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ABSTRACT 
 
This paper studies the properties of the social utility function defined by 

the planner's problem of Constantinides (1982). We show one set of restrictions 

on the optimal planner's policy rule, which is sufficient for constructing the 

social utility function analytically. For such well-known classes of utility 

functions as the HARA and the CES, our construction is equivalent to Gorman's 

(1953) aggregation. However, we can also construct the social utility function 

analytically in some cases when Gorman's (1953) representative consumer does 

not exist; in such cases, the social utility function depends on "heterogeneity" 

parameters. Our results can be used for simplifying the analysis of equilibrium 
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1 Introduction
In general, a characterization of equilibrium in dynamic heterogeneous-agent
models is complicated and relies heavily on numerical methods, see, e.g., the
model of Krusell and Smith (1998). In the presence of Gorman’s (1953) ag-
gregation, this task is simplified considerably, as, in essence, a heterogeneous-
agent model is reduced to the familiar one-consumer setup, see, e.g., Chat-
terjee (1994), Caselli and Ventura (2000). However, by construction, such
models do not provide a framework for analyzing the role of heterogeneity
in the aggregate behavior of actual economies, which, in fact, is the issue of
greatest interest for the current literature on heterogeneous agents.
There are several papers that show examples of the so-called imperfect

aggregation, where the aggregate dynamics depends on distributions but in
a manner which is relatively easy to characterize and understand. Here, the
aggregate dynamics are still described by a one consumer model but such
a model has parameters (shocks) whose values (properties) depend on dis-
tributions. This class of models proved to be very convenient for empirical
work, see Atkeson and Ogaki (1996), Maliar and Maliar (2001, 2003a, 2003b).
In this paper, we therefore attempt to establish general results concerning
the possibility of describing the aggregate behavior of heterogeneous-agent
economies by one-consumer models without assuming Gorman’s representa-
tive consumer.
A starting point for our analysis is the result of Negishi (1960) who shows

that a competitive equilibrium in a multi—consumer economy can be restored
by solving the problem of a social planner whose objective is to maximize a
weighted sum of individual utilities subject to the economy’s feasibility con-
straint. Constantinides (1982) reformulates a dynamic version of Negishi’s
(1960) problem in the form of two sub-problems: First, a social (intra-period)
utility function is constructed by solving a one-period multi-consumer model,
and then, an aggregate allocation is computed by solving a multi-period one-
consumer model. In general, the social utility function defined in Constan-
tinides (1982) is a complicated object, which depends on a distribution of
welfare weights in an unknown way. There are certain cases, however, in
which the social utility function (i.e., the mapping between the distribution
of welfare weights and the social preferences) can be constructed analytically.
The well-known case is Gorman’s (1953) aggregation, in which the preference
ordering on the aggregate commodity space is the same for all distributions
of welfare weights. However, there are also examples of the analytical con-
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struction of the social utility function in the absence of Gorman’s (1953)
aggregation, see Atkeson and Ogaki (1996), Maliar and Maliar (2001, 2003a,
2003b), and Ogaki (2003).
We start by generalizing the property that is common to all known ex-

amples of analytical construction of the social utility function. This property
happens to be a particular kind of the optimal planner’s sharing rule: First,
the amount of a commodity that each agent gets from the planner depends
on the total endowment of this given commodity, but not on the endowments
of any other commodities. Secondly, a change in the total endowment of each
commodity is distributed among agents in fixed proportions that are deter-
mined by the distribution of the welfare weights. We refer to the planner’s
policy rule that satisfies the above two properties as a linear sharing rule.
We show that under the assumption of the linear sharing rule, the so-

cial utility function is additive in some partition of commodities, with each
sub-function being composed of two multiplicatively separable terms, one
depending on the aggregate commodity endowment and another depending
on the distribution of the welfare weights. The terms that depend on wel-
fare weights capture all of the effects that the distribution of the welfare
weights (wealth) have on the social preference relation. The actual number
of such ”heterogeneity” parameters does not exceed the number of additive
sub-functions in the social utility function. If either the social utility function
consists of just one additive component, or if the values of all the heterogene-
ity parameters are equal, we have Gorman’s (1953) representative consumer.
Otherwise, the preference relation on the commodity space is not invariant
to redistributions of the welfare weights, and Gorman’s (1953) representative
consumer does not exist.
We illustrate the construction of social utility functions under the plan-

ner’s linear sharing rule for three classes of utility functions. Our first two
classes are the Hyperbolic Absolute Risk Aversion (HARA) and the Constant
Elasticity of Substitution (CES); here, the agents’ preferences are similarly
quasi-homothetic and our construction is equivalent to Gorman’s (1953) ag-
gregation. Our third class is defined by assuming that the individual util-
ity functions are given by identical-for-all-agents (up to possibly different
translated origins) linear combinations of distinct members from the HARA
and the CES classes. The considered preferences are not similarly quasi-
homothetic and hence, they are not consistent with Gorman’s (1953) ag-
gregation. Still, the planner’s sharing rule is linear, and the social utility
function can be constructed analytically.
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The properties of social preferences have been well investigated in the lit-
erature on aggregation. Typically, aggregation is achieved by imposing suf-
ficient restrictions on the distribution of the agents’ characteristics, e.g., on
the Engel curves (Gorman, 1953, Pollack, 1971), on the distribution of prefer-
ences (Freixas and Mas-Colell, 1987, Grandmont, 1992), on the cost function
(Muellbauer, 1976), on distribution of wealth (Eisenberg, 1961, Chipman,
1974, Chipman and Moore, 1979, Shafer, 1977), and on the shape of wealth
distribution (Hildenbrand 1983).1 We differ from this literature in two re-
spects: First, we impose restrictions on a different object, namely, on the
planner’s policy rule. Secondly, we do not require the existence of a repre-
sentative consumer, (i.e., that the social utility function is independent of
distributions), but rather, try to establish cases in which the mapping be-
tween the distribution of the welfare weights and the social preferences is
simple enough to be characterized analytically. Thus, our results are some-
where in the middle between Gorman’s (1953) aggregation when the social
preferences are independent of distributions and Constantinides’ (1982) im-
plicit construction of the social utility function when the relationship between
the social preferences and the distribution of welfare weights is unknown.
The paper is organized as follows: Section 2 describes the market and

the planner’s economies and defines the social utility function. Section 3
introduces restrictions on the planner’s policy rule and characterizes the cor-
responding social preference relation. Section 4 presents three classes of the
individual utility functions for which the social utility function can be con-
structed analytically, and finally, Section 5 concludes.

2 The market and the planner’s economies
Time is discrete and is indexed by t = 0, ..., T , where T ≥ 1 can be either
finite or infinite. We consider a market economy populated by a set of agents
I. The variables of agent i ∈ I will be denoted by superscript i. The total
measure of agents is normalized to one,

R
i∈I di = 1. Agents are heterogeneous

in two dimensions: preferences and income endowments.

1The reverse approach is also pursued in the literature. It involves imposing some re-
strictions at the aggregate level and studying their implications for the underlying multi-
consumer economies. Sonnenschein (1974), Mantel (1974) and Geanakoplos and Polemar-
chakis (1980), for example, impose restrictions on the market excess demand functions;
Blackorby and Schworm (1993) impose restrictions on the social preferences.
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The income endowment of agent i in period t is denoted by yit. The dis-
tribution of income endowments in period t is Yt ≡ {yit}i∈I ∈ = ⊆ RI

++. We
assume that Yt follows a stationary first-order Markov process. To be precise,
let < be the Borel σ-algebra on =, and let us define a transition function for
the distribution of income endowments Π : =×<→ [0, 1] on the measurable
space (=,<) as follows: for each z ∈ =, Π (z, ·) is a probability measure on
(=,<), and for each Z ∈ <, Π (·, Z) is a <-measurable function. The function
Π (z, Z) yields the probability that the next period’s distribution of income
endowments lies in the set Z given that the current distribution of income
endowments is z, i.e., Π (z, Z) = Pr {Yt+1 ∈ Z | Yt = z}. The initial distrib-
ution of income endowments Y0 ∈ = is given. Markets are complete, so that
agents can trade Arrow securities, contingent on all possible realizations of
the distribution of income endowments.
The preferences of agent i are represented by E0

PT
t=0 δ

tU i (X i
t), where E0

is the operator of conditional expectation and δ ∈ (0, 1) is the discount factor.
The momentary utility function, U i : H ⊆ RK

++ → R, is twice continuously
differentiable, strictly increasing and strictly concave for all commodity vec-
tors X i

t ∈ H. The agent i solves the following utility maximization problem:

maxn
Xi
t ,{mi

t+1(Z)}Z∈<
o
t∈T

E0

TX
t=0

δtU i
¡
X i

t

¢
(1)

s.t. PtX
i
t +

Z
Z∈<

qt (Z)m
i
t+1 (Z) dZ = yit +mi

t (Yt) , (2)

where Pt ∈ RK
++ is the price vector in period t. The portfolio of Arrow

securities bought by the agent in period t is
©
mi

t+1 (Z)
ª
Z∈<. The price of

security qt (Z) is to be paid in period t for the delivery of one unit of the
consumption good in period t+1 if Yt+1 ∈ Z. Initial income endowment, yi0,
and initial holdings of Arrow securities, mi

0 (Y0), are given.
The above model is a partial equilibrium setup where uncertainty arises

because income endowments of agents are stochastic. This is the simplest
possible setup which contains all relevant features for our analysis: intertem-
poral choice, heterogeneity, uncertainty and complete markets. However, our
aggregation results are not limited to the above setup and will hold in many
other models, which are more interesting from the economic point of view.
In particular, we can easily extend our benchmark setup to include capital
accumulation. Furthermore, we can endogenize prices by introducing pro-
duction: in the general-equilibrium case, firms maximize profits and pay to
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the agents the interest rate and wages in exchange for their capital and labor.
Finally, we can consider other sources of uncertainty, for example, aggregate
uncertainty in the form of shocks to production technology as in Maliar and
Maliar (2001) or idiosyncratic uncertainty in the form of shocks to individual
labor productivities and discount factors as in Maliar and Maliar (2003a).
Negishi (1960) demonstrates that a competitive equilibrium allocation

in a deterministic one-period market economy can be restored by solving
the problem of a social planner who maximizes the weighted sum of the
individual utilities subject to the economy’s feasibility constraint. Under the
assumption of complete markets, this result also holds for dynamic stochastic
economies like ours. Indeed, the First Order Condition (FOC) of the agent’s
utility maximization problem (1), (2) with respect to Arrow securities is

λitqt (Z) = δλit+1 Pr {Yt+1 ∈ Z | Yt = z} , (3)

where λit is the Lagrange multiplier associated with the budget constraint
(2). Note that equation (3) implies that for any two agents i0, i00 ∈ I, we have

λi
0
t

λi
00
t

=
λi

0
t+1

λi
00
t+1

for all Z ∈ < ⇒ λit = λt/λ
i. (4)

That is, we can rewrite each agent’s Lagrange multiplier as a ratio of a
common-for-all-agents time-dependent variable λt and an agent-specific time-
invariant parameter λi. This result is the standard consequence of the com-
plete markets assumption that the ratio of marginal utilities of any two agents
remains constant in all periods and states of nature. Let us assume that the
planner weighs the utility of each agent i by λi and solve the following prob-
lem:

max
{Xi

t}Tt=0

(
E0

TX
t=0

δt
∙Z

i∈I
λiU i

¡
Xi

t

¢
di

¸
|
Z
i∈I

Xi
tdi = Xt, PtXt = yt

)
, (5)

where yt ≡
R
i∈I y

i
idi. The constraint PtXt = yt follows by aggregating (2)

across agents and by imposing market clearing conditions for Arrow securitiesR
i∈I m

i
t (Yt) di = 0 and

R
i∈I m

i
t+1 (Z) di = 0 for all Z ∈ <. It is easy to check

that the FOCs describing the equilibrium allocation in the market economy
(1), (2) and those describing the optimal allocation in the planner’s economy
(5) are equivalent.
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Constantinides (1982) shows that the social planner’s problem (5) has
an equivalent representation in the form of two sub-problems. The first one
is to distribute the economy’s endowment of commodities X among agents
to maximize the weighted sum of the individual utilities. This sub-problem
defines the (momentary) social utility function:

V (X, λ) ≡ max
{Xi}i∈I

½Z
i∈I

λiU i
¡
X i
¢
di |

Z
i∈I

X idi = X

¾
, (6)

where λ ≡ ©λiªi∈I . We assume that the solution to the problem (6), X i :
H × Λ→ RK

+ for all i ∈ I, is unique interior and continuously differentiable
in the region H × Λ.
The second sub-problem is to compute the aggregate optimal allocation

given the social utility function:

max
{Xt}Tt=0

(
E0

TX
t=0

δtV (Xt, λ) | PtXt = yt

)
. (7)

We must draw attention to an important difference between the notion
of the social utility function of Constantinides (1982) and the one of Bergson
(1938) and Samuelson (1947) that is standard in the social choice litera-
ture.2 In the Bergson-Samuelson case, the planner owns all commodities
and distributes them across agents to maximize social welfare; the plan-
ner’s choice defines the socially-optimal distribution of wealth across agents.
In the Constantinides case, the planner’s solution should replicate a com-
petitive equilibrium in the underlying market economy (1), (2) and hence,
should be consistent with a given wealth distribution or equivalently, with
a given set of welfare weights; the distribution of wealth / welfare weights
need not be socially optimal. Consequently, the planner in the sense of Con-
stantinides (1982) faces an additional set of restrictions (i.e., a fixed wealth /
welfare weights distribution) compared to the planner in the sense of Bergson-
Samuelson.
Constantinides (1982) argues that one can interpret V (X, λ) with a fixed

set of the welfare weights as the utility function of a representative consumer.
Indeed, under our assumptions, the function V (X,λ) is single-valued and

2See Mas-Colell et al. (1995) for a formal definition of the Bergson-Samuelson welfare
function. The literature studying the Bergson-Samuelson planner’s problem includes, e.g.,
Eisenberg (1961), Chipman (1974), Chipman and Moore (1979).
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twice continuously differentiable onH×Λ. Moreover, for any fixed λ ∈ Λ and
all X ∈ H, V (X,λ) is strictly increasing and strictly concave. Therefore, for
a fixed λ ∈ Λ, the function V (X,λ) induces a binary (transitive and convex)
preference relation on the aggregate commodity space H. This aggregation
concept is often referred to in the literature as ”aggregation in equilibrium
point” because the constructed composite consumer represents the economy
only for just one fixed set of welfare weights.
The construction of the planner’s problem in Constantinides (1982) has

an advantage over the one in Negishi (1960), since it allows us to explicitly
separate the intra-temporal and the inter-temporal aspects of the planner’s
choice. In other words, instead of solving the original multi-consumer multi-
period problem (1), (2), we can first construct the social utility function
by solving a multi-consumer but one-period problem (6), and then compute
the aggregate quantities from a multi-period but one-consumer problem (7).
This result is particularly useful for empirical applications if the social utility
function can be constructed analytically. The well-known case is Gorman’s
(1953) aggregation, where the preference relation induced by V (X, λ) on
H is the same for all sets of weights (see Blackorby and Schworm, 1993,
for a detailed discussion). However, there are also examples of economies
that are not consistent with aggregation in the sense of Gorman (1953),
but for which the social utility function can be constructed analytically, see
Atkeson and Ogaki (1996), Maliar and Maliar (2001, 2003a, 2003b), and
Ogaki (2003). Our subsequent objective, therefore, is to distinguish the
property that is common to all of the above examples and to provide general
results concerning the possibility of constructing the social utility function
analytically.

3 Constructing the social utility function
Let us first illustrate the construction of the social utility function, V (X, λ),
on the example of Atkeson and Ogaki (1996) where the agents’ momentary
utility functions are of the addilog type.3

Example 1 Assume U i (Xi) =
PK

k=1 (x
i
k − bk)

ck , where 0 < ck < 1 and

3The fact that the addilog class of utility functions satisfy the weak axiom of revealed
preferences was pointed out in Shafer (1977).
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bk < xik for k = 1, ..., K. The FOC of (6) with respect to x
i
k is

λi
¡
xik − bk

¢ck−1 = µk, (8)

where µk is the Lagrange multiplier associated with the constraint on the
kth commodity,

R
i∈I x

i
kdi = xk. By expressing xik from (8) and integrating

across agents, we obtain that the individual and the aggregate quantities are
related by

xik = bk +

¡
λi
¢1/(1−ck)R

i∈I
¡
λi
¢1/(1−ck) di (xk − bk) . (9)

Substituting xik for k = 1, ..., K in the objective function in (6) yields the
social utility function

V (X,λ) =
KX
k=1

ξk (λ) (xk − bk)
ck , ξk (λ) =

µZ
i∈I

¡
λi
¢1/(1−ck) di¶1−ck .

(10)
Note that if ck = c for all k = 1, ...,K, the individual preferences are iden-
tical quasi-homothetic. In this case, we have ξk (λ) = ξ (λ) and V (X, λ) =
ξ (λ)

PK
k=1 (xk − bk)

c, i.e., the social utility function is identical to the in-
dividual utility functions (up to a multiplicative constant ξ (λ)), which is
the case of Gorman’s (1953) aggregation. However, if ck’s differ across com-
modities, the individual preferences are not quasi-homothetic, and Gorman’s
(1953) representative consumer does not exist. Still, we have an analytical
expression for the social utility function although the parameters of such a
function, ξk (λ), depend on a specific distribution of welfare weights. ¥
The introspection of all known examples of the analytical construction of

the social utility function in Atkeson and Ogaki (1996), Maliar and Maliar
(2001, 2003a, 2003b), and Ogaki (2003) reveals that they all have the plan-
ner’s sharing rule of the type (9), one which is linear in aggregate commodities
(for a fixed set of welfare weights). We therefore proceed in two steps: We
first postulate a general form of the planner’s linear sharing rule and we then
construct the corresponding social utility function.4

4In fact, a sharing rule Xi (X,λ) in our planner’s problem is an analogue of the indi-
vidual demand functions in a market economy. Our approach is therefore similar to that
of Gorman (1953), which imposes a restriction on the individual demand functions by
assuming linear Engel curves, i.e., Xi

¡
P, yi

¢
= αi (P ) + β (P ) yi, where αi (P ) and β (P )

are the agent-specific and the common-for-all-agents functions of prices, respectively, and
then identifies the preference classes that are consistent with such demand functions.
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Definition The linear sharing rule is a planner’s policy rule such that the
optimal allocation of each consumer i ∈ I is given by

X i (X,λ) = Ωi (λ) + Φi (λ)X, (11)

for all X ∈ H, λ ∈ Λ, where Ωi (λ) and Φi (λ) are defined as

Ωi (λ) ≡
⎡⎣ ωi

1 (λ)
...

ωi
K (λ)

⎤⎦ , Φi (λ) ≡
⎡⎣ φi1 (λ) ... 0

... ... ...
0 ... φiK (λ)

⎤⎦ ,
with

R
i∈I ω

i
k (λ) di = 0 and

R
i∈I φ

i
k (λ) di = 1 for k = 1, ..., K.

The linear sharing rule (11) has two characteristic features. First, the
planner’s optimal policy for distributing a kth commodity across the popula-
tion does not depend on the economy’s endowment of the other commodities.
Secondly, an increase in the endowment of a kth commodity is always dis-
tributed among agents in fixed proportions,

©
φik (λ)

ªi∈I
. The linear sharing

rule (11) is sufficiently general: in particular, in Section 4, we will show that
such well-known classes of utility functions as the HARA and the CES lead
to linear sharing rules.5

For the purpose of our analysis, we shall express the individual preferences
in the (strongly) additive form. Let us consider a partition of the commodity

vectorX i intoN sub-vectorsX i =
n
(X i)

[1]
, ..., (X i)

[n]
, ..., (X i)

[N ]
o
such that

the utility function of each individual can be represented as a direct sum of
N sub-functions in the same partition, thus:

U i
¡
X i
¢
=

NX
n=1

¡
U i
¢[n] ³¡

X i
¢[n]´

, (12)

where each (X i)
[n] is a vector of the dimension #n ≥ 1. The partition we

consider is maximal in the sense that no partition with more than N additive
components exists. We shall also notice that the above representation does
not impose the additivity restriction on the individual preferences but merely

5Restrictions on sharing rules have been used previously in the context of the (surplus-)
cost-sharing problem, see, e.g., a survey on cooperative decision making theory in Moulin
(1988).
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makes the additive structure of the individual preferences explicit if such a
structure is in fact present.
The following theorem states the main result of the paper.

Theorem 1 Assume that Xi (X, λ) is a linear sharing rule given by (11).
The social preferences corresponding to (12) can therefore be represented by:

V (X, λ) = ξ[0] (λ) +
NX
n=1

ξ[n] (λ)W [n]
¡
X [n]

¢
, (13)

where W [n] : R#n++ → R, ξ[0] : Λ→ R and ξ[n] : Λ→ R++, n = 1, ..., N .

Proof. See Appendix.

The constructed social utility function is additive in the same partition as
the individual utility functions, and it can depend on N + 1 "heterogeneity"
parameters, ξ[n] (λ), n = 0, ..., N . The values of the heterogeneity parame-
ters are determined by a specific distribution of the welfare weights. Since
an increasing linear transformation of preferences has no effect on the op-
timal allocation, the social preferences can be equivalently represented by
V (X,λ)−ξ[0](λ)

ξ[1](λ)
. Under the latter representation, the number of the heterogene-

ity parameters is reduced from N + 1 to N − 1.
We finally discuss the implications of our results for the existence of Gor-

man’s (1953) representative consumer, which is the case when the preference
relation induced by V (X,λ) on H is the same one for all sets of welfare
weights.

Corollary 1 Gorman’s (1953) aggregation.
Assume (13) and let W (X) ≡PN

n=1W
[n]
¡
X [n]

¢
.

If N = 1, then V (X, λ) ∼W (X).6

If N > 1, then V (X, λ) ∼W (X) ⇐⇒ ξ[n] (λ) ≡ ξ (λ) for all n = 1, ...,N .

Indeed, if the individual utility functions have only one additive com-
ponent, N = 1, we therefore obtain V (X, λ) = ξ[0] (λ) + ξ[1] (λ)W (X) ∼
W (X), i.e., the linearity of the sharing rule is sufficient for Gorman’s (1953)

6Notation ” ∼ ” and ” ¿ ” mean ”identical” and ”not identical”, respectively, up to an
increasing linear transformation.
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aggregation. However, if there is more than one additive component, N > 1,
then the linear sharing rule does not necessarily imply the existence of Gor-
man’s (1953) representative consumer, since there is the possibility that not
all of the heterogeneity parameters are equal and thus, V (X,λ) ¿W (X).

4 Three classes of utility functions
In this section, we illustrate the construction of the social utility function
for three different classes of utility functions that lead to linear sharing rules
of type (11). The first two classes are the HARA and the CES; here, the
agents’ preferences are similarly quasi-homothetic, and we have Gorman’s
(1953) aggregation. Our third class is composed of identical-for-all-agents
(up to possibly different translated origins) linear combinations of HARA
and CES members. Such preferences are not similarly quasi-homothetic, and
Gorman’s (1953) representative consumer does not exist. Still, the planner’s
sharing rule is linear, so that the social utility function takes the form of (13)
and can be constructed analytically.

4.1 The HARA Class

Pollack (1971) shows that all additive utility functions leading to linear Engel
curves are members of the generalized Bergson family, which is also referred
to in the literature as the HARA class:

U i(∧) (X i) =
NP
n=1

an (γn (x
i
n − bin))

c
,

γn = 1, c < 0, an < 0, xin > bin;
γn = 1, 0 < c < 1, an > 0, xin > bin;
γn = −1, c > 1, an < 0, xin < bin;

U i(ln) (Xi) =
NP
n=1

an ln (x
i
n − bin) , an > 0, xin > bin;

U i(exp) (Xi) =
NP
n=1

bin exp (anx
i
n) , an < 0, bin < 0.

(14)
Let us analyze the implications of the utility functions from the HARA class
for the planner’s economy. Suppose that the agents have preferences given
by either the power utility functions, U i(∧) (X i), the logarithmic utility func-
tions, U i(ln) (X i), or the exponential utility functions, U i(exp) (X i). By ex-
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pressing the individual optimal allocation, xin, from the first-order conditions,
by computing xn =

R
i∈I x

i
ndi and combining the formulas for x

i
n and xn to

eliminate the Lagrange multiplier, for n = 1, ...,N , we obtain

(xin)
(∧)
= bin +

(λi)
1/(1−c)R

i∈I(λi)
1/(1−c)

di
(xn − bn) , bn ≡

R
i∈I b

i
ndi;

(xin)
(ln)
= bin +

λiR
i∈I λ

idi
(xn − bn) , bn ≡

R
i∈I b

i
ndi;

(xin)
(exp)

=
ln(bn/bin)−ln(λi)+

R
i∈I ln(λi)di

an
+ xn, ln (bn) ≡

R
i∈I ln (b

i
n) di.

(15)
Given that the planner’s sharing rule is linear, by Theorem 1, we have that
the social utility function takes the form (13). Substituting X i into (6) yields

V (∧) (X, λ) = ξ(∧)
NP
n=1

an (γn (xn − bn))
c , ξ(∧) =

³R
i∈I
¡
λi
¢1/(1−c)

di
´1−c

;

V (ln) (X, λ) = ξ(ln) +
NP
n=1

an ln (xn − bn) , ξ(ln) =
R
i∈I λ

i ln
³

λiR
i∈I λ

idi

´
di;

V (exp) (X, λ) = ξ(exp)
NP
n=1

bn exp (anxn) , ξ(exp) = exp
¡R

i∈I lnλ
idi
¢
.

(16)
In none of the above cases does the heterogeneity parameter influence the so-
cial preference relationship induced by V (X, λ) on the aggregate commodity
space H. Hence, we have Gorman’s (1953) representative consumer.

4.2 The CES Class

In a one-period market economy, an increasing non-linear transformation of
the individual utility function does not affect the solution, i.e., the maximiza-
tion of U i (X i) leads to the same optimal allocation as does the maximization
of F [U i (X i)], where F : R → R with F 0 > 0. However, such a transforma-
tion does affect the individual optimal allocation in the planner’s economy
since the maximization of

R
i∈I λ

iU i (X i) di and
R
i∈I λ

iF [U i (Xi)] di leads to
different solutions. As a result, the linearity of the planner’s sharing rule
does not, in general, survive a non-linear transformation of the individual

13



utility functions, although in certain cases, it does. An example of such a
case is discussed below.
Consider a planner’s economy, in which all agents possess preferences

given by a power transformation of the CES utility function:

U i(CES)
¡
X i
¢
=
1

σ

Ã
KX
k=1

ak
¡
xik − bik

¢ρ!σ/ρ

, (17)

where ρ ≤ 1, ρ 6= 0, σ < 1, σ 6= 0 and ak > 0,
PK

k=1 ak = 1, xik > bik,
k = 1, ...,K. The limiting case of the transformed CES utility function
under ρ→ 0 is the Cobb-Douglas utility function, thus:

U i(CD)
¡
X i
¢
=
1

σ

Ã
KY
k=1

¡
xik − bik

¢ak!σ

. (18)

The utility functions (17) and (18) are transformations of members of the
HARA class.7

In the case of the CES class, by following the same procedure we employed
in Example 1, we shall now show that the individual optimal allocations is
given by a linear sharing rule:

¡
xik
¢(CES)

= bik +

¡
λi
¢1/(1−σ)R

i∈I
¡
λi
¢1/(1−σ)

di
(xk − bk) , bk ≡

Z
i∈I

bikdi, (19)

where k = 1, ..., K. Theorem 1 implies that the social utility function is given
by (13). After substituting (19) into (6), we obtain:

V (CES) (X, λ) =
ξ(CES)

σ

Ã
KX
k=1

ak (xk − bk)
ρ

!σ/ρ

, ξ(CES) ≡
µZ

i∈I

¡
λi
¢1/(1−σ)

di

¶1−σ
.

(20)
Regarding the Cobb-Douglas case, the results are similar. The individual

optimal allocations are also given by (19), i.e., (xik)
(CD)

= (xik)
(CES). The

7Although the CES and the Cobb-Douglas utility functions under σ = 1 are strictly
quasi-concave, they do not satisfy our assumption of strict concavity. As a result, the
individual optimal allocations in the planner’s economy are either indeterminate or non-
interior. In the market economy, the property of strict quasi-concavity is sufficient, how-
ever, for unique interior optimal allocations, see Maliar and Maliar (2003b) for a discussion.
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social utility function is

V (CD) (X, λ) =
ξ(CD)

σ

Ã
KY
k=1

(xk − bk)
ak

!σ

, ξ(CD) = ξ(CES),

i.e., the formula for ξ(CD) is the same as the one for ξ(CES).
In all of the above cases, we again have Gorman’s (1953) aggregation.

4.3 Linear combinations of HARA and CES members

We shall now construct a class of the utility function that is consistent with
the linear sharing rule but not with Gorman’s (1953) representative con-
sumer. We shall assume that the individual utility functions have the form
(12) withN > 1, where each sub-function (U i)

[n]
³
(X i)

[n]
´
is given by a CES-

or HARA-class member that is identical for all agents (up to the value of the
parameters bik). Therefore, by Theorem 1, we have that the social utility

function takes the form (13), where
n
ξ[n] (λ)

oN
n=1

are the heterogeneity para-

meters from (20) and (15) corresponding to the given CES and HARA mem-

bers, and that each sub-function W [n]
¡
X [n]

¢
is identical to (U i)

[n]
³
(X i)

[n]
´

(again, up to the value of the parameters bk). Below, we elaborate another
related example.
Example 2 Let the agents have the preferences given by

U
¡
X i
¢
= a1

¡
xi1 − bi1

¢c1 + bi2 exp
¡−a2xi2¢ (21)

+
1

σ

¡
a3
¡
xi3 − bi3

¢ρ
+ a4

¡
xi4 − bi4

¢ρ¢σ/ρ
,

where the parameters satisfy the corresponding restrictions outlined in Sec-
tions 4.1 and 4.2. From the individual optimality conditions, we obtain that
the individual optimal allocations xi1 and xi2 are given, respectively, by the
formulas for (xin)

(∧) and (xin)
(exp) in (15), and xi3 and x

i
4 are given by the for-

mulas for (xin)
(CES) in (19). The planner’s sharing rule is, therefore, linear.

By Theorem 1, we have that the social utility function is of the form (13).
By substituting X i into (6), we obtain

V (X,λ) = ξ(∧)a1 (x1 − b1)
c1 + ξ(exp)b2 exp (−a2x2) (22)

+
ξ(CES)

σ
(a3 (x3 − b3)

ρ + a4 (x4 − b4)
ρ)

σ/ρ
,
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where ξ(∧), ξ(exp) are given in (16), and ξ(CES) is given in (20). Since the
heterogeneity parameters ξ(∧), ξ(exp) and ξ(CES) are given by different func-
tions of the welfare weights, the social preference relation induced by V (X, λ)
on H will depend on the distribution of the welfare weights assumed. We
therefore do not have Gorman’s (1953) aggregation. ¥

5 Recovering the competitive equilibrium
In this section, we discuss how to recover the competitive equilibrium in the
decentralized heterogeneous-agent economy (1), (2) by using the associated
planner’s problem (6), (7). We argue that aggregation results considerably
simplify the task of recovering the competitive equilibrium.
To characterize the relation between the distribution of initial endow-

ments in the decentralized heterogeneous-agent economy and the distribu-
tion of welfare weights in the planner’s economy, we use the agents’ ex-
pected life-time budget constraints. To derive such constraints, we proceed
as follows. First, we use the FOC (3) to show that Et−1

h
δ λit
λit−1

mi
t (Yt)

i
=R

Z∈< qt−1 (Z)m
i
t (Z) dZ. Second, with this result, we re-write the individual

budget constraint (2) taken at t = 0 as

mi
0 (Y0) = P0X

i
0 − yi0 +

Z
Z∈<

q0 (Z)m
i
1 (Z) dZ =

P0X
i
0 − yi0 + E0

∙
δ
λi1
λi0

µ
P1X

i
1 − yi1 +

Z
Z∈<

q1 (Z)m
i
2 (Z) dZ

¶¸
. (23)

Finally, by using forward recursion and the law of iterative expectation, and
by imposing transversality condition lim

τ→T
E0
£
δτλiτ

R
Z∈< qτ (Z)m

i
τ+1 (Z) dZ

¤
=

0, we obtain

E0

"
TX

τ=0

δτ
λτ
λ0

¡
PτX

i
τ − yiτ

¢#
= mi

0 (Y0) . (24)

In formula (24), we replace the the ratio of the individual Lagrange multi-
pliers, λiτ

λi0
, with the aggregate ratio λτ

λ0
by using the result (4).8

8A similar expected life-time budget constraint also holds in more sophisticated eco-
nomic environments. For example, Maliar and Maliar (2001) derive such a constraint
in a general-equilibrium neoclassical growth model with capital accumulation and valued
leisure.
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By computing a solution to the planner’s problem under all possible sets
of welfare weights, we obtain a set of Pareto optimal allocations. The Pareto
optimal allocation that coincides with the competitive equilibrium in the de-
centralized economy is one that satisfies the expected life-time budget con-
straint (24) for each agent i ∈ I.
In the absence of aggregation, we can solve for the individual welfare

weights by using the following iterative procedure: fix some set of welfare
weights

©
λi
ª
i∈I , find the solution X i

t

³©
λi
ª
i∈I

´
to the planner’s problem

(6), (7) and check whether the obtained solution is consistent with the ex-
pected life-time budget constraint (24) for each agent i ∈ I; iterate on welfare
weights until the fixed-point values are found.9 When the number of agents is
large, we have many welfare weights to iterate on, so that the above iterative
procedure is burdensome.
In contrast, with Gorman’s (1953) aggregation, computing the individual

welfare weights is trivial. First, we can solve for the aggregate equilibrium
allocation from a representative agent model. Then, by using formulas re-
lating the individual and aggregate allocations and the individual expected
life-time budget constraint (24), we can derive a closed-form expression for
the individual welfare weights and also, a closed-form expression for individ-
ual allocation in terms of the aggregate allocations.10 In particular, by using
(15), we can show that individual and aggregate allocations for the HARA
class (14) of utility functions are related by

(xint)
(∧)
= bin + (xnt − bin)

³
wi
0−E0

PT
τ=0

PN
n=1 δ

τ λτ
λ0

pnτbin

´
E0
PT

τ=0

PN
τ=1 δ

τ λτ
λ0

pnτ (xnτ−bin)
,

(xint)
(ln)
= (xint)

(∧)
,

(xint)
(exp)

= xnt +
wi
0−E0

PT
τ=0

PN
n=1 δ

τ λτ
λ0

pnτ bin

E0
PT

τ=0

PN
τ=1 δ

τ λτ
λ0

pnτ
,

(25)

where wi
0 ≡ mi

0 (Y0) + E0

"
TX

τ=0

δτ λτ
λ0
yiτ

#
is the expected life-time wealth of

the agent and pnτ is price of commodity n in period t. Under the CES and

9This kind of iterative procedure is used in den Haan (1997).
10This procedure based on the roperty of Gorman’s (1953) was employed by Chatterjee

(1994) and Caselli and Ventura (2000).
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CD utility functions, (17) and (18), the formula relating the individual and
aggregate allocations is the same as one for (xint)

(∧) except that subscript n
should be formally replaced by k.
Our "imperfect" aggregation based on the linear sharing rule does not

allow us to entirely avoid the iterative procedure, however, it can reduce
dramatically the number of parameters to iterate on. We shall demonstrate
this fact by using the economy in the example 2.
Example 2 (cont.) Equations (15) and (19) allow us to rewrite the

expected life-time wealth of agents (24) as follows:

E0

TX
t=0

δτ
λτ
λ0

⎡⎢⎣
⎛⎜⎝bi1 +

¡
λi
¢1/(1−c1)

(x1τ − bi1)³
ξ(∧)

´1/(1−c1)
⎞⎟⎠ p1τ +

Ã
1

a2
ln

Ã
ξ(exp)b2

λibi2

!
+ x2τ

!
p2τ

+

⎛⎜⎝bi3 +

¡
λi
¢1/(1−σ)

(x3τ − bi3)³
ξ(CES)

´1/(1−σ)
⎞⎟⎠ p3τ +

⎛⎜⎝bi4 +

¡
λi
¢1/(1−σ)

(x3τ − bi4)³
ξ(CES)

´1/(1−σ)
⎞⎟⎠ p4τ

⎤⎥⎦ = wi
0.

(26)

Consequently, in order to solve for competitive equilibrium, we use the
following iterative algorithm: fix ξ(∧), ξ(exp) and ξ(CES) to some values, sub-
stitute the social utility function V given in (22) into the planner’s problem
(6), (7), solve for the aggregate quantities, restore the weights on individual
utilities from (26) and recompute the values of the parameters ξ(∧), ξ(exp)

and ξ(CES) according to formulas given in (16) and (20); iterate on the above
parameters until fixed-point values are found. Therefore, in this case we
have to iterate on three parameters, no matter how many agents we have.
Thus, imperfect aggregation reduces the computational cost substantially
when solving models with a small number of commodities and a large num-
ber of agents.

6 Final comments
In this paper, we propose to look for restrictions on individual characteristics
that are weaker than the ones required for Gorman’s (1953) aggregation but
which are sufficient for characterizing the relationship between heterogeneity
and aggregate dynamics in a relatively simple way. We describe one such
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restriction, the linear planner’s sharing rule. This restriction provides a suf-
ficient condition for constructing the social utility function analytically. In
our case, the social utility function can depend on a set of ”heterogeneity”
parameters that summarize the effect of the distribution of welfare weights
(wealth) on social preferences.
Obviously, our restriction of a linear planner’s sharing rule is not a neces-

sary condition for constructing the social utility function. In fact, the term
”necessary condition” does not have a precise meaning in our context. In-
deed, there is no underlying fundamental property behind our construction
such as there is in Gorman’s (1953) requirement that the aggregate allocation
be independent of the distribution of wealth. The property we target may
be loosely described as ”an easy characterization of aggregate behavior”. We
expect the class of economies, in which aggregate dynamics depend on dis-
tributions in a relatively simple way, to be much broader than the Gorman’s
(1953) economies, where aggregate dynamics is independent of distributions.
This direction seems to be merit further exploration.
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7 Appendix
We will use the following notation. Fk and Fks denote the first-order and
second-order partial derivatives of a function F (z1, ..., zk, ..., zK) with respect
to the kth argument and with respect to the kth and the sth arguments,

correspondingly; ∇F ≡
⎡⎣ F1

...
FK

⎤⎦; 4F ≡ ∂ log∇F
∂X

=

⎡⎣ F11
F1

... F1K
F1

... ... ...
FK1
FK

... FKK

FK

⎤⎦ and
4−1F ≡ [4F ]−1 is the inverse of a square matrix 4F .
Proof of Theorem 1.
1. By deriving the first-order condition of (6) with respect to X i and

combining it with the envelope condition for X, we obtain

λi∇U i
¡
Xi
¢
= ∇V (X, λ) . (27)

By taking logarithms and computing the total differential of (27), we get

4U i
¡
X i
¢
dX i = 4V (X, λ) dX − 1 d log λi +

Z
i∈I

∂ log∇V (X,λ)

∂ logλi
d log λidi,

(28)
where 1 is a K×1 vector with all elements equal to 1. Under the assumption
of strict concavity of the individual utility function, 4U i (X i) is invertible.
This fact together with (28) implies

∂X i

∂X
≡
⎡⎣ ∂xi1/∂x1 ... ∂xi1/∂xK

... ... ...
∂xiK/∂x1 ... ∂xiK/∂xK

⎤⎦ = 4−1U i
¡
X i
¢4V (X, λ) . (29)

2. Expressing dX i from (28), summing up across agents and imposing
the restriction dX =

R
i∈I dX

idi yields½
IK×K −

∙Z
i∈I
4−1U i

¡
Xi
¢
di

¸
4V (X, λ)

¾
dX+Z

i∈I

½
4−1U i

¡
X i
¢
1−

∙Z
i∈I
4−1U i

¡
X i
¢
di

¸
∂ log∇V (X, λ)

∂ log λi

¾
d log λidi = 0,

where IK×K is a K ×K identity matrix. Since the above equality must hold
for any differential of independent variables, the coefficients on dX and each
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d log λi must be equal to zero. Thus, for all X ∈ H, λ ∈ Λ, we must have

4V (X,λ) =

∙Z
i∈I
4−1U i

¡
X i
¢
di

¸−1
, (30)

∂ log∇V (X, λ)

∂ log λi
=

∙Z
i∈I
4−1U i

¡
X i
¢
di

¸−1
4−1U i

¡
X i
¢
1. (31)

3. The linear sharing rule (11) implies ∂Xi

∂X
= Φi (λ). Combining (29) −

(31) yields

∂ log∇V (X,λ)

∂ log λi
= 4V (X,λ)Φi (λ)4−1V (X,λ) 1 = Φi (λ) 1.

The fact that ∂ log∇V (X,λ)

∂ logλi
is independent of X implies that ∇V (X, λ) is

multiplicatively separable in X and λ. Hence, there exist a function W :
RK
++ → R and k functions θ(k) : Λ→ R++ such that for k = 1, ..., K,

Vk (X, λ) = θ(k) (λ)Wk (X) . (32)

Note that we have θ(k) (λ) 6= 0 and Wk (X) 6= 0 for all k since V (X, λ) is
strictly increasing in each commodity, i.e., Vk (X,λ) > 0.
4. According to (12), all agents have utility functions that are additive

in the same partition. Therefore, (U i)
[n]
ks

³
(X i)

[n]
´
6= 0 for all k, s such that

xik, x
i
s ∈ (X i)

[n] and (U i)
[n]
ks

³
(Xi)

[n]
´
= 0 for all k, s such that at least one

of xik, x
i
s does not belong to (X

i)
[n]. Hence, 4U i (Xi) is block-diagonal:

4U i
¡
X i
¢
=

⎡⎢⎢⎣
4 (U i)

[1]
³
(X i)

[1]
´

... 0

... ... ...

0 ... 4 (U i)
[N ]
³
(X i)

[N ]
´
⎤⎥⎥⎦ .

It follows from (30) that 4V (X, λ) is also block-diagonal:

4V (X, λ) =⎡⎢⎢⎣
hR

i∈I4−1 (U i)
[1]
³
(X i)

[1]
´
di
i−1

... 0

... ... ...

0 ...
hR

i∈I4−1 (U i)
[N ]
³
(Xi)

[N ]
´
di
i−1

⎤⎥⎥⎦ .
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That is, V (X, λ) is additive in the same partition as the utility function of
each agent, U i (X i), and thus, it can be represented by

V (X,λ) =
NX
n=1

V [n]
³
(X)[n] , λ

´
. (33)

5. Differentiating (32) with respect to some xs ∈ X, s 6= k, yields

Vks (X, λ) = θ(k) (λ)Wks (X) . (34)

Given that θ(k) (λ) 6= 0 for all k, we have that Vks (X, λ) = 0 if and only if
Wks (X) = 0. That is, the additivity of V (X, λ) is sufficient for the additivity
of W (X) in the same partition,

W (X) =

NX
n=1

W [n]
³
(X)[n]

´
. (35)

6. Consider any k, s such that xk, xs ∈ X [n]. Then, (33) and (35) imply
Vks (X, λ) 6= 0 and Wks (X, λ) 6= 0, respectively. Further, by (32), we have

Vsk (X,λ) = θ(s) (λ)Wsk (X) . (36)

Given that Vks (X,λ) = Vsk (X, λ) and Wks (X) = Wsk (X), we obtain that

θ(k) (λ) = θ(s) (λ) ≡ ξ[n] (λ) . (37)

That is, for all commodities belonging to the same partition X [n], the corre-
sponding θ(k) (λ) are equal.
7. By combining (32), (35) and (37), we get

Vk (X,λ) = ξ[n] (λ)W
[n]
k

¡
X [n]

¢
, (38)

for each k such that xk ∈ X [n]. Therefore, V (X, λ) is given by (13). ¥
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