experimentation in dynamic control. Computational Economics 40, 151–182.
Nadaraya, E.A., 1964. On Estimating Regression. Theory of probability and its applications 10, 186–190.

http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0655
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0660
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0665
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0670
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0685
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0690
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0695
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0700
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0705
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0710
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0720
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0725
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0730
http://www.mathworks.com/products/parallel-computing/description5.html
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0765
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0770
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0775
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0780
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0785

476 Lilia Maliar and Serguei Maliar

Nagurney,A., 1996. Parallel computation. In:Amman, H.M., Kendrick, D.A., Rust, J. (Eds.), Handbook of
Computational Economics, vol 1. Elsevier,Amsterdam, pp. 336–401.

Nagurney, A., Zhang, D., 1998. A massively parallel implementation of discrete-time algorithm for the
computation of dynamic elastic demand and traffic problems modeled as projected dynamical systems.
Journal of Economic Dynamics and Control 22 (8–9), 1467–1485.

Nakajima, M.,Telyukova, I., 2011. Reverse mortgage loans: a quantitative analysis. Manuscript.
Niederreiter,H., 1992. Random Number Generation and Quasi-Monte Carlo Methods. Society for Indus-

trial and Applied Mathematics, Philadelphia, Pennsylvania.
Pagan, Ullah, 1999. Nonparametric Econometrics. Cambridge University Press, NewYork.
Pakes,A., McGuire, P., 2001. Stochastic algorithms, symmetric Markov perfect equilibria, and the ‘curse’ of

dimensionality. Econometrica 69, 1261–1281.
Peralta-Alva,A., Santos,M., 2005. Accuracy of simulations for stochastic dynamic models. Econometrica 73,

1939–1976.
Piazzesi, M., Schneider, M. 2012. Inflation and the price of real assets. Staff Report 423, Federal Reserve

Bank of Minneapolis.
Pichler, P., 2011. Solving the multi-country real business cycle model using a monomial rule Galerkin

method. Journal of Economic Dynamics and Control 35, 240–251.
Powell,W., 2011. Approximate Dynamic Programming. Wiley, Hoboken, New Jersey.
Ravenna, F.,Walsh, C., 2011.Welfare-based optimal monetary policy with unemployment and sticky prices:

a linear-quadratic framework. American Economic Journal: Macroeconomics 3, 130–162.
Reiter,M.,2009. Solving heterogeneous-agent models by projection and perturbation. Journal of Economic

Dynamics and Control 33 (3), 649–665.
Rios-Rull, J.V., 1997. Computing of equilibria in heterogeneous agent models. Federal Reserve Bank of

Minneapolis Staff. Report 231.
Rust, J., 1996. Numerical dynamic programming in economics. In:Amman,H.,Kendrick,D.,Rust, J. (Eds.),

Handbook of Computational Economics. Elsevier Science,Amsterdam, pp. 619–722.
Rust, J., 1997. Using randomization to break the curse of dimensionality. Econometrica 65, 487–516.
Rust, J. 2008., Dynamic programming. In: Durlauf, S., Blume, L. (Eds.),The New Palgrave Dictionary of

Economics. Palgrave Macmillan.
Sanders, J.,Kandrot,E.,2010. CUDA by Example:An Introduction to General-Purpose GPU Programming.

Addison-Wesley Professional, Upper Saddle River, NJ.
Santos, M., 1999. Numerical solution of dynamic economic models. In: Taylor, J., Woodford, M. (Eds.),

Handbook of Macroeconomics. Elsevier Science,Amsterdam, pp. 312–382.
Santos, M., 2000. Accuracy of numerical solutions using the Euler equation residuals. Econometrica 68,

1377–1402.
Schmitt-Grohé, S., Uribe, M., 2004. Solving dynamic general equilibrium models using a second-order

approximation to the policy function. Journal of Economic Dynamics and Control 28 (4), 755–775.
Scott, D., Sain, S., 2005. Multidimensional density estimation. In: Rao, C., Wegman, E., Solka, J. (Eds.),

Handbook of Statistics, vol 24. Elsevier B.V.,Amsterdam, pp. 229–261.
Sims, C., Waggoner, D., Zha, T., 2008. Methods for inference in large-scale multiple equation Markov-

switching models. Journal of Econometrics 142 (2), 255–274.
Smets, F.,Wouters, R., 2003. An estimated dynamic stochastic general equilibrium model of the Euro area.

Journal of the European Economic Association 1 (5), 1123–1175.
Smets,F.,Wouters,R.,2007. Shocks and frictions in US business cycles:a Bayesian DSGE approach.American

Economic Review 97 (3), 586–606.
Smith,A.,1991. Solving stochastic dynamic programming problems using rules of thumb. Queen’s University.

Economics Department, Discussion Paper 816.
Smith,A., 1993. Estimating nonlinear time-series models using simulated vector autoregressions. Journal of

Applied Econometrics 8, S63–S84.
Smolyak, S., 1963. Quadrature and interpolation formulas for tensor products of certain classes of functions.

Soviet Mathematics, Doklady 4, 240–243.
Song, Z., Storesletten, K., Zilibotti, F., 2012. Rotten parents and disciplined children: a politico-economic

theory of public expenditure and debt. Econometrica 80 (6), 2785–2803.

http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0790
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0795
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0810
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0815
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0820
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0825
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0835
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0840
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0845
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0850
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0860
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0865
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0870
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0875
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0880
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0885
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0895
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0900
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0905
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0910
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0915
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0925
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0930
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0935

Numerical Methods for Large-Scale Dynamic Economic Models 477

Stachursky, J., 2009. Economic Dynamics:Theory and Computation. MIT Press, Cambridge.
Stroud,A.,1971.Approximate Integration of Multiple Integrals. Prentice Hall,Englewood Cliffs,New Jersey.
Su, C.L., Judd, K.L., 2012. Constrained optimization approaches to estimation of structural models. Econo-

metrica 80 (5), 2213–2230.
Swanson, E.,Anderson, G., Levin,A., 2002. Higher-order perturbation solutions to dynamic, discrete-time

rational expectations models. Manuscript.
Swanson, E.,Anderson, G., Levin,A., 2006. Higher-order perturbation solutions to dynamic, discrete-time

rational expectations models. Federal Reserve Bank of San Francisco working paper 1.
Tauchen, G., 1986. Finite state Markov chain approximations to univariate and vector autoregressions.

Economic Letters 20, 177–181.
Tauchen, G., Hussey, R., 1991. Quadrature-based methods for obtaining approximate solutions to nonlinear

asset pricing models. Econometrica 59, 371–396.
Taylor, J., Uhlig, H., 1990. Solving nonlinear stochastic growth models: a comparison of alternative solution

methods. Journal of Business and Economic Statistics 8, 1–17.
Temlyakov,V., 2011. Greedy Approximation. Cambridge University Press, Cambridge.
Tesfatsion, L., Judd, K.L., 2006. Handbook of computational economics. In: Agent-Based Computational

Economics,Vol 2. Elsevier Science,Amsterdam.
Tsitsiklis, J., 1994. Asynchronous stochastic approximation and Q-Learning. Machine Learning 16,185–202.
Valero, R., Maliar, L., Maliar, S., 2013. Parallel speedup or parallel slowdown: is parallel computation useful

for solving large-scale dynamic economic models? Manuscript.
Villemot, S. 2012. Accelerating the resolution of sovereign debt models using an endogenous grid method.

Dynare working paper 17, <http://www.dynare.org/wp>.
Watson, G.S. 1964. Smooth regression analysis. Shankya Series A 26, 359–372.
Weintraub, G., Benkard, C.L., Roy, B.V., 2008. Markov perfect industry dynamics with many firms.

Econometrica 2008, 1375–1411.
Winschel,V., Krätzig, M., 2010. Solving, estimating and selecting nonlinear dynamic models without the

curse of dimensionality. Econometrica 78 (2), 803–821.
Woodford, M. 2011. Optimal monetary stabilization policy, in: Friedman, B.M., Woodford, M. (Eds.),

Handbook of Monetary Economics, vol. 3B. Elsevier,Amsterdam, pp. 723–828.
Wright, B., Williams, J., 1984. The welfare effects of the introduction of storage. Quarterly Journal of

Economics 99, 169–192.
Young, E., 2010. Solving the incomplete markets model with aggregate uncertainty using the Krusell-Smith

algorithm and non-stochastic simulations. Journal of Economic Dynamics and Control 34, 36–41.

http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0940
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0950
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0955
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0965
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0970
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0980
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0985
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0990
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h0995
http://www.dynare.org/wp
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h1010
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h1015
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h1020
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h1025
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h1030
http://refhub.elsevier.com/B978-0-444-52980-0.00007-4/h1035

