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Abstract

This paper presents an algorithm for solving nonlinear dynamic stochastic models that computes value function

by simulations. We argue that the proposed algorithm can be a useful alternative to the existing methods in some

applications.
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1. Introduction

The study of dynamic economies often requires finding solutions to stochastic infinite-horizon

optimization problems with continuous state and action spaces. The existing computational methods,

typically, either solve for a value function satisfying the Bellman equation or compute decision rules

satisfying first-order conditions (Euler equations).1 In the paper, we develop a simple algorithm, which

combines both approaches. It parameterizes value function, simulates time series satisfying first-order

conditions and uses the resulting series to minimize the difference between the two sides of the Bellman
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96) and Marimon and Scott (1999) provide reviews of numerical methods used in economic dynamics.
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equation. The algorithm is similar to Marcet’s (1988) version of the Parameterized Expectations

Algorithm (PEA) in that it uses Monte Carlo simulations for evaluating the conditional expectations. We

argue that the algorithm proposed can be a useful alternative to the existing methods in some applications.
2. The problem

We focus on the class of stochastic infinite-horizon optimization problems in which both state and

control variables can take a continuum of possible values. We assume that the problem has a recursive

formulation, so that its solution satisfies the Bellman equation:

V zt; utð Þ ¼ max
xt

r zt; ut; xtð Þ þ dEt V ztþ1; utþ1ð Þ½ �f g ð1Þ

s:t: ztþ1 ¼ g zt; ut; xtð Þ; ð2Þ

P utþ1 ¼ uVjut ¼ uð Þ for all uV; u a UpRnu ; ð3Þ
where (z0,u0) is given; Et[d ]uE[d jut] denotes the conditional expectation; da(0,1) is the discount

factor; zt, ut and xt are vectors of nz endogenous state variables, nu exogenous state variables and nx
control variables, respectively; V is the value function; r is the return function; g is the transition

equation for a vector of endogenous state variables; and finally, P is the transitional probability function,

associated with a first-order Markov process for the vector of exogenous state variables. We assume that

r is concave and that g is such that the set {(zt+1,zt):zt+1=g(zt,ut,xt), xtaRnx, utaRnu} is convex and

compact.

We assume that a solution to (1), (2), (3) exists, and also that it is interior and unique. As such, an

optimal allocation satisfies the first-order condition

Br zt; ut; xtð Þ
Bxt

þ Bg zt; ut; xtð Þ
Bxt

d dEt

BV ztþ1; utþ1ð Þ
Bztþ1

� �
¼ 0: ð4Þ

By the envelope theorem, we have

BV zt; utð Þ
Bzt

¼ Br zt; ut; xtð Þ
Bzt

þ Bg zt; ut; xtð Þ
Bzt

d dEt

BV ztþ1; utþ1ð Þ
Bztþ1

� �
: ð5Þ

Substituting Et

�
BV ztþ1;utþ1ð Þ

Bztþ1

�
from Eqs. (4) to (5), updating the resulting condition and combining it

with Eq. (4) yields

Br zt; ut; xtð Þ=Bxt
Bg zt; ut; xtð Þ=Bxt

¼ dEt

Br ztþ1; utþ1; xtþ1ð Þ
Bztþ1

þ Bg ztþ1; utþ1; xtþ1ð Þ
Bztþ1

d
Br ztþ1; utþ1; xtþ1ð Þ=Bxtþ1

Bg ztþ1; utþ1; xtþ1ð Þ=Bxtþ1

� �
:

ð6Þ
Condition (6) is the so-called Euler equation.

There are two general approaches to solving (1), (2), (3). One is the value-iterative approach in which

the optimal value function is computed with the Bellman equation (1). The other is the Euler equation

approach, in which the optimal decision rules are calculated from the Euler equation (6) without

computing the value function. The method we propose here combines both approaches. Specifically, it

searches for the optimal decision rules satisfying first-order condition (4) and uses the Bellman equation
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(1) as a criterion for the accuracy of the solution. The formal description of the method is provided in the

following section.
3. The algorithm

We approximate the true value function V(z,u) by a parametric function W(z,u;b), baRv. Our

objective is to find a vector of coefficients b* such that W(z,u;b*) is the best approximation to V(z,u)

given the functional form chosen, i.e.

b4 ¼ arg min
baRv

NW z; u;bð Þ 
 V z; uð ÞN:

We solve for b* by using Monte Carlo simulations.

! Step 1. For an initial iteration i=0, fix b=b(0)aRv. Fix initial conditions z0 and u0; draw and fix for all

simulations a random series {ut}t=1
T by using Eq. (3). Replace

BV ztþ1;utþ1ð Þ
Bztþ1

in Eq. (4) by the

approximation
BW ztþ1;utþ1;bð Þ

Bztþ1
and solve Eqs. (2) and (4) with respect to zt+1 and xt. We assume that a

solution to Eqs. (2) and (4) exists and that it is unique.

! Step 2. Given baRv, recursively calculate {zt+1(b), ut+1, xt(b)}t=1
T .

! Step 3. Construct the variable {wt(b)}t=1
T such that

wtur zt bð Þ; ut; xt bð Þð Þ þ dE W ztþ1 bð Þ; utþ1;bð Þjut½ �
and run a nonlinear least-square regression of this variable on explanatory function W(zt(b),ut;n) to
estimate the vector of parameters n. Call the result G(b)

G bð Þ ¼ arg min
naRv

Nwt 
W zt bð Þ; ut; nð ÞN:

! Step 4. Compute the vector b(i+1) for the next iteration

b iþ 1ð Þ ¼ 1
 lð Þb ið Þ þ lG b ið Þð Þ;
where la(0,1) is the updating parameter.

Iterate on Steps 2–4 until b*=G(b*) for all t.

The simulation procedure underlying our algorithm is similar to the one used in a version of the PEA,

developed by Marcet (1988).2 The difference is that under Marcet’s PEA, simulations are employed for

computing the equilibrium law of motion of the conditional expectation in the Euler equation (6),

whereas, in our method, simulations are used to solve for value function.

Unfortunately, our method does not necessarily guarantee finding a solution. This drawback,

however, is common to all numerical algorithms iterating on first-order conditions. The failure might

occur if the approximation happens to be far away from the true solution. The simulated series then

become highly non-stationary, so that the regression delivers meaningless results. To rule out explosive

(implosive) strategies, we restrict the endogenous state variables within a certain range zt+1a[z,z̄] for all
2 Marcet and Lorenzoni (1999) and Christiano and Fisher (2000) describe the PEA applications and provide further references.
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t.3 This range is chosen so that the restriction can bind the simulated series on initial iterations when the

solution is imprecise, however, it becomes completely irrelevant when the solution is refined.
4. Example

Consider a version of the two-sector neoclassical growth model with four types of exogenous shocks,

two to technology in two different sectors, one to preferences and one to the depreciation rate:

max
ct ;ktþ1;htþ1f glt¼0

E0

Xl
t¼0

dth3;tln ctð Þ ð7Þ

s:t: ct þ ktþ1 þ htþ1 ¼ 1
 h4;td
� �

kt þ htð Þ þ h1;tk
a
t þ h2;th

a
t ; ð8Þ

where ct, kt and ht are consumption and the capital stocks in the two sectors, respectively; aa(0,1); the

process for a shock ia{1,. . .,4} is an AR(1), ln hi,t+1=qi ln hi,t+ei,t+1 with ei,t+1~N (0,re,i

2 ); h4,t is the
shock to the depreciation rate, d, such that h4,tda(0,1); and (k0,h0,{hi,0}i=1

4 ) is given. Thus, there are two

endogenous state variables, kt and ht, and four exogenous state variables {hi,t}i=1
4 .

We approximate the value function by

V kt; ht; hi;t
� 	4

i¼1


 �
gW kt; ht; hi;t

� 	4

i¼1
;b


 �
¼ b1 þ b2lnkt þ b3lnht þ b4lnhi;t þ b5lnh2;t

þ b6lnh3;t þ b7lnh4;t þ b8lnh1;tlnkt

þ b9lnh2;tlnkt þ b10lnh3;tlnkt þ b11lnh4;tlnkt

þ b12lnh1;tlnht þ b13lnh2;tlnht

þ b14lnh3;tlnht þ b15lnh4;tlnht ð9Þ

with b=({bi}i=1
15 ). Since there are two endogenous state variables, Eq. (4) leads to two intertemporal

conditions

h3;t
ct

¼ dEt

BW ktþ1; htþ1; hi;tþ1

� 	4

i¼1
;b


 �
Bktþ1

2
4

3
5

¼ d
ktþ1

b2 þ b8q1lnh1;t þ b9q2lnh2;t þ b10q3lnh3;t þ b11q4lnh4;t
� �

; ð10Þ

h3;t
ct

¼ dEt

BW ktþ1; htþ1; hi;tþ1

� 	4

i¼1
;b


 �
Bhtþ1

2
4

3
5

¼ d
htþ1

b3 þ b12q1lnh1;t þ b13q2lnh2;t þ b14q3lnh3;t þ b15q4lnh4;t
� �

: ð11Þ
3 For the simulation-based PEA, Maliar and Maliar (2003) show that imposing bounds on the simulated series significantly

enhances the convergence properties of the algorithm. One can also ensure convergence by starting iterations from a good initial

guess, such as a known solution to some related model (see den Haan and Marcet, 1990), or a log-linear solution to the model in

question (see Christiano and Fisher, 2000).



Table 1

Computational time for the one- and two-sector neoclassical models

T=1000 T=5000 T=10000

re=0.005 re=0.05 re=0.005 re=0.05 re=0.005 re=0.05

One-sector model, time, s 124 61 383 304 760 653

Two-sector model, time, s 351 186 1581 977 2025 1704
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By combining Eqs. (8), (10) and (11) we get

ct ¼
1
 h4;td
� �

kt þ htð Þ þ h1;tka
t þ h2;tha

t

1þ
d b2 þ b3 þ b8 þ b12ð Þq1lnh1;t þ b9 þ b13ð Þq2lnh2;t þ b10 þ b14ð Þq3lnh3;t þ b11 þ b15ð Þq4lnh4;t
� �

h3;t

:

Given ct, Eqs. (10) and (11) identify kt+1 and ht+1, respectively.

As an initial guess, we choose b that matches the non-stochasticsteady state

b1 ¼
ln cssð Þ
1
 d


 2b2ln kssð Þ; b2 ¼ b3 ¼
kss

dcss
; b4; N ; b15 ¼ e;

where bssQ denotes steady state values, and e is a small number (we take e=10
5).4 Here, we use the fact

that hss=kss.

To simulate the model, we set: a=0.33, d=0.95, d=0.02, qi=q=0.95, re,i=rea{0.005,0.05}, i=1, . . . ,4
(k0,h0,{hi,0}i=1

4)=(kss,hss,{1}
4
i=1). The updating parameter is set at l=0.5, and kt and ht are restricted to

lie in the interval [kss/5, 5kss]. The convergence criterion is that the precision in the coefficient vector is

less than 10
5.

As a comparison, we also apply the algorithm for solving the one-sector neoclassical model where

there are shocks only to technology. Table 1 provides the simulation results under three values of

simulation length, Ta{1000,5000,10000}. Observe that the expense for the two-sector model is about

three times as high as that for the one-sector model. The increase in the computational time is the result

of having eleven additional parameters in the regression. Given that there are two state variables in the

one-sector model and that there are six state variables in the two-sector model, the proportional three-

time increase in the computational expense seems to be modest.
5. Comparison with other methods

With a large number of state variables, our algorithm can be a cheap alternative to the traditional grid-

based dynamic programming methods in situations where value function can be accurately approximated

by low-degree polynomials.

In applications with several endogenous state variables, our algorithm also has an important

advantage over Marcet’s (1988) version of the PEA. Specifically, the PEA needs to parameterize and

approximate as many conditional expectations as there are endogenous state variables in the model.5 For

instance, applying the PEA to the two-sector growth model would require parameterizing two
4 The MATLAB subroutine bnlinfitQ, which we use to run the nonlinear regression, may fail to work appropriately if some

coefficients are equal to zero.
5 For a discussion, see Marcet and Lorenzoni (1999), Example 7.6.
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conditional expectations by two different functions and computing twice the amount of polynomial

coefficients than we did. Three endogenous state variables would imply three regressions to run and

would triple the number of the coefficients, etc. The need to simultaneously iterate on more than one

decision function can not only increase the computational expense, but can also complicate the practical

implementation of the PEA and lead to a problem of non-convergence. This does not happen with our

method, in which, independently of the number of endogenous state variables, there is always just one

value function to be approximated.

Our method may also be preferable to the conventional PEA in applications where value function

enters the Euler equation. This can occur in models with endogenous business cycles, e.g., Andolfatto

and MacDonald (1998), and Freeman et al. (1999). The PEA operates on the Euler equation without

calculating value function. Hence, if the PEA is applied to such a model, it would be necessary to

approximate value function on each PEA’s iteration somehow. In contrast, with our method, the

approximate value function is always known.
6. Final remark

Just as different versions of the PEA exist in the literature (see Christiano and Fisher, 2000), one can

consider different variants of ourmethod. For example, instead ofMonte Carlo simulations, it is possible to

seek a solution on a grid and use a quadrature integration; the updating can be replaced by a gradient

descendent method; under appropriate collocation of grid points, a nonlinear least-square regression can be

substituted by a linear one. Such modifications may increase the method’s speed and/or accuracy in some

applications.
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