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We construct a general equilibrium version of the Krusell et al. Econometrica 68, 1029, 2000 model with

capital–skill complementarity. We assume several sources of growth simultaneously: exogenous growth of

skilled and unskilled labour, equipment-specific technological progress, skilled and unskilled labour-

augmenting technological progress and Hicks-neutral technological progress. We derive restrictions that make

our model consistent with balanced growth. A calibrated version of our model can account for the key growth

patterns in the US data, including those for capital equipment and structures, skilled and unskilled labour and

output, but it fails to explain the long-run behaviour of skilled-labour wages and, consequently, the skill

premium.

INTRODUCTION

Krusell et al. (2000) show that a constant elasticity of substitution (CES) production
function with four production inputsFcapital structures, capital equipment, skilled and
unskilled labourFis consistent with the key features of the US economy data.1 In the
data, the growth patterns over the 1963–92 period appear to be highly unbalanced:
output and the stock of structures increased by a factor of two; the stock of equipment
increased by more than seven times; the number of unskilled workers slightly decreased,
whereas the number of skilled workers nearly doubled; the price of equipment relative to
consumption (structures) went down by more than four times; and the skill premium was
roughly stationary. All the above regularities are matched in Krusell et al. (2000), by
construction, under the appropriate degrees of capital–skill complementarity.2

In this paper, we attempt to account for the above growth patterns in the context of a
general equilibrium version of the Krusell et al. (2000) model. We restrict our attention to
the standard class of models that are consistent with balanced (steady-state) growth in
which all variables grow at constant (possibly differing) rates. A convenient property of
such models is that they can be converted into stationary ones, so that their equilibria can
be studied with standard numerical methods. We ask: Is a general equilibrium balanced
growth model parameterized by the Krusell et al. (2000) CES production function still
consistent with the US data?

The standard way to introduce balanced growth in macroeconomic models is to
assume labour-augmenting technological progress (see, for example, King et al. 1988).3

However, this assumption is not sufficient for our purpose since it implies that all
variables (except labour) grow at the same rate, which does not agree with the empirical
facts listed above. As shown in Greenwood et al. (1997), it is possible to account for the
empirical observation that equipment grows at a higher rate than output by introducing
two other kinds of technological progress, such as equipment-specific and Hicks-neutral
ones. However, these two kinds of progress alone are consistent with balanced growth
only under the assumption of the Cobb–Douglas production function (see Greenwood
et al. 1997, p. 347) and not under our assumption of the CES production function.

The main theoretical result of the present paper is that we can make the CES
production function consistent with balanced growth by combining the standard labour-
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augmenting technological progress with two kinds of progress introduced in Greenwood
et al. (1997). To be specific, we simultaneously introduce equipment-specific technolo-
gical progress, skilled and unskilled labour-augmenting technological progress, and
Hicks-neutral technological progress, as well as exogenous growth of skilled and
unskilled population. We impose the assumption of complete markets, which allows us to
analyse equilibrium by considering the corresponding planner’s problem. A distinctive
feature of our setup is that skilled and unskilled populations grow at different rates. We
show that in spite of this feature, welfare weights assigned by the planner to the two
subpopulations depend not on their growth rates but only on their initial sizes. With this
result and with some additional restrictions on preferences and the rates of progress,
there exists a stationary economy associated with our growing economy.

We calibrate the model to match a set of relevant observations about the US economy.
We find that the calibrated version of our model can account remarkably well for the key
growth patterns in the data, including those for capital equipment and structures, skilled and
unskilled labour, and output. Specifically, the above variables in our model grow at different
rates, which are close to those in the data. Nonetheless, our model has an important
drawback: it understates the growth rate of skilled-labour wages, and as a result it
dramatically fails on the growth pattern of the skill premium predicting that the skill premium
falls, while in the data, the skill premium exhibits a roughly stationary behaviour. The reason
for this drawback is the following. Our assumption of balanced growth implies that the
relative importance of all production inputs in output remains constant along the balanced
growth path. If the number of skilled workers grows more than that of unskilled workers,
then to maintain the same relative importance of the two types of labour, the productivity of
skilled labour must grow proportionally less than that of unskilled labour, and hence the skill
premium must decrease over time. We argue that the above drawback is a generic feature of
our model, and it is difficult to correct it without relaxing our restriction of balanced growth.

As far as the business cycle properties of our model are concerned, it turns out that
the stationary version of our model is virtually identical to the one considered in
Lindquist (2004), where there is no growth, by construction. Lindquist (2004) performs
an extensive study of the business cycle predictions of a stochastic general equilibrium
version of the Krusell et al. (2000) model. The implications of our model are very similar
and hence are not reported.

The rest of the paper is organized as follows. Section I describes a competitive equilibrium
economy, presents the associated social planner’s economy, introduces growth and derives
the corresponding stationary model. Section II describes the calibration and the solution
procedures. Section III presents the results from simulations, and Section IV concludes.

I. THE ECONOMY

In this section, we construct a general equilibrium model with the production function
considered in Krusell et al. (2000). We first describe the environment, then introduce
technological progress, and finally provide analytical results on the existence of a
stationary equilibrium in our economy.

The environment

Time is discrete and the horizon is infinite, t ¼ 1; 2; . . . ;1. There are two types of agents:
skilled and unskilled; their variables are denoted by superscripts s and u, respectively.
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There are two types of capital stocks: capital structures and capital equipment. The
economy has two sectors: one sector produces consumption goods and capital structures,
and the other sector produces capital equipment. Both sectors use the same technology;
however, there is a technology factor specific to the capital equipment sector. We
aggregate the production of the two sectors by introducing an exogenous relative price
between consumption (structures) and equipment, qt.

Let us denote by Bt a collection of all possible exogenous states in period t. We
assume that Bt follows a stationary first-order Markov process. Specifically, let < be the
Borel s-algebra on =. Define a transition function for the distribution of skills P :
= � < ! ½0; 1� on the measurable space ð=;<Þ such that for each z[=, Pðz; �Þ is a
probability measure on ð=;<Þ, and for each Z[<, Pð�;ZÞ is an <-measurable function.
We shall interpret the function P(z,Z) as the probability that the next period’s
distribution of skills lies in the set Z given that the current distribution of skills is z, i.e.
P(z,Z) ¼ PrfBt þ 1AZ|Bt ¼ zg. The initial state B0[= is given. We assume that there is a
complete set of markets, i.e. that the agents can trade state-contingent Arrow securities.
The agent’s iAfs, ug portfolio of securities is denoted by fMi

tðBÞgB[<. The claim of type
B[< pays one unit of tþ 1 consumption good in the state B, and nothing otherwise. The
price of such a claim is pt(B).

In the presence of population growth, the problem of skilled and unskilled groups of
agents, iAfs, ug, can be written as

ð1Þ max
fCi
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t;K
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� �

;

where initial endowments of capital structures (buildings) and equipment, Ki
b0 and Ki

e0, and
Arrow securities Mi

0ðB0Þ are given. Here, bA(0,1) is the subjective discount factor, Et is the
operator of expectation conditional on information set in period t, and Ni

t is an exogenously
given number of agents of group iAfs, ug. The variables Ci

t, nit, wi
t, Ki

bt and Ki
et are,

respectively, consumption, labour, the wage per unit of labour, the capital stock of structures
and equipment of an agent of group iAfs, ug. The time endowment is normalized to 1, so
the term 1� nit represents leisure; rbt and ret are the interest rates paid on capital invested in
structures and equipment, respectively; and dbA(0,1) and deA(0,1) are the depreciation rates
of capital structures and capital equipment, respectively. The period utility function Ui is
continuously differentiable, strictly increasing in both arguments and concave.

The production function is of the constant elasticity of substitution (CES) type:

ð3Þ
Yt ¼ AtGðKbt;Ket;Lst;LutÞ

¼ AtK
a
bt ½mLs

ut þ ð1� mÞ lKr
et þ ð1� lÞLr

stð Þs=r�
ð1�aÞ=s

:

Here, Yt is output, At is an exogenously given level of technology (common to both
sectors), and Kbt and Ket are the inputs of capital structures and capital equipment,
respectively. Functions Lst � LstðNs

t n
s
tÞ and Lut � LutðNu

t n
u
t Þ give the efficiency labour

inputs of skilled and unskilled agents, respectively, and will be specified in the next
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section. The parameters aA(0,1), mA(0,1), lA(0,1), r and s govern the elasticities of
substitution between structures, equipment, skilled labour and unskilled labour.

The firm maximizes period-by-period profits by hiring capital and labour

ð4Þ max
fKbt;Ket;N

s
t n

s
t ;N

u
t n

u
t g

AtGðKbt;Ket;Lst;LutÞ � rbtKbt � retKet � ws
tN

s
t n

s
t � wu

tN
u
t n

u
t

� �
;

taking the market prices as given.

Labour growth and technological progress

Krusell et al. (2000) provide time series data for the US economy over the 1963–92
period, including those for output, the stocks of structure and equipment, the numbers of
skilled and unskilled workers, and the relative price between consumption (structures)
and equipment. In the data, the growth patterns appear to be highly unbalanced. To be
specific, over the sample period, the output and the stock of structures increased roughly
by about a factor of two, while the stock of equipment increased by more than seven
times; furthermore, the number of skilled workers nearly doubled, while the number of
unskilled workers slightly decreased; and finally, the price of equipment relative to
consumption (structures) went down by more than four times.

To make our model consistent with the above unbalanced growth patterns, we
introduce several sources of exogenous growth simultaneously. First, we assume that
skilled and unskilled populations can grow at differing rates, i.e.

ð5Þ Ns
t ¼ Ns

0ðgsÞ
t and Nu

t ¼ Nu
0ðguÞ

t;

where gs and gu are the growth rates of the skilled and unskilled labour, respectively.
Furthermore, we assume three different kinds of technological progress: the first
increases efficiency of both skilled and unskilled labour at possibly different rates
(labour-augmenting technological progress); the second increases the level of technology
At (Hicks-neutral technological progress); the third improves the technology of the
equipment sector relative to that of the consumption and structure sector or,
equivalently, decreases the relative price of equipment 1/qt (equipment-specific
technological progress). We specifically assume that the aggregate labour input of
skilled and unskilled agents evolves according to

ð6Þ Lst ¼ Ns
t n

s
tðGsÞt and Lut ¼ Nu

t n
u
t ðGuÞt;

where Gs and Gu are deterministic labour-augmenting technological progress of skilled
and unskilled labour, respectively. The remaining two kinds of progress have an identical
structure: they include a deterministic time trend and a stochastic stationary component.
In particular, the level of technology is given by

ð7Þ At ¼ A0ðGAÞtzt;

where GA is a deterministic growth rate, and zt is a stationary process. Similarly, the
relative price is given by

ð8Þ 1

qt
¼ kt

q0ðGqÞt
;

where Gq is a deterministic growth rate of qt, and kt is a stationary process.
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Competitive equilibrium

A competitive equilibrium in the economy (1)–(8) is a sequence of contingency plans

for the agents’ allocation fCi
t; n

i
t;K

i
b;tþ1;K

i
e;tþ1;M

i
tþ1ðZÞg

i [fs;ug
Z [<;t[T , for the firm’s alloca-

tion fKbt;Ket;Lst;Lutgt[T and for the prices frbt; ret;ws
t ;w

u
t ; ptðZÞgZ [<;t[T such that given

the prices:

� the sequence of plans for the agents’ allocation solves the utility-maximization problem
(1), (2), (8) for iAfs, ug;

� the sequence of plans for the firm’s allocation solves the profit-maximization problem
of the firm (3)–(8);

� all markets clear and the economy’s resource constraint is satisfied.

Moreover, the equilibrium plans are to be such that Ci
t>0 and 0<nit<1 for iAfs, ug,

Kbt,Ket40 and pt(Z)40 for all Z[<.

Pareto optimum

To simplify the analysis of equilibrium in our decentralized economy (1)–(8), we
construct the associated planner’s economy. The planner solves

ð9Þ max
fCs

t ;C
u
t ;n

s
t ;n

u
t ;Kb;tþ1;Ke;tþ1g

E0

X1
t¼0

bt yNs
0U

sðCs
t ; 1� nstÞ þ ð1� yÞNu

0U
uðCu

t ; 1� nut Þ
� �( )

;

subject to the economy’s resource constraint

ð10Þ
Ns

tC
s
t þNu

t C
u
t þ Kb;tþ1 þ

Ke;tþ1
qt

¼ AtGðKbt;Ket;Lst;LutÞ þ ð1� dbÞKbt þ ð1� deÞ
Ket

qt
;

where initial endowments of capital structures and equipment, Kb0 and Ke0, are
given. The production function GðKbt;Ket;Lst;LutÞ is given by (3); skilled and unskilled
labour grow according to (5); and the exogenous shocks are given by (6)–(8). In (9),
y and (1� y) are the welfare weights of skilled and unskilled agents, respectively, with
yA(0,1).

With the following proposition, we establish the connection between the decen-
tralized and the planner’s economies.

Proposition 1. For any distribution of initial endowments in the decentralized economy
(1)–(8), there exist welfare weights y and (1� y) in the planner’s economy (9), (10) such
that a competitive equilibrium is a solution to the planner’s problem.

Proof. See Appendix A.

The result of Proposition 1 might seem surprising. By assumption, the two
heterogeneous groups of skilled and unskilled agents can grow at different rates.
At first glance, this feature could make the planner’s objective function non-stationary
because the planner is to maximize the weighted sum of individual utilities where
the weights, in particular, depend on the groups’ sizes. As follows from Proposition 1,
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this first-glance intuition is, however, not correct: the appropriate weights for
the planner’s problem are those that depend on the initial sizes of the two groups; the
growth rates of the skilled and unskilled groups do not enter the planner’s objective
function.

Stationary economy

As described in the subsection entitled ‘Labour growth and technological progress’
above, our economy contains several sources of growth. To be able to apply standard
dynamic programming methods, we should convert the growing economy into a
stationary one. With the following proposition, we show the restriction that is necessary
for the existence of a stationary (balanced growth) equilibrium.4

Proposition 2. In order for the economy (3)–(10) to have a stationary (balanced growth)
equilibrium, it is necessary that Gsgs ¼ Gugu ¼ Gqg ¼ ðGAÞ1=ða�1Þg, where g is a long-run
growth rate of output.

Proof. This proposition follows from an inspection of the production function (3). Given
formulas (5), (6) and (8), constant marginal rates of substitution between Lst and Lut and
between Lst and Ket require that

ð11Þ Gsgs ¼ Gugu ¼ Gqg:

Given formula (3), a constant Kb/Y ratio requires that

ð12Þ g ¼ gAgaðGqgÞ1�a;

or, equivalently, Gq ¼ ðGAÞ1=ða�1Þ.5

We next provide sufficiency results under the restrictions of Proposition 2.
With the following proposition, we derive a stationary version of the resource
constraint (10).

Proposition 3. The stationary resource constraint that corresponds to (3), (10) is given by

ð13Þ
Ns

0c
s
t þNu

0c
u
t þ gkb;tþ1 þ gGq kt

q0
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s
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r� �s=r�ð1�aÞ=s;
where

cst ¼
ðgsÞtCs

t

gt
; cut ¼

ðguÞtCu
t

gt
; kbt ¼

Kbt

gt
and ket ¼

Ket

ðGqÞtgt
:

Proof. See Appendix A.

Thus Cs
t and Cu

t grow at the rates g/gs and g/gu, respectively; Kbt and Yt grow at the
rate g; and Lst, Lut and Ket grow at the same rate Gsgs ¼ Gugu ¼ Gqg.

We now turn to preferences. In terms of new variables cst and cut , we can rewrite the
objective function in (9) as follows:
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ð14Þ E0

X1
t¼0

bt yNs
0U

s gtcst
ðgsÞt

; 1� nst

� 	
þ ð1� yÞNu

0U
u gtcut
ðguÞt

; 1� nut

� 	� �( )
:

King et al. (1988) show that the standard Kydland and Prescott (1982) model is
consistent with balanced growth only under the following two classes of preferences:

ð15Þ UðC; 1� nÞ ¼ lnðCÞ þ Vð1� nÞ;

ð16Þ UðC; 1� nÞ ¼ C1�R

1� R
Vð1� nÞ; 0<R<1 or R>1;

where under the additively separable utility function (15), V(1� n) is increasing and
concave, and under the multiplicatively separable utility function (16), V(1� n) is
increasing and concave if 0<R<1, and decreasing and convex if R>1.

With the following proposition, we show that the above two utility functions are also
consistent with balanced growth in our heterogeneous-agent setup. However, under (16),
we should impose additional restrictions on the inverse of intertemporal elasticity of
substitution in consumption for skilled and unskilled agents if these two groups grow at
different rates.

Proposition 4. Preferences (14) are stationary if and only if the momentary utility
function for iAfs, ug is given by:

1. UiðC; 1� nÞ ¼ lnðCÞ þ Við1� nÞ;
2. UiðC; 1� nÞ ¼ ½C1�Ri=ð1� RiÞ�Við1� nÞ, with Rs and Ru satisfying ðg=gsÞ1�R

s

¼ ðg=guÞ1�R
u

.

Proof. See Appendix A.

We finally mention two properties of the model that are useful for our future analysis.

Proposition 5. In the economy that is consistent with balanced growth:

1. if gs0 gu, then Gs9Gu;
2. if Gq0 1, then GA9 1.

Proof. The results (1) and (2) follow, respectively, from the restrictions Gsgs ¼ Gugu and
Gq ¼ (GA)1/(a � 1) of Proposition 2.

That is, the assumption of balanced growth requires that: (1) whenever skilled labour
grows at a higher (lower) rate than unskilled labour, efficiency of high-skilled labour
should grow at a proportionally lower (higher) rate than efficiency of low-skilled labour;
(2) whenever the efficiency of producing equipment relative to structures increases
(decreases), Hicks-neutral technological progress is negative (positive).

II. CALIBRATION AND SOLUTION PROCEDURES

In this section, we describe the methodology of our numerical study. For the numerical
part, we restrict attention to the additively separable utility function of the addilog type,
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with the sub-function Vi(1� n) being identical for two types of agents,

ð17Þ UðC; 1� nÞ ¼ lnðCÞ þD
ð1� nÞ1�v � 1

1� v
:

Consequently, a stationary version of the planner’s problem can be written as

ð18Þ max
fcst ;cut ;nst ;nut ;kb;tþ1;ke;tþ1g

E0

X1
t¼0

bt yNs
0 logðcstÞ þD

ð1� nstÞ
1�v � 1

1� v

" #(

þð1� yÞNu
0 logðcut Þ þD

ð1� nut Þ
1�v � 1

1� v

" #)
;

subject to (13). The first-order conditions (FOCs) of the problem (18) are derived in
Appendix B.

Krusell et al. (2000) estimate the parameters in the production function (3) as well as
the parameters for the stochastic shocks for the US economy data over the 1963–92
period. Since we assume the same production function, and we use the same dataset, we
follow the parameter choice in Krusell et al. (2000) as close as possible. However, we
cannot use all their estimates because there is an important difference between our
framework and theirs: Krusell et al. (2000) impose no restrictions on the growth and
cyclical patterns, while we assume balanced growth and a first-order recursive stationary
Markov equilibrium. We outline the main steps of the calibration procedure below;
further details are provided in Appendix C.

To estimate the growth rates of skilled and unskilled labour, gs and gu, respectively,
and the initial numbers of skilled and unskilled workers, Ns

0 and Nu
0 , respectively, we use

the data provided by Krusell et al. (2000). To calibrate time worked by skilled and
unskilled agents in the steady state, we use the results of Maliar and Maliar (2001), who
report time worked by eight educational groups in the US economy. For our purpose,
from the given eight groups, we construct two weighted representative groups. The
resulting shares of discretionary time worked by skilled and unskilled agents are
ns ¼ 0.3685 and nu ¼ 0.2459, respectively.

In the benchmark case, we assume the depreciation rates of capital structures and
capital equipment, db ¼ 0.05 and de ¼ 0.125, and the parameters of the production
function, a ¼ 0.117, s ¼ 0.401, r ¼ � 0.495, as estimated in Krusell et al. (2000). We
estimate the process for qt in (8) by assuming that the error term follows a first-order
autoregressive process logðktÞ ¼ bq logðkt�1Þ þ eqt with eqt�Nð0; sqÞ. (The estimate of
Krusell et al. (2000) for qt is not applicable to us since they assume an ARIMA
(autoregressive integrated moving-average) process, which is not consistent with our
assumption of a first-order recursive Markov equilibrium.) To estimate the parameters of
the production function, l and m, the parameters for shock At and the sizes of labour-
augmenting technological progress, Gs and Gu, we employ the following iterative
procedure.

1. Fix some initial value of Gs and compute the corresponding value of Gu ¼ gsGs/gu,
given gs and gu computed from the data.

2. Find the parameters l and m to reproduce two statistics in the data: the average (total)
labour share of income over the period, and the average ratio of skilled labour’s share
of income to unskilled labour’s share of income.
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3. Use the data and the obtained parameters Gs, Gu, l and m to restore the process At

according to (3), and estimate the parameter GA in (7) by assuming a first-order
autoregressive process for the error term, logðztÞ ¼ bAlogðzt�1Þ þ eAt with eAt � Nð0; sAÞ.

4. Given the obtained value of GA, update the value of Gs for the next iteration by

Gs ¼
0:5GA þ 0:5ðGqÞa�1

 �1=ða�1Þ

g

gs
:

5. Repeat iterations until convergence so that the value of Gs assumed initially is the same
as the one obtained at the end of computations. Notice that the above iterative scheme
simultaneously ensures that ðGAÞ1=ða�1Þ ¼ Gq, which is another restriction necessary for
balanced growth. At the end, we have that Gsgs ¼ Gugu ¼ Gqg ¼ ðGAÞ1=ða�1Þg, as
required in Proposition 2.

We have to resort to this iterative procedure because our model has labour-
augmenting technological progress for skilled and unskilled labour, whose sizes cannot
be directly estimated from the data. (This problem does not arise in the analysis of
Krusell et al. (2000), since they assume no labour-augmenting technological progress.)
We then calibrate the discount factor b, the welfare weight y and the utility function
parameter D by using the FOCs of problem (18), evaluated in steady state (see Appendix
C). The obtained values of the parameters are summarized in Tables 1 and 2.

To solve the model, we use a simulation-based variant of the parameterized
expectations algorithm (PEA) by den Haan and Marcet (1990). To ensure the
convergence of the PEA, we bound the simulated series on initial iterations, as described
in Maliar and Maliar (2003b). The model has two features that complicate the
computation procedure. First, there are two intertemporal FOCs, so we must
parameterize two conditional expectations. Second, there are two intratemporal
conditions that cannot be resolved analytically with respect to skilled and unskilled
labour. Solving numerically the two intratemporal conditions on each date within the
iterative cycle is costly, so we find it easier to parameterize the intratemporal conditions
in the same way as we do the intertemporal FOCs. We then solve for equilibrium by
iterating on the parameters of the resulting four decision rules simultaneously. The
details of the solution procedure are described in Appendix D. Once the solution to the

TABLE 1

THE PARAMETERS OF THE UTILITY AND PRODUCTION FUNCTIONS

Parameter Ns
0 gs ns Nu

0 gu nu b l m y B

Value 4.4558 1.0224 0.3685 17.990 0.9945 0.2459 0.9823 0.9979 0.9197 0.3530 1.8843

TABLE 2

THE TECHNOLOGY GROWTH RATES AND THE SHOCK PARAMETERS

Parameter Gs Gu q0 gq (s.q)2 bq A0 gA (s A)2 bA

Value 1.0562 1.0856 0.9664 1.0491 0.0306 0.9352 10.213 0.9586 0.0326 0.7143

248 ECONOMICA [APRIL

Economica

r The Authors. Economica r 2009 The London School of Economics and Political Science



stationary model is computed, we restore the growing variables by incorporating the
corresponding deterministic trends.

III. RESULTS

In Figure 1, we plot the key variables (in logarithms) of the benchmark version of our
model with the elasticity of substitution of labour 1/v ¼ 1 under the actual sequence of
relative prices, 1/qt, and under the fitted sequence of technology levels, At. As we see, the
model is overall successful in explaining the growth patterns observed in the data. First,
by construction, it generates appropriate labour growth patterns, namely, an increasing
pattern for skilled labour and a decreasing pattern for unskilled labour. Second, it
produces series for capital structures and equipment growing at different rates, which are
comparable to those observed in the data. Finally, the model predicts increasing patterns
for output and wages of unskilled agents, which also agrees with the data.

A striking but not surprising implication of our model is that the rate of Hicks-
neutral technological progress is, on average, negative, GAo1. Indeed, given that in the
data, equipment becomes cheaper than structures over time in relative terms (i.e. Gq41),
by Proposition 5, we should necessarily have that GAo1. In the calibrated version of the
model, this effect proved to be very large, GA ¼ 0.9586, as Table 1 shows. Our finding
that Hicks-neutral technological progress is, on average, negative is the same as that of
Greenwood et al. (1997), who also report a dramatic downturn in total factor
productivity since the early 1970s. To explain their result, Greenwood et al. (1997) make
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FIGURE 1. The actual and simulated paths for the US economy 1963–92.
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a growth accounting exercise and demonstrate that the average growth rate of total
factor productivity depends on how capital is incorporated in the model. Specifically,
they show that once total capital is split between equipment and structures, the
productivity downturn increases.

There is one undesirable growth feature of our model that is difficult to correct given
our assumption of balanced growth. Specifically, the model significantly underpredicts
the growth rate of skilled-labour wages. As a result, the model fails to explain the time
series behaviour of the skill premium, pt � ws

t=w
u
t : in the model, the skill premium has a

strong downward trend, while in the data, such a trend is absent.
In fact, the above undesirable feature has been already anticipated in Proposition 5.

Specifically, the skill premium is given by

ð19Þ

pt ¼
G3ðKbt;Ket;Lst;LutÞ
G4ðKbt;Ket;Lst;LutÞ

� 

� Gs

Gu

� �t

¼
ð1� mÞð1� lÞ l ket=ðNs

0n
s
tÞ

� �rþð1� lÞ
� �ðs=rÞ�1

m
ðNs

0n
s
tÞ

s�1

ðNu
0n

u
t Þ

s�1

( )
� Gs

Gu

� �t
:

Since, in the data, skilled labour grows at a higher rate than unskilled labour, gs4gu, the
assumption of balanced growth implies that labour-augmenting technological progress
is larger for unskilled agents than for skilled agents, Gu4Gs. As follows from Table 1,
the difference between Gs and Gu in the calibrated version of the model is very large,
i.e. Gs ¼ 1.0562 and Gu ¼ 1.0856. Given that the term ðG3ðKbt;Ket;Lst;LutÞÞ=
ðG4ðKbt;Ket;Lst;LutÞÞ in expression (19) is stationary, and that the term [Gs/Gu]t has a
downward trend, we have a strong decreasing pattern in the skill premium. In general,
formula (19) implies that as long as gs4gu, we have Gu4Gs, and consequently our model
will generate the skill premium with a downward trend no matter how the parameters are
calibrated.6 Therefore the failure of the model to account for the risk premium pattern is a
generic feature of the model that is difficult to correct within our framework of balanced
growth.7 The analysis of Krusell et al. (2000) does not suffer from this shortcoming because
they do not impose the restriction of balanced growth, and hence the skill premium in their
model does not have a downward growth component [Gs/Gu]t.

To quantify the regularities discussed above, in Table 3 we provide the growth rates for
the US and model economies over the 1963–92 period. In column I, referred to as the
benchmark model (BM), we report the statistics generated by the model under our benchmark
parameterization. In columns II–VII, we provide the results of the sensitivity experiments
where we vary one of the model’s parameters, holding the rest of the parameters equal to their
benchmark values. Finally, in column VIII, we report the corresponding statistics for the US
economy computed from the Krusell et al. (2000) dataset. The comparison of the first and last
columns shows that our benchmark model is able to account for the growth rates of all
considered variables, except of the skilled-labour wage and skill premium.

As far as our sensitivity experiments are concerned, we first study the robustness of
our results to modifications in the value of the elasticity of substitution of labour, 1/v, the
only parameter that is not identified by our calibration procedure; namely, we set v ¼ 5
(see column II). Furthermore, we perform three sensitivity experiments in which we
consider a 100% increase in the production function parameters a, s and r relative to
their benchmark values (see columns III–V). Recall that the values of these parameters
were borrowed from Krusell et al. (2000) and therefore it is of interest to see how their
variations can affect the long-run properties of the solution. Finally, we implement two
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experiments where we assume a 100% increase in the depreciation rates db and de relative
to their benchmark values (see columns VI and VII). The last two experiments are of
interest as Hornstein (2004) found that the depreciation rates of capital have been
increasing considerably over time. As is seen from the table and as was anticipated in our
previous discussion, all the above modifications do not help us to improve the model’s
prediction about the growth rates of the skilled-labour wage and skill premium.

We should draw attention to the fact that we do not report the business cycle
predictions of the model such as standard deviations and correlation coefficients. Our
predictions are very similar to those obtained in Lindquist (2004). This is because
the stationary version of our model is identical to the one considered in Lindquist (2004),
up to a different choice of the utility function (he uses the Cobb–Douglas function while
we use the addilog one) and up to some differences in the calibration procedure
(in particular, he uses quarterly US data while we use yearly US data). Hence the results
of Lindquist (2004) are also valid for our model.

IV. CONCLUSION

Most macroeconomic models, which explicitly incorporate economic growth, rely on the
assumption of balanced growth. This assumption is technically convenient since balanced

TABLE 3

GROWTH RATES FOR THE US AND ARTIFICIAL ECONOMIES

Artificial economy US economy

Columna BM v ¼ 5.0 a ¼ 0.234 s ¼ 0.802 r ¼ � 0.99 ds ¼ 0.1 de ¼ 0.25

Statisticb I II III IV V VI VII VIII

g(yt) 1.0349 1.0318 1.0338 1.0354 1.0344 1.0349 1.0349 1.0294

(0.0032) (0.0025) (0.0027) (0.0035) (0.0031) (0.0032) (0.0033)

g(kbt) 1.0254 1.0256 1.0258 1.0255 1.0255 1.0256 1.0253 1.0244

(0.0029) (0.0025) (0.0023) (0.0030) (0.0028) (0.0028) (0.0031)

g(ket) 1.0301 1.0306 1.027 1.0292 1.0305 1.0299 1.0303 1.0707

(0.0059) (0.0053) (0.0050) (0.0079) (0.0055) (0.0059) (0.0061)

gðNs
t n

s
tÞ 1.0246 1.0241 1.0246 1.0231 1.0238 1.0247 1.0245 1.0224

(0.0017) (0.0007) (0.0012) (0.0033) (0.0021) (0.0016) (0.0020)

gðNu
t n

u
t Þ 0.9975 0.99429 0.99646 0.99954 0.99743 0.99743 0.99758 0.9945

(0.0015) (0.0004) (0.0011) (0.0022) (0.0014) (0.0015) (0.0014)

g(wst) 1.0001 1.0004 1.0033 1.0008 1.0022 0.99977 1.0006 1.0628

(0.0024) (0.0029) (0.0021) (0.0031) (0.0025) (0.0023) (0.0026)

g(wut) 1.0273 1.0286 1.0350 1.0270 1.0268 1.0273 1.0273 1.0564

(0.0021) (0.0021) (0.0019) (0.0020) (0.0020) (0.0020) (0.0021)

g(pt) 0.97435 0.97404 0.96996 0.97647 0.97702 0.9740 0.97495 1.0063

(0.0009) (0.0017) (0.0006) (0.0022) (0.0011) (0.0008) (0.0010)

Notes
aIn column I, we report the statistics generated by our benchmark model (BM); in columns II–VII, we provide
the results of the experiments where we vary one of the parameters, holding the rest of the parameters equal to
their benchmark values; in column VIII, we compute the corresponding statistics for the US economy from the
Krusell et al. (2000) dataset.
bg(xt) denotes the growth rate of variable xt. The growth rates in the model are sample averages computed
across 500 simulations. Each simulated series has a length of 30 periods, as do time series for the US economy.
The numbers in brackets are sample standard deviations of the corresponding growth rates.
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growth models can be converted into stationary models, which can be solved by standard
methods of dynamic programming. Balanced growth has been justified in the literature
on the basis that the observed long-run behaviour of the key macroeconomic variables is
broadly consistent with this specification. In particular, the stationarity of output and the
capital–output ratio in the data is a part of the Kaldor (1961) stylized facts.

In this paper, we develop a general equilibrium version of the Krusell et al. (2000)
model that is capable of generating a balanced growth path on which different variables
grow at different rates. In particular, the stock of capital equipment grows at a
higher rate than do consumption and output, and skilled labour grows at a higher rate
than does unskilled labour. A calibrated version of our model proved to be successful in
matching the long-run properties of the US economy data on capital equipment,
structures, skilled and unskilled labour, and output. Nonetheless, the model has an
important shortcoming, namely, it considerably understates an increase in wages of
skilled labour and, as a result, fails to explain the long-run behaviour of the skill
premium. Therefore the answer to the question posed in the introduction is as follows: In
stark contrast to the Krusell et al. (2000) setup, our general equilibrium balanced growth
model parameterized by the CES production function cannot explain all the growth
features of the US data.

We argue that the shortcoming of our analysis is the consequence of the assumption of
balanced growth. A mechanism that helps Krusell et al. (2000) to account for the skill
premium behaviour is the capital–skill complementarity: equipment is a complement with
skilled labour and a substitute with unskilled labour, so that an increase in equipment
increases productivity of skilled labour and decreases productivity of unskilled labour. This
mechanism is not consistent with the assumption of balanced growth, which lies at the basis
of our analysis. Under this assumption, the share of each input in production remains
constant even though different variables grow at different rates. Therefore it cannot happen
in our model that one production input substitutes another production input over time,
which is the key insight of the Krusell et al. (2000) analysis.

Developing models with non-balanced growth would restore the importance of the
Krusell et al. (2000) capital–skill complementarity mechanism for the long-run behaviour
of the economy. This direction is worth exploring, as recent work calls into question the
assumption of balanced growth; see, for example, Ramey and Francis (2006) for evidence
on a temporal rise in leisure, and Mulligan (2002) and Hornstein (2004) for evidence on
changes in the capital–output ratio, as well as Ngai and Pissarides (2007), Kylymnyuk et
al. (2007a, b) and Acemoglu and Guerrieri (2008) for evidence on and theoretical
explanations of non-balanced systematic changes in the relative importance of different
production sectors.

APPENDIX A: PROOFS OF PROPOSITIONS 1, 3 AND 4

Proof of Proposition 1

Consider the problem of a representative agent of type iAfs, ug, given by (1) and (2). Dividing by
the number of agents Ni

t , we get

ðA1Þ max
fCi

t;n
i
t;K

i
b;tþ1;K

i
e;tþ1;fM

i
tþ1ðZÞgZ [<

E0

X1
t¼0

btUiðCi
t; 1� nitÞ;
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subject to

ðA2Þ
Ci

t þ giKb;tþ1 þ
giKe;tþ1

qt
þ gi

Z
<
ptðZÞMi

tþ1ðZÞdZ

¼ wi
tn

i
t þ ð1� db þ rbtÞKbt þ ð1� de þ retÞ

Ki
et

qt
þMi

tðBtÞ:

The first-order condition (FOC) of the problem (A1), (A2) with respect to holdings of Arrow
securities is

ðA3Þ fi
tptðBÞgi ¼ bfi

tþ1ðB0Þ �PfBtþ1 ¼ B0jBt ¼ BgB0;B[<;

where fi
t is the Lagrange multiplier associated with the budget constraint (A2). By taking the ratio

of FOC (A3) of a skilled agent s to that of an unskilled agent u, we obtain

ðA4Þ fs
0

fu
0

¼ fs
1=g

s

fu
1=gu

¼ . . . ¼ fs
t=ðgsÞ

t

fu
t =ðguÞ

t ¼ . . . � fu

fs ;

where fs and fu are some constants. Given that fi
t ¼ Ui

1ðCi
t; 1� ni1Þ, we have that the ratio of

marginal utilities of consumption of two heterogeneous consumers, adjusted to the corresponding
growth rates of population, is constant across time and states of nature

ðA5Þ Ui
1ðCs

0; 1� ns0Þ
Ui

1ðCu
0 ; 1� nu0Þ

¼ Ui
1ðCs

1; 1� ns1Þ=gs
Ui

1ðCu
1 ; 1� nu1Þ=gu

¼ . . . ¼ Ui
1ðCs

t ; 1� nstÞ=ðgsÞ
t

Ui
1ðCu

t ; 1� nut Þ=ðguÞ
t ¼

fu

fs :

This is a consequence of the assumption of complete markets. The FOCs with respect to physical
hours worked, capital structures and equipment of a representative agent of type i, respectively, are

ðA6Þ Ui
2ðCi

t; 1� nitÞ ¼ Ui
1ðCi

t; 1� nitÞwi
tðGiÞt;

ðA7Þ giUi
1ðCi

t; 1� nitÞ ¼ bEt U
i
1ðCi

tþ1; 1� nitþ1Þð1� db þ rb;tþ1Þ
� �

;

ðA8Þ giUi
1ðCi

t; 1� nitÞ=qt ¼ bEt

Ui
1ðCi

tþ1; 1� nitþ1Þ
qtþ1

ð1� de þ re;tþ1Þ
� �

:

Thus (A5)–(A8) are the FOCs of the competitive equilibrium economy.
Let us consider now the planner’s problem (9), (10). The FOCs with respect to consumption of

the skilled and the unskilled agents, respectively, are

ðA9Þ yUs
1ðCs

t ; 1� nstÞ ¼ ZtðgsÞ
t;

ðA10Þ ð1� yÞUu
1 ðCu

t ; 1� nut Þ ¼ ZtðguÞ
t;

where Zt is the Lagrange multiplier associated with the economy’s resource constraint (10).
Dividing (A9) by (A10) and setting the value of y so that fu=fs ¼ ð1� yÞ=y, we obtain condition
(A5) of the competitive equilibrium economy. The FOC with respect to capital structures is

ðA11Þ Zt ¼ bEt Ztþ1ð1� db þ rb;tþ1Þ
� �

:

Combining (A9) and (A10) with (A11), we get condition (A7) of the competitive equilibrium
economy. Similarly, the FOC with respect to equipment is

ðA12Þ Zt=qt ¼ bEt
Ztþ1
qtþ1
ð1� de þ re;tþ1Þ

� �
:

After substituting conditions (A9) and (A10) into (A12), we obtain condition (A8) of the
competitive equilibrium economy. From the firm’s problem (4), equilibrium wages are given by

ws
t ¼ AtG3ðKbt;Ket;Lst;LutÞðGsÞt and wu

t ¼ AtG4ðKbt;Ket;Lst;LutÞðGuÞt:
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By substituting these wages into the FOC with respect to physical hours worked of the planner’s
problem, we get (A6). Finally, the resource constraint (10) should be satisfied in competitive
equilibrium by definition. The fact that the optimality conditions of the planner’s problem are
necessary for competitive equilibrium proves the statement of Proposition 1.8

Proof of Proposition 3

Let us introduce a new variable ~Ket � Ket=ðGqÞt. In terms of this new variable, the budget
constraint (10) combined with the production function (3) becomes

ðA13Þ

Ns
tC

s
t þNu

t C
u
t þ Kb;tþ1 þ Gq kt

q0
~Ke;tþ1

¼ ð1� dbÞKbt þ ð1� deÞ
kt
q0

~Ket þ A0ðGAÞtztKa
bt

� fm Nu
t n

u
t ðGuÞt

� �sþð1� mÞ l ~Kr
et
ðGqÞt
� �rþð1� lÞ Ns

t n
s
tðGsÞt

� �r
 �s=r
gð1�aÞ=s:

Let us introduce g, which is defined as a common long-run growth rate of output, Yt, structures Kbt

and adjusted equipment ~Ket. We divide (A13) by gt to obtain

ðA14Þ

Ns
0ðgsÞ

tCs
t

gt
þNu

0ðguÞ
tCu

t

gt
þ g

Kb;tþ1
gtþ1

þ gGq kt
q0

~Ke;tþ1
gtþ1

¼ ð1� dbÞ
Kbt

gt
þ ð1� deÞ

kt
q0

~Ket

gt
þ A0zt

Kbt

gt

� 	a

�
m Nu

0n
u
t ðGuguÞt

� �sþð1� mÞ l ~Kr
et ðGqÞt
� �rþð1� lÞ Ns

0n
s
tðGsgsÞt

� �r� �s=r
ðGAÞt
� �s=ða�1ÞðgtÞs

( )ð1�aÞ=s;

where we take into account that skilled and unskilled labour grow at constant rates gs and gu, as is
assumed in (5). By imposing the restrictions Gsgs ¼ Gugu ¼ Gqg ¼ ðGAÞ1=ða�1Þg and by introducing
notation cst , c

u
t , kbt and ket, as shown in Proposition 3, we get the budget constraint (13).

Proof of Proposition 4

The necessity part can be shown following the steps outlined in King et al. (1988). The sufficiency
part can be shown as follows. Under the additively-separable addilog preferences of type (1), the
stationary version of the planner’s preferences is

ðA15Þ

E0

X1
t¼0

bt yNs
0 log

ðgsÞtcst
gt

� 	
þ Vsð1� nstÞ

� ��
þð1� yÞNu

0 log
ðguÞtcut

gt

� 	
þ Vuð1� nut Þ

� �


¼ E0

X1
t¼0

bt yNs
0 logðcstÞ þ Vsð1� nstÞ
� �

þ ð1� yÞNu
0 logðcut Þ þ Vuð1� nut Þ
� �� �

þ U;

where

U � E0

X1
t¼0

bt yNs
0 log

ðgsÞt

gt

� 	� �
þ ð1� yÞNu

0 log
ðguÞt

gt

� 	� �� 

is a finite additive term, which has no effect on equilibrium allocation.

Under the multiplicatively-separable Cobb–Douglas preferences (type 2), restricted to satisfy

g
gs

� 	1�Rs

¼ g
gu

� 	1�Ru

;

the stationary planner’s preferences are given by
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ðA16Þ

E0

X1
t¼0

bt yNs
0

ðgsÞtcst=gt
� �1�Rs

1� Rs
Vsð1� nstÞ þ ð1� yÞNu

0

ðguÞtcut =gt
� �1�Ru

1� Ru
Vuð1� nut Þ

" #

¼ E0

X1
t¼0

bbt yNs
0

ðcstÞ
1�Rs

1� Rs
Vsð1� nstÞ þ ð1� yÞNu

0

ðcut Þ
1�Ru

1� Ru
Vuð1� nut Þ

" #
;

where

b̂ � b
g
gs

� 	1�Rs

¼ b
g
gu

� 	1�Ru

:

APPENDIX B: FIRST-ORDER CONDITIONS FOR PROBLEM (18)

Let us denote lst ¼ Ns
0n

s
t and lut ¼ Nu

0n
u
t . Optimality conditions of the problem (18), (13) with

respect to cst , c
u
t , n

s
t , n

u
t , kb;tþ1 and ke;tþ1, respectively, are

ðA17Þ yðcstÞ
�1 ¼ Zt;

ðA18Þ ð1� yÞðcut Þ
�1 ¼ Zt;

ðA19Þ yDð1� nstÞ
�v ¼ ZtA0ztG3ðkbt; ket; lst; lutÞ;

ðA20Þ ð1� yÞDð1� nut Þ
�v ¼ ZtA0ztG4ðkbt; ket; lst; lutÞ;

ðA21Þ gZt ¼ bEt Ztþ1 1� db þ A0ztþ1G1ðkb;tþ1; ke;tþ1; ls;tþ1; lu;tþ1Þ
� �� �

;

ðA22Þ gGqk
t

q0
Zt ¼ bEt Ztþ1

ð1� deÞkt�1
q0

þ A0ztþ1G2ðkb;tþ1; ke;tþ1; ls;tþ1; lu;tþ1Þ
� �� 


;

where Gi is a first-order partial derivative of the function G with respect to the ith argument,
i ¼ 1; . . . ; 4. These derivatives are given by

ðA23Þ G1ðkbt; ket; lst; lutÞ ¼ aA0ztk
a�1
bt ½mlsut þ ð1� mÞ lkret þ ð1� lÞlrstð Þs=r�

ð1�a=Þs
;

ðA24Þ G2ðkbt; ket; lst; lutÞ ¼A0ztk
a
btð1� aÞð1� mÞl lkret þ ð1� lÞlrstð Þðs=rÞ�1 kr�1et

� ½mlsut þ ð1� mÞ lkret þ ð1� lÞlrstð Þðs=rÞ�
ð1�aÞ=s�1

;

ðA25Þ
G3ðkbt; ket; lst; lutÞ ¼A0ztk

a
btð1� aÞð1� mÞð1� lÞ lkret þ ð1� lÞlrstð Þðs=rÞ�1 lr�1st

� ½mlsut þ ð1� mÞ lkret þ ð1� lÞlrstð Þðs=rÞ�
ð1�a=sÞ�1

;

ðA26Þ
G4ðkbt; ket; lst; lutÞ ¼A0ztk

a
btð1� aÞm

� ½mlsut þ ð1� mÞ lkret þ ð1� lÞlrstð Þðs=rÞ�
ð1�a=sÞ�1

ls�1ut :

After some algebra, conditions (A17)–(A22) can be rewritten as follows:

ðA27Þ gc�1t ¼ bEt c
�1
tþ1 1� db þ A0ztG1ðkb;tþ1; ke;tþ1; ls;tþ1; lu;tþ1Þ
� �� �

;
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ðA28Þ gGqkt
q0

c�1t ¼ bEt c�1tþ1
ð1� deÞkt�1

q0
þ A0ztG2ðkb;tþ1; ke;tþ1; ls;tþ1; lu;tþ1Þ

� 	� �
;

ðA29Þ lst ¼ Ns
0 1� c

1=v
t y1=vD1=v A0ztG3ðkbt; ket; lst; lutÞð Þ�ð1=vÞ

Ns
0yþNu

0 ð1� yÞ
� �1=v

" #
;

ðA30Þ lut ¼ Nu
0 1� c

1=v
t ð1� yÞ1=vD1=v A0ztG4ðkbt; ket; lst; lutÞð Þ�ð1=vÞ

Ns
0yþNu

0 ð1� yÞ
� �1=v

" #
:

Optimality conditions (A27)–(A30) together with the resource constraint (13) characterize the
equilibrium.

APPENDIX C: CALIBRATION PROCEDURE

To compute the values of l and m in step 2 of the iterative procedure described in Section II, we use
the derivatives (A25) and (A26) of the production function to get

ðA31Þ m ¼ 1þ ðG3tLstÞ=ðG4tLutÞð Þ Lut=Ketð Þs

Lst=Ketð Þrð1� lÞ lþ ð1� lÞ Lst=Ketð Þrð Þðs=rÞ�1

" #�1
;

ðA32Þ

G3tLst þ G4tLut

Yt
¼ ð1� aÞ

�
ð1� mÞð1� lÞ lþ ð1� lÞ Lst=Ketð Þrð Þðs=rÞ�1 Lst=Ketð Þrþm Lut=Ketð Þs
h i

ð1� mÞ lþ ð1� lÞ Lst=Ketð Þrð Þs=r Lst=Ketð Þrþm Lut=Ketð Þs
;

where Git � GiðKbt;Ket;Lst;LutÞ. We compute the ratios

G3tLst

G4tLut
;

Lst

Ket
;

Lut

Ket
and

G3tLst þ G4tLut

Yt

as time series averages of variables

ws
tN

s
t ðGsÞt

wu
t N

u
t ðGuÞt

;
Ns

t ðGsÞt

Ket
;

Nu
t ðGuÞt

Ket
and

ws
tN

s
t ðGsÞt þ wu

t N
u
t ðGuÞt

Yt
;

respectively, where the last four variables are constructed from the data in Krusell et al. (2000)
under the assumed values of Gs and Gu. We then solve numerically equations (A31) and (A32) with
respect to l and m.

In step 3, we use the obtained parameters to restore the process for At from (3), i.e.

ðA33Þ At ¼
Yt

Ka
bt m Nu

t ðGuÞt
� �sþð1� mÞ lKr

et þ ð1� lÞ Ns
t ðGsÞt

� �r� �s=rn oð1�aÞ=s ;
where Yt, N

u
t , N

s
t , Kbt and Ket are the corresponding time series taken from the data in Krusell et al.

(2000).
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We calibrate the discount factor b by using FOC (A27) evaluated in the steady state

ðA34Þ b ¼ g= 1� db þ a
Y

Kb

� 	
;

where Y/Kb is the time series average of output to structures ratio in the Krusell et al. (2000) data.9

Given ls ¼ Ns
0n

s and lu ¼ Nu
0n

u, we compute steady-state values of capital equipment, ke, and
structures, kb, by solving FOCs (A27) and (A28) numerically. Combining equations (A29) and
(A30), and evaluating the resulting condition in the steady state, we obtain a formula for
calibrating the welfare weight y:

ðA35Þ y ¼
ð1� mÞð1� lÞ lkre þ ð1� lÞlrs

� �ðs=rÞ�1
lr�1s

ð1� mÞð1� lÞ lkre þ ð1� lÞlrsð Þðs=rÞ�1 lr�1s þ mls�1u

:

Finally, to calibrate the utility function parameter D, we use (A29) evaluated in the steady state

ðA36Þ D ¼ c�gð1� nsÞvG3ðkbt; ket; lst; lutÞ
Ns

0yþNu
0 ð1� yÞ

� �
y

;

where the balanced consumption c � Ns
0c

s þNu
0c

u is obtained from the budget constraint (13)
evaluated in the steady state.

APPENDIX D: SOLUTION PROCEDURE

We first notice that if the expectations were parameterized in both intertemporal FOCs (A27) and
(A28), then both conditions would identify consumption. As a consequence, consumption would be
overidentified, while the rest of variables would be not identified. We therefore rewrite the FOCs in
a way that is more suitable for parameterization, by premultiplying (A27) by kb;tþ1 and
premultiplying (A28) by ke;tþ1. In this way, we obtain two equations that identify two capital
stocks,

ðA37Þ kb;tþ1 ¼
bEt½1�
gc�gt

kb;tþ1 and ke;tþ1 ¼
q0bEt½2�
ggqktc

�g
t

ke;tþ1;

where Et[1] and Et[2] denote the expectation terms within the brackets in FOCs (A27) and (A28),
respectively.

As far as the intratemporal conditions (A29) and (A30) are concerned, they do not allow for
analytical solution with respect to lst and lut. Finding a numerical solution to the intratemporal
conditions on each date within the iterative cycle is costly, so, as we mentioned in the main text, we
find it easier to parameterize the intratemporal conditions in the same way as we parameterize the
intertemporal FOCs. To be specific, we parameterize the total hours worked by skilled and
unskilled agents,

ðA38Þ lst ¼ Ns
0½3� and lut ¼ Nu

0 ½4�;

where [3] and [4] are the expressions within the brackets of FOCs (A29) and (A30), respectively.
Each of the four variables kb;tþ1; ke;tþ1; lst; lut is parameterized by a first-order exponentiated
polynomial of the type

ðA39Þ expðx0 þ x1lnkbt þ x2lnket þ x3lnzt þ x4lnktÞ:

We therefore have to identify 20 unknown coefficientsFfive coefficients for each of the four
variables parameterized. We do this by using the following iterative procedure.

1. Fix the initial x terms. Fix initial condition ðkb0; ke0; z0; k0Þ. Draw and fix a random series for
exogenous shocks fzt; ktgTt¼0.

2. Use the assumed decision rules (A37), (A38) and the budget constraint (13) to calculate

recursively fkb;tþ1; ke;tþ1; lst; lut; ctgTt¼0.
3. Run the nonlinear least squares regressions of the corresponding variables on the functional

form (A39). Use the re-estimated coefficients FðxðjÞÞ obtained on iteration j to update each of
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the 20 coefficients for the next iteration (j þ 1) according to xðj þ 1Þ ¼ ð1�$ÞxðjÞ þ$FðxðjÞÞ,
$[ð0; 1Þ.

Iterate on the x terms until a fixed point is found.
As an initial guess, we set the values of the x equal to the deterministic steady state. The

algorithm is able to systematically converge to the true solution if the coefficients are updated
slowly,$)0:01, and if the simulated series are bounded to rule out implosive (explosive) strategies
as described in Maliar and Maliar (2003b). The program was written in Matlab and the simulation
was carried out a laptop with a Dual Core 2.5 GHz processor. The computational time was around
a half an hour when the length of simulations was T ¼ 10,000.
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NOTES

1. The CES specification of the production function is extensively used in the literature for studying growth
issues; see Papageorgiou and Saam (2008) for a review.

2. Lindquist (2005) and Domeij and Ljungqvist (2007) use the Krusell et al. (2000) model to study long-run
trends in the skill premium in Sweden. Also, Domeij and Ljungqvist (2007) extend the analysis that
Krusell et al. (2000) perform for the US economy over the 1963–92 period to include another decade, and
find that the predicted skill premium remains remarkably close to its empirical counterpart.

3. A one-sector neoclassical growth model is consistent with steady-state growth only if technical change is
labour-augmenting; see Uzawa (1961) and Jones and Scrimgeour (2008) for the proof. Recently, in the
context of an endogenous growth model, Acemoglu (2003) argues that technical change can be also
capital-augmenting.

4. The case of a zero-growth steady state is analysed in Papageorgiou and Saam (2008). This paper
establishes the conditions for the existence of a zero-growth steady state in the Solow and Diamond
growth models under a CES production function with capital–skill complementarity.

5. Ngai and Pissarides (2007) also construct a model with differences in technology growth rates across
sectors and derive restrictions on the utility and production functions that are sufficient for balanced
aggregate growth (as well as for sectorial labour reallocation).

6. In fact, we could have generated a stationary pattern of risk premium in the model by assuming Gu ¼ Gs.
However, according to Proposition 2, the assumption of balanced growth will therefore imply that
gs ¼ gu, so the model will not match the differing growth rates of the skilled and unskilled populations.

7. A possible reason for this failure of the model might be that the particular time period considered by
Krusell et al. (2000) reflects a temporary off steady state behaviour. Indeed, Greenwood et al. (1997)
argue that a major technology change occurred in the mid-1970s, and under this hypothesis, the data
analysed in Krusell et al. (2000) represent a large departure from the steady state.

8. Strictly speaking, we also need to show that the individual transversality conditions in the decentralized
economy imply the aggregate transversality condition in the planner’s economy. This can be shown as in
Maliar and Maliar (2001, 2003a).

9. Here and elsewhere, we use variables without time subscripts to denote the corresponding steady-state values.
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