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Abstract

This paper studies the properties of solutions to a log–linearized version of the neoclassical growth model

with quasi-geometric discounting. We show that after the log–linearization, the model has indeterminacy and

multiplicity of equilibria even though the original non-linear model has a unique interior solution.

Specifically, in both the deterministic and stochastic cases, the log–linearized model has a continuum of

steady states. In the deterministic case, there is a unique log–linear policy function leading to each steady

state, while in the stochastic case, there is a continuum of log–linear policy functions, associated with each

steady state. We show that the constructed log–linear solutions cannot be ranked across the entire state space.
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1. Introduction

Under the assumption of quasi-geometric (quasi-hyperbolic) discounting, the consumer’s

short-run discount factor is different from the long-run discount factor. If the short-run discount

factor is lower than the long-run discount factor, then the consumer is short-run impatient: she

always plans to save much in the next period, however, as the next period comes around, she

delays savings to the future. On the contrary, if the short-run discount factor is higher than the
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long-run one, the consumer is short-run patient and always saves more than she has originally

planned.1

It has been shown in the literature that the assumption of quasi-geometric discounting leads to

the indeterminacy and multiplicity of equilibria. Krusell and Smith (2000) study the neoclassical

growth model with quasi-geometric discounting, which has a closed-form solution, and report

that b. . .there are fundamental problems in finding algorithms that succeed in producing accurate

solutions, at least when the individual-specific uncertainty is limitedQ. They show that, in

addition to a smooth closed-form solution, the model has infinitely many discontinuous

solutions: there are both a continuum of steady states and a continuum of decision rules

associated with each steady state. The constructed decision rules have the form of step functions

such that the propensity to save is equal to zero in all points except of those, in which the steps

are taken. Krusell and Smith (2000) conclude: bThe results herein suggest an explanation for the

numerical problems: the lack of convergence of algorithms appears to be cycling within the large

set of equilibriaQ.
Krusell et al. (2002) and Maliar and Maliar (2005) argue that it is possible to rule out the

indeterminacy and multiplicity by restricting attention to an interior equilibrium (the one that

satisfies the Euler equation). This conjecture is suggested by the following analytic result. If we

restrict the equilibrium to be interior on the whole domain of capital, the problem of finding the

optimal policy and value functions in the model with the closed-form solution, studied in Krusell

and Smith (2000), is a contraction mapping. In such a model, starting from an arbitrary initial

guess on value function, the sequence of value functions computed iteratively converges to the

closed-form solution. The same is true for the stochastic setting where the logarithm of

technology follows an AR(1) process. The numerical results of Krusell et al. (2002) and Maliar

and Maliar (2005) also indicate that the interior equilibrium is unique: a perturbation and a grid-

based Euler-equation methods developed in the former and the latter papers, respectively, can

systematically converge to a smooth closed-form solution in the test model. It is therefore of

interest to investigate the properties of the solutions to the Euler equation in the class of models

with quasi-geometric discounting.

In this paper, we investigate the role of the assumption of quasi-geometric discounting in

equilibrium by studying the implications of a log–linearized version of the model. Our findings

are as follows: Even though the original non-linear model has a unique interior solution, the log–

linearized version of the model has the indeterminacy of both the steady state and the near-

steady-state dynamics. Specifically, there is an interval, each point of which can be a steady

state.2 In the deterministic case, there is a unique log–linear policy function leading to each

particular steady state.3 In the stochastic case, the indeterminacy is even more severe: there is a

continuum of log–linear policy functions, associated with each steady state. We show that the

constructed log–linear solutions cannot be ranked across the entire state space. In sum, the

properties of the log–linearized version of the model with quasi-geometric discounting are very

different from those of the standard geometric-discounting model. A log–linearization is not an

appropriate method in the given context.
1 The recent literature that studies models with quasi-geometric discounting includes, e.g., Laibson (1997), Laibson,

Repetto and Tobacman (1998), Barro (1999), Harris and Laibson (2001), Caillaud and Jullien (2000), Krusell and Smith

(2000, 2003), Krusell, Kuruşçu and Smith (2002), and Maliar and Maliar (2005, in press).
2 Our multiplicity interval for the log–linear solutions coincides with the one obtained in Krusell and Smith (2000) for

the step-function equilibria.
3 Regarding step function equilibria, in the deterministic version of the model, Krusell and Smith (2000) show that, in a

neighborhood of each steady state, there exists a continuum of step functions leading to a given steady state.
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The rest of the paper is as follows: Section 2 formulates the neoclassical growth model with

quasi-geometric discounting. Section 3 describes the recursive formulation and derives the Euler

equation. Section 4 discusses the setup with a closed-form solution. Section 5 investigates the

implications of the log–linearized version of the model. Section 6 discusses the results. Finally,

Section 7 concludes.

2. The model

Time is discrete and infinite, ta{0,1,2, . . .}. On every date t, an agent chooses a stochastic

sequence of consumption {ct
t,ctt +1,c

t
t +2, . . .}, where the time superscript and time subscript

indicate periods in which and for which consumption is chosen, respectively, (e.g., consumption

ctt + 1 is chosen in period t for period t +1). The agent’s preferences in period t are

U ctt; c
t
tþ1; c

t
tþ2; . . .

� �
¼ u ctt

� �
þ bdEtu cttþ1

� �
þ bd2Etu cttþ2

� �
þ . . . ;

where Et is denotes the conditional expectation, b N0 and da (0,1) are discounting parameters.

We assume that the period utility function u(c) is continuously differentiable, strictly increasing

and strictly concave.

The weights on the period utilities from period t forward are given by 1, bdd 1, dd bd, dd bd2,
. . . Krusell and Smith (2000) call such discounting quasi-geometric because with an exception of

the current period t, the weights decline geometrically over time. The standard case of geometric

discounting corresponds to b =1. If b N1 (b b1), then the short-run discount factor, bd, is higher
(lower) than the long-run one, d, so that an agent is short-run patient (impatient). The case of

b b1 is also referred to in the literature as hyperbolic discounting, (see, e.g., Laibson, 1997,

Harris and Laibson, 2001).

There is a substantial body of behavioral and experimental evidence in the literature that

supports the assumption of quasi-geometric discounting. The idea that the discount function is

approximately hyperbolic has been introduced by psychologists on the basis of experimental

studies of animal and human behavior, see Chung and Herrnstein (1961), Ainslie (1992) and

Loewenstein and Prelec (1992). Furthermore, there are numerous examples when the behavior of

real-world agents is well-described by hyperbolic discount function, see Laibson (1997),

Laibson et al. (1998), Harris and Laibson (2001). There is also evidence that self-control

problems resulting from time-inconsistency in preferences play an important role in the

individual consumption-saving decisions, see Thaler and Shefrin (1981), Thaler (1990) and

Angeletos et al. (2001). A review of the literature about behavioral models of intertemporal

choice and further references can be found in the book edited by Kahneman and Tversky (2000).

The assumption of quasi-geometric discounting leads to time-inconsistency in preferences in

the sense that the relative value of consumption in any two adjacent periods t and t+1 depends on

the date at which the evaluation is performed. Specifically, at time t�1, one unit of ct� 1
t +1 is valued

d times less than one unit of ct
t� 1, while at time t, one unit of ctt +1 gives bd times less utility than

one unit of ct
t. We suppose that the agent is fully aware of her preference inconsistency.

The agent runs a production technology ht f(kt), where ht is a technology shock, and kt is the

capital stock. Therefore, on each date t, the agent solves the following utility maximization

problem

max
cts;k

t
sþ1f gls¼t

u ctt
� �
þ Et

Xl
s¼t

bdsþ1�tu ctsþ1
� �( )

ð1Þ
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s:t: cts þ ktsþ1 ¼ 1� dð Þkt�1s þ hs f kt�1s

� �
; ð2Þ

where da (0,1] is the depreciation rate of capital. The function f is strictly increasing, strictly

concave, continuously differentiable and satisfies the Inada conditions. We assume that the

random variable lnht +1 follows the AR (1) process: lnht +1=qlnht + et +1, where qa [0,1) and

et + 1~N(0,r
2).

Due to time-inconsistency, consumption considered to be optimal at t, ctt +1, is not equal to the

one chosen at t+1, ct +1t +1. The btrueQ consumption at t+1 is ct + 1t + 1. Therefore, the btrueQ lifetime

stream of consumption is {c0
0,c1

1, . . .}u{c0,c1, . . .}. Similarly, the btrueQ sequence of capital is

given by {k1
0,k2

1, . . .}u{k1,k2, . . .}. We assume that the agent cannot commit to her future

actions. If commitment was possible at any time t, then a sequence {ct
t,ctt +1,c

t
t + 2, . . .} solving

(1), (2) at t would be the btrueQ one.

3. Recursive formulation and Euler equation

As is shown by Harris and Laibson (2001), the problem (1), (2) can be written recursively, in

spite of the fact that the preferences of agents are time-inconsistent. A recursive (Markov)

equilibrium is defined as one, in which an agent chooses the next period capital stock kt +1
according to a time-invariant policy function, kt +1=g(kt,ht). In such an equilibrium, the agent is

fully aware of her time-inconsistency and takes it into account when making plans for the future.

Hence, the today’s decisions remain optimal in the future and are never modified by the agent.

We use W(kt,ht) to denote the optimal value of the expected discounted utility of the agent

whose current state is kt and ht, and who starting from period t+1 and forward, makes her

decisions according to the policy function g. Without time subscripts, a recursive formulation is

W k; hð Þ ¼ max
k V

u 1� dð Þk þ hf kð Þ � k Vð Þ þ bdE V k V; h Vð Þjh½ �f g; ð3Þ

where V(kV,hV) satisfies the recursive functional equation

V k V; h Vð Þ ¼ u 1� dð Þk Vþ h Vf k Vð Þ � g k V; h Vð Þð Þ þ dE V g k V; h Vð Þ; hW½ �jh Vf g; ð4Þ

and k, h are given. A solution to this problem is given by the optimal functions W(k,h), V(kV,hV)
and g (k,h).

We assume that equilibrium is interior. Then, one can derive the optimality condition of the

problem (3), (4). The first-order necessary condition with respect to kV is

u V cð Þ ¼ bdE
BV k V; h Vð Þ

Bk V

� �
: ð5Þ

The derivative of the value functions V with respect to kV is

BV k V; h Vð Þ
Bk V

¼ u V c Vð Þ 1�dþh Vf V k Vð Þ� Bg k V; h Vð Þ
Bk V

� �
þ Bg k V; h Vð Þ

Bk V
dE

BV k W; hWð Þ
Bk W

� �
; ð6Þ

where Bg /BkV is taken out of the expectation because it is known before the shock hW is realized.
By updating (5) and substituting it into (6), we obtain

b
BV k V; h Vð Þ

Bk V
¼ u V c Vð Þ b 1� d þ h Vf V k Wð Þð Þ þ 1� bð Þ Bg k V; h Vð Þ

Bk V

� �
: ð7Þ
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Conditions (5) and (7) together imply

u V ctð Þ ¼ dEt u V ctþ1ð Þ b 1� d þ htþ1f V ktþ1ð Þð Þ þ 1� bð Þ Bg ktþ1; htþ1ð Þ
Bktþ1

� �� 	
: ð8Þ

This is the Euler equation in the case of quasi-geometric discounting. Note that the agent’s

consumption-saving decision at time t depends not only on the future return on capital but also

on the future marginal propensity to
Bg ktþ1;htþ1ð Þ

Bktþ1
. This feature of the model plays a determinant

role in the properties of the solution.

4. Closed-form solution

We begin our analysis by considering a version of the model that admits a closed-form

solution. Assume that the period utility function is logarithmic, u(c)= ln(c), that the production

function is Cobb–Douglas, f(k)=ka, with aa (0,1) and that capital depreciates fully during each

period, d=1. Assume also that the equilibrium is interior. Then, the value and the policy

functions, solving (3), (4), are given by

V k; hð Þ ¼ 1� dð Þ�1 ln
1� da

1� daþ bda
þ da

1� da
ln

bda
1� daþ bda

� �
þ a

1� da
lnk

þ 1

1� dqð Þ 1� dað Þ lnh; ð9Þ

k V ¼ bda
1� daþ bda

hka: ð10Þ

In the deterministic case, Krusell and Smith (2000) obtain closed-form solution (9), (10) by

using the guess-and-verify method.

Krusell and Smith (2000) report that numerical algorithms iterating on value function fail to

converge to the closed-form solution. They explain their finding by the fact that, in addition to

the smooth closed-form solution, there are infinitely many discontinuous solutions in the form of

step functions. Krusell et al. (2002) and Maliar and Maliar (2005) argue that one can rule out the

multiplicity by restricting attention to an interior equilibrium. In Appendix A, we illustrate the

uniqueness of an interior equilibrium in the model with a closed-form solution by iterating on

value function bby handQ. To be specific, we show that starting from an initial guess V=0, a

sequence of value functions computed iteratively converges to value function (9). Hence, the

problem of finding the policy and value functions solving (3), (4) is a contraction mapping, and

closed-form solution (9), (10) is a unique limit of the solution to the finite-horizon problem. It is

therefore of interest to perform a further investigation of the properties of the solutions to the

Euler equation in this class of models.

5. A log–linearization method

We now investigate the role of the assumption of quasi-geometric discounting in equilibrium

by studying the implications of a log–linearized version of the model. We specifically log–

linearize the Euler Eq. (8) and budget constraint (2) around a steady state and study the

properties of the log–linear solutions. The assumption, which is clearly indispensable for our

analysis, is that the model is consistent with the steady state.
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We denote by x̄ steady state value of a variable xt, and by x̂xt ¼ xt�x̄x
x̄x

the log-deviation of the

variable xt from a steady state, In the steady state, the Euler Eq. (8) and budget constraint (2) are

1 ¼ d b 1� d þ h¯f V k¯
� �� �

þ 1� bð Þ
Bg k¯ ; h¯
� �
Bk

 !
; ð11Þ

c̄ ¼ h¯f k¯
� �
� k¯d: ð12Þ

In this section, we assume that in the steady state c̄, k̄, h̄, the policy function g is twice

continuously differentiable, and we approximate its first order derivative as Bg kt ;htð Þ
Bkt

gBg k¯ ;h¯ð Þ
Bk
þ

B
2g k¯ ;h¯ð Þ
Bk2

d k¯ k̂k tþ1 þ B
2g k¯ ;h¯ð Þ
BkBh

d h¯ĥhtþ1: By log–linearizing the Euler Eq. (8) and budget constraint (2)

around the steady state, we obtain

uW c̄ð Þ
u V c̄ð Þ c̄ĉct ¼

uW c̄ð Þ
u V c̄ð Þ c̄ĉctþ1 � d bf V k¯

� �
þ 1� bð Þ

B
2g k¯ ; h¯
� �

BkBh

 !
dh¯ĥhtþ1

� d bh¯f W k¯
� �
þ 1� bð Þ

B
2g k¯ ; h¯
� �
Bk2

 !
dk¯ k̂k tþ1; ð13Þ

c̄ĉct þ k¯ k̂k tþ1 ¼ f k¯
� �

d h¯ĥht þ 1� d þ h¯f V k¯
� �� �

d k¯ k̂k t: ð14Þ

We characterize the near-steady-state dynamics by using the method of undetermined

coefficients (see, e.g., Uhlig, 1999). We postulate

k̂k tþ1 ¼ nkk k̂k t þ nkhĥht; ĉct ¼ nck k̂k t þ nchĥht; ð15Þ

where nkk, nkh, nck and nch are the coefficients to be determined. Note that the policy rule for

capital in (15) implies that
Bg k¯ ;h̄hð Þ

Bk
¼ nkk .

Eqs. (13), (14) and (15) imply the following four restrictions:

uW c̄ð Þ
u V c̄ð Þ c̄nck 1� nkkð Þ þ d bh¯f W k¯

� �
þ 1� bð Þ

Bg k¯ ; h¯
� �
Bk2

 !
d k¯nkk ¼ 0; ð16Þ

uW c̄ð Þ
u Vðc̄ Þ c̄ nch � ncknkh � nchqð Þ þ dq bf V k¯

� �
þ 1� bð Þ

B
2g k¯ ; h¯
� �

BkBh

 !
d h¯

þ d bh¯f W k¯
� �
þ 1� bð Þ

B
2g k¯ ; h¯
� �
Bk2

 !
dk¯ ¼ 0; ð17Þ

c̄nck þ k¯nkk � 1� d þ h¯f V k¯
� �� �

d k¯ ¼ 0; ð18Þ

c̄nch þ k¯nkh � h¯f k¯
� �
¼ 0: ð19Þ

In the case of standard geometric discounting (b =1), the steady state values of c̄ and k̄ are

uniquely determined by (11), (12) and the coefficients nkk, nkh, nck and nch are identified by

(16)–(19). In general, there are two different eigenvalues (solutions for) nkk. Under the standard
parameterization, such a model is saddle path stable, i.e., both eigenvalues nkk are real, and one
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of them is between zero and one. Choosing the latter stable solution guarantees a convergence to

the steady state. Given nkk, the remaining coefficients nku, nck and nch are determined uniquely.

We next focus on the case of quasi-geometric discounting (b p 1). Now, Eqs. (11) and (12) do

not allow to compute the steady state values of c̄ and k̄ because the derivative Bgðk¯ ;h¯Þ
Bk

is unknown.

Similarly, Eqs. (16)–(19) do not allow to compute the coefficients nkk, nkh, nck and nch because

the derivatives B
2gðk¯ ;h¯Þ
Bk2

and
B
2gðk¯ ;h¯Þ
BkBh

are unknown. Alternatively, if we consider the system of Eqs.

(11), (12), (16)–(19), we can see that it has six equations and eight unknowns, c̄, k̄, nkk, nkh, nck,
nch, B

2gðk¯ ;h¯Þ
Bk2

and
B
2gðk¯ ;h¯Þ
BkBh , and thus, the solution to it is not uniquely determined. We also observe

that considering higher-order approximations does not help to identify the steady state and the

near-steady-state dynamics because higher-order derivatives of the policy function are also

unknown. For example, under the second-order approximation, the unknown derivatives are
B
3gðk¯ ;h¯Þ
Bk3

; B
3gðk¯ ;h¯Þ
Bk2Bh ; B

3gðk¯ ;h¯Þ
BkBh2

.

Our assumption that the model is consistent with the steady state implies that the eigenvalue

satisfies nkka (0,1).4 By using Eq. (11), we obtain that the corresponding interval for the capital

stock is

k¯a f Vð Þ�1 1� 1� dð Þbd

h¯bd

� �
; f Vð Þ�1 1� d 1� dbð Þ

h¯bd

� �� �
: ð20Þ

Given that the solution to (11), (12), (16)–(19) is not identified, each value of capital within

this interval can be a potential steady state.

Let us consider first the log–linearized version of the deterministic model. Here, we have

that nkh =0, nch =0 and that the near-steady-state dynamics are described by two equations,

(16) and (18). Observe that if a value of nkk is fixed, then (11), (12), (16), (18) uniquely

determine k̄, c̄, d2g
ðk¯ Þ
dk2

and nck. Hence, for each nkka (0,1), there exist a unique steady state

and a unique policy function, consistent with this particular steady state. As an illustration, in

Fig. 1, we plot the set of steady states and several examples of the log–linear policy functions

for the model with the closed-form solution parametrized by b =0.8 (here and further in this

section, we assume that d =0.96 and a =0.33). The slope of the constructed policy functions,

nkk, ranges from zero to one in the steady states with the lowest and the highest values of

capital, respectively. The log–linear approximation with nkk =a coincides with the closed-form

solution.5

To establish the optimality of the constructed log–linear policy functions, we compare the

implied lifetime utilities. We specifically address the following question is: bDoes the closed-

form solution give a higher lifetime utility than do the other constructed solutions?Q Below, we
elaborate an example, which shows that the closed-form solution is not always the best

alternative. Assume that initial capital k0 is in interval (20). Denote by Wk̄(k0) the lifetime utility

of the agent who, given initial capital k0, makes all choices according to a log–linear policy rule

leading to a steady state k̄. Consider the utility difference, DWuW k̄*(k0)–W
k0(k0), where k̄* is

the steady state of the closed-form solution. In other words, we compare the lifetime utility

derived from moving to the steady state of the closed-form solution, Wk̄*(k0), with the one
4 Under all parameterizations considered, we observe that if one eigenvalue is fixed in the interval (0, 1), then the other

eigenvalue is real and strictly larger than one.
5 Judd (2004) also reports a multiplicity in this model, however, the nature of this multiplicity is different from that

emphasized in the present paper. Specifically, we obtain a multiplicity due to a variation of the terminal derivative of the

Taylor’s approximation, while Judd (2004), in the context of his perturbation method, argues that a multiplicity can occur

even if the terminal derivative is held fixed.
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obtained from maintaining initial capital forever, Wk0(k0), (note that in the absence of

uncertainty, the choice kt +1=k0 for all t is optimal according to the log–linear policy function

leading to k0). In Fig. 2, we plot DW as a function of k0 under ba{0.8,0.9}. As we see, the

closed-form solution gives a higher (lower) lifetime utility than solutions leading to k0, for all k0,

which are lower (higher) than k̄*.

We next ask: bIs it true that a solution, whose steady state is lower than k̄*, always gives a

lower lifetime utility than the closed-form solution does?Q In the model with b =0.8, we compute
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the difference between lifetime utilities under the closed-form and log–linear solutions,

DW=Wk̄*(k0)�Wk̄(k0), where k̄ =0.99k̄*. The results are shown in Fig. 3. As we see, for very

low values of k0, the log–linear solution with the steady state k̄ dominates in utility the closed-

form solution. Our general conclusion is therefore that the ranking of multiple equilibria in the

log–linearized version of the model depends on a specific initial condition.

We shall now consider the log–linearized model with uncertainty. Again, if nkka (0,1) is

fixed, then Eqs. (11), (12) uniquely determine the corresponding steady state values of k̄ and c̄,

and Eqs. (16), (18) determine B
2gðk¯ ;h¯Þ
Bk2

and nck, respectively. However, the remaining two Eqs.

(17), (19) are not sufficient to determine three unknowns nkh, nch and
B
2gðk¯ ;h¯Þ
BkBh . Therefore, in the

log–linearized model with uncertainty the problem of indeterminacy is even more severe than in

the deterministic one. Specifically, there exists a continuum of log–linear solutions leading to

each possible steady state.

We finally investigate how the introduction of uncertainty affects the ranking of the solutions.

Let us assume that h0= h̄=1. As shown in Appendix B, under the log–linear solution, the

expected lifetime utility in the model with uncertainty is equal to the lifetime utility in the

deterministic model, Wk̄(k0,h0)=W
k̄(k0). Therefore, Figs. 2 and 3, as well as the previous

discussion of the deterministic case, apply to the stochastic case without modifications.

6. Discussion

In this section, we compare our results to those in Krusell and Smith (2000). For the

deterministic version of the model, ht= h̄ for all t,g (kt, h̄ug(kt), with full depreciation of

capital, d =1, Krusell and Smith (2000) show that each value of the capital stock in interval (20)

can be a steady state. It is argued that the equilibria are expectation-driven: a particular steady

state that prevails depends upon the agent’s optimism (pessimism) about her future saving

behavior. Furthermore, it is shown that there exist infinitely many discontinuous policy rules in

the form of step functions leading to each steady state. Krusell and Smith (2000) also

demonstrate that at least for some initial conditions, the constructed step-function solutions can

give a higher level of the lifetime utility than does the closed-form solution.
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The results we have for the log–linearized version of the model are in many respects similar.

The log–linearized equilibrium conditions do not allow us to determine the equilibrium value of

nkk. Assuming that the model is consistent with the steady state, we have that nkka (0,1)

and thus, each value of capital in interval (20) can be a steady state. In our case, the agent’s

beliefs about the future also predetermine the equilibrium, which can be seen from the steady

state expression of the Euler Eq. (11). The agent’s decisions at time t depend on the steady state

marginal propensity to save out of capital, nkk ¼ Bgðk¯ ;h¯Þ
Bk

. If b b1, it appears as if an optimistic

agent (i.e., the one who expects herself to save much in the future) faces a higher return on

capital than the pessimistic one. If b N1, the situation reverses. Regarding the number of paths

leading to each steady state, in the deterministic case, we have a unique log–linear decision

rule associated with each steady state, and in the stochastic case, we have a continuum of the

log–linear decision rules corresponding to each steady state. Finally, we show that the closed-

form and the constructed log–linear solutions cannot be ranked across the entire state space,

which is the result parallel to the one shown in Krusell and Smith (2000) for the step-function

solutions.

We should emphasize an important difference between our results and those in Krusell and

Smith (2000). The indeterminacy and multiplicity of equilibria they describe are generic

properties of a model with quasi-geometric discounting. The indeterminacy and multiplicity of

equilibria we encounter are not the properties of the model with quasi-geometric discounting but

the outcome of log–linearization. As the results of Krusell et al. (2002) and Maliar and Maliar

(2005) show, the original non-linear model has a unique interior solution.

7. Conclusion

In this paper, we investigate the properties of solutions to a log–linearized version of the

neoclassical growth model with quasi-geometric discounting. The two main implications of our

analysis are as follows:

First, the log–linearization method, which allows us to easily find an interior solution in the

standard geometric discounting case, cannot be used if discounting is quasi-geometric. The log–

linearized version of the model with quasi-geometric consumer has multiple solutions even

though the original non-linear model has a unique interior solution. Thus, if our objective is to

find an interior solution, we should apply non-linear Euler equation methods, such as the

perturbation algorithm developed in Krusell et al. (2002) or the grid- and simulation-based

parameterized expectations algorithms described in Maliar and Maliar (2005).

Second, if discounting is quasi-geometric, there is a conceptual problem with the assumption

of an interior solution in the sense that it does not in general guarantee the maximum level of

utility. In the context of the model with a closed-form solution, Krusell and Smith (2000) show

that the stepfunction decision rules can give higher levels of lifetime utility than does the

closed-form (interior) solution. In this paper, we show that there also exist smooth (log–linear)

decision rules that can dominate in the utility levels the closed-form solution. Possibly, further

research on equilibrium refinement will provide a justification for the assumption of interior

solution.
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Appendices

In Appendix A, we derive the closed-form solution by iterating on value function bby handQ.
In Appendix B, we compare the lifetime utility levels in the deterministic and stochastic versions

of the model.

A.1. Appendix A

In this section, we show that if the value functions V, W are continuously differentiable and if

the solution satisfies the first-order conditions, then the problem of finding the policy and value

functions in the model with the closed-form solution is a contraction mapping.

The proof is parallel to the one for the standard geometric discounting case (see, Manuelli and

Sargent, 1987). We assume that the capital stock can take any value in the interval ka [0,K],

where K is a maximum sustainable capital. This assumption insures that the optimal allocation is

interior, i.e., satisfies the first-order conditions. Denote by Vj andWj the value functions V andW

on the j-th iteration, j =1, 2, . . . n. Successive approximations of the value functions V and W are

obtained by iterating on the following mappings

Wj k; hð Þ ¼ max
k V

ln hka� k Vð Þ þ bdEVj�1 k V ; h Vð Þ;



ð21Þ

Vj k; hð Þ ¼ ln hka � k Vð Þ þ dEVj�1 k V; h Vð Þ; ð22Þ

where the last formula holds for all t N0. The steps of the iterative procedure are as follows:

Iteration 1. Condition (21) implies

W1 k; hð Þ ¼ max
k V

ln hka � k Vð Þ þ bdEV0 k V; h Vð Þf g:

As an initial guess, we take V0=0. This maximization problem has a corner solution: kV=0.
Therefore, by (22), we have V1(k,h)= lnh +alnk.

Iteration 2. Eq. (21) becomes

W2 hð Þ ¼ max
k V

ln hka � k Vð Þ þ bdEV1 k V; h Vð Þf g;

where V1(kV,hV)= lnhV+alnkV. Finding the first-order condition with respect to kV and substituting
it into the agent’s budget constraint gives

k V ¼ bda
1þ bda

hka; c ¼ 1

1þ bda
hka: ð23Þ

By substituting V1(kV,hV), the law of motion for lnhV and also, kV and c from (23) into (22), we

obtain

V2 k; hð Þ ¼ ln
1

1þ bda
þ daln

bda
1þ bda

þ a 1þ dað Þlnk þ lnhþ dqlnhþ dalnh;

or

V2 k; hð Þ ¼ V 0
2 þ V 1

2 lnk þ V 2
2 lnh:
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Iteration 3. By following the same steps as before, we get

V3 k; hð Þ ¼ ln
1

1þ bda 1þ dað Þ þ dln
1

1þ bda
þ da 1þ dað Þln bda 1þ dað Þ

1þ bda 1þ dað Þ

þ d2aln
bda

1þ bda
þ a 1þ daþ d2a2
� �

lnk þ lnhþ da 1þ dað Þlnhþ dqlnh

þ dqdalnhþ d2qalnh;

or

V3 k; hð Þ ¼ V 0
3 þ V 1

3 lnk þ V 2
3 lnh:

Iteration 4. We proceed in the same manner and obtain

V4 k; hð Þ ¼ ln
1

1þ bda 1þ daþ d2a2
� � þ dln

1

1þ bda 1þ dað Þ þ d2ln
1

1þ bda

þ da 1þ daþ d2a2
� �

ln
bda 1þ daþ d2a2
� �

1þ bda 1þ daþ d2a2
� � þ d2a 1þ dað Þln

� bda 1þ dað Þ
1þ bda 1þ dað Þ þ d3aln

bda
1þ bda

a 1þ daþ d2a2 þ d3a3
� �

lnk þ lnh

þ da 1þ daþ d2a2
� �

lnhþ dqlnhþ dqda 1þ dað Þlnhþ d3q3lnhþ d2q2dalnh;

or

V4 k; hð Þ ¼ V 0
4 þ V 1

4 lnk þ V 2
4 lnh:

A.1.1. Generation of the conjecture

Until now, we have obtained four elements of the sequence of value functions {Vj(k,h)}
4
j=1.

Note that all functions in this sequence have the form Vj(k,h)=Vj
0+Vj

1lnk +Vj
2lnh. We show

now that the sequence of the value functions converges to the value function

V(k,h)=V0+V1lnk +V2lnh, as jYl, where V i ¼ limjYl V i
j ; i ¼ 0; 1; 2. To find the limits,

we use the algebra of geometric series.

The first term V0 is given by

V 0 ¼ lim
jYl

V 0
j ¼ lim

jYl

Xj�2
t¼0

dtln
1

1þ bda 1þ daþ . . . þ d j�t�2a j�t�2
� �

 !

þ lim
jYl

Xj�2
t¼0

dt da 1þ daþ . . . þ d j�t�2a j�t�2� �


� ln
bda 1þ daþ . . . þ d j�t�2a j�t�2� �

1þ bda 1þ daþ . . . þ d j�t�2a j�t�2
� �

 !)

¼ 1� dð Þ�1ln 1� da
1� daþ bda

þ 1� dð Þ�1 da
1� da

ln
bda

1� daþ bda
:
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The second term V1 is

V 1 ¼ lim
jYl

V 1
j ¼ lim

jYl
a 1þ daþ . . . þ dj�1aj�1
� �

¼ a
1� da

:

The last term V2 can be found as

V 2 ¼ lim
jYl

V 2
j ¼ lim

jYl
1þ dqþ . . . þ dj�1qj�1� �

lnh

þ lim
jYl

Xj�2
t¼0

dtqtda 1þ dqþ . . . þ dj�2�tqj�2�t� �
lnh

¼ 1

1� dq
þ da

1� dqð Þ 1� dað Þ

� �
lnh ¼ 1

1� dqð Þ 1� dað Þ lnh:

Therefore, the constructed sequence of value functions converges to (9).

A.2. Appendix B

In this section, we derive the expected lifetime utility under the log–linear solution and show

that if h0= h̄ =1, then the expected lifetime utility in the stochastic economy is equal to the

lifetime utility in the deterministic economy, i.e., Wk̄(k0,1)=W
k̄(k0).

The log–linear policy functions for consumption and capital in (15) can be written as

ct

c̄
¼ kt

k¯

� �nkc ht
h¯

� �nch

;
ktþ1

k¯
¼ kt

k¯

� �nkk ht
h¯

� �nkh

:

Substituting recursively kt
k¯
into ct

c̄
yields

ct

c̄
¼ k0

k¯

� �ntkk dnkc ht
h¯

� �nchj
t

i¼1

ht�i
h¯

� �ni�1kk dnkhdnkc

: ð24Þ

The expected lifetime utility is given by

Wk¯ k0; h0ð Þ ¼ ln c0ð Þ þ bE0 dln c1ð Þ þ d2ln c2ð Þ þ . . .

 �

: ð25Þ

Eq. (24) and the law of motion for shock, lnht + 1=qlnht + et + 1, where 0Vq b1 and

et + 1~N(0,r
2), imply

E0 ln ctð Þf g ¼ ln c¯
� �
þ ntkknkcln

k0

k¯

� �
þ nch qtln h0ð Þ � ln h¯

� �� �

þ
Xt
i¼1

ni�1kk nkhnkc qt�iln h0ð Þ � ln h¯
� �� �

:

Then, substituting the last result into (25) for all t yields

Wk¯ k0; h0ð Þ ¼ 1þ bd
1� d

� �
ln c¯
� �
þ nkc ln k0ð Þ � ln k¯

� �� �
1þ bdnkk

1� dnkk

� �

þ nch þ
nkhnkcbd
1� dnkk

� �
1þ bdq

1� dq

� �
ln h0ð Þ � 1þ bd

1� d

� �
ln h¯
� �� �

:
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Assume that h =h =1. Then, the expected lifetime utility in the stochastic economy is equal to

the lifetime utility in the deterministic economy, Wk̄(k0,h0)=W
k̄(k0).
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