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Quasi-geometric (hyperbolic) discounting is a form of
time-inconsistency in preferences when the discount factor, applied between today
and tomorrow, is different from the one employed for any other date further in the
future. The first studies on quasi-geometric discounting date back to Strotz (1955–
1956), Pollak (1968), and Phelps and Pollak (1968), although interest in this subject
has recently been revived, e.g., Laibson (1997), Laibson, Repetto, and Tobacman
(1998), Barro (1999), Harris and Laibson (2001), Angeletos et al. (2001), Krusell
and Smith (2000, 2003), Krusell, Kurusçu, and Smith (2002), Luttmer and
Mariotti (2002).
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This paper contributes to the literature by establishing how the assumption of
quasi-geometric discounting affects the distributional implications of the standard
one-sector neoclassical growth model. We consider an economy populated by a
continuum of infinitely lived quasi-geometric agents, who are subject to idiosyncratic
labor productivity shocks and who face borrowing constraints. We confine our
attention to an interior Markov recursive solution to the individual utility-maximiza-
tion problem. We solve for a stationary equilibrium in which the prices of capital
and labor are consistent with the consumption-savings decisions of the agents (as
in, e.g., Aiyagari, 1994, Huggett, 1997).

Two papers in the literature that are closely related to ours are Harris and Laibson
(2001) and Krusell, Kurusçu, and Smith (2002). The former paper studies the
behavior of a quasi-geometric consumer in a stochastic partial-equilibrium model,
under the assumption of iid labor-income shocks. The latter paper analyzes the
implications of a deterministic general-equilibrium model with homogeneous quasi-
geometric consumers. As such, our study differs from the former paper in the sense
that we use a general-equilibrium approach and introduce persistent shocks to labor
income, and we differ from the latter paper in that we have heterogeneity of agents,
due to idiosyncratic uncertainty.

With the assumption of quasi-geometric discounting, the effective discount factor
of an agent is not a constant, but rather an endogenous variable that depends on
the agent’s current state. In particular, we show that if the consumption function is
strictly concave, then the effective discount factor of the quasi-geometric short-run
impatient agent is increasing in wealth. As a result, the rich are more patient than the
poor, so that the model with quasi-geometric short-run impatient agents produces
a larger dispersion of wealth than does the standard setup, where rich and poor are
equally patient. This implication is of interest, given that the standard model with
a constant discount factor dramatically underpredicts the size of wealth inequality,
relative to the data (see, e.g., Quadrini and Rı́os-Rull 1997).

In a calibrated version of the model, we find that the effects associated with
the assumption of quasi-geometric discounting are quantitatively significant. For
example, in our benchmark model with short-run impatient agents, the wealth
holdings of the bottom 40% of the population decline by 28%, while those of the
top 1% increase by 10%, and the Gini coefficient of the wealth distribution increases by
18% compared to the standard geometric-discounting setup. These improvements,
however, are too small for the model to reproduce the size of the wealth inequality
observed in the data. Furthermore, we find that in our general-equilibrium model,
the size of precautionary savings is not substantially affected by the presence of
quasi-geometric discounting. In fact, under some parameterizations, the precaution-
ary savings of quasi-geometric consumers can be even greater than those of the
standard geometric consumers. This is contrary to what Laibson, Repetto, and
Tobacman (1998) have obtained in a partial-equilibrium setup.

The rest of the paper is organized as follows. Section 1 formulates the model,
derives the optimality conditions, defines equilibrium and discusses some of the
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model’s implications. Section 2 describes the methodology of the quantitative study
and presents the results from simulations, and finally, Section 3 concludes.

1. THE MODEL

Time is discrete and the horizon is infinite, t � {0, 1, 2, …}. The economy is
populated by a continuum of infinitely lived agents with names on a closed interval
[0, 1]. The agents inelastically supply their total time endowment (equal to one) to
the market. The labor productivities of the agents are subject to idiosyncratic shocks.
The shocks follow a first-order Markov process and are uncorrelated across agents. All
possible realizations of productivity shocks are in the set S � [smin, smax] � R�. At
each point in time, the agents also differ in asset holdings, which somehow summarize
information on past realizations of shocks. Assets are restricted to be in the set
A � [�b, ∞) � R. That is, agents may only borrow up to a certain amount b.

In every period t, an agent seeks to maximize the expected present value of the
sum of one-period utilities from t forward by choosing an optimal path for consump-
tion. The agent discounts the utility by using the quasi-geometric weights, 1, βδ,
βδ2, βδ3, …, where the discounting parameters β and δ are such that β � 0 and
0 � δ � 1. Consequently, on each date t, the agent solves the following problem

max
{cτ,aτ�1}∞

τ�t

{u(ct) � Et �
∞

τ�t
β δτ�1�t u(cτ�1)} (1)

subject to

cτ � aτ�1 � wsτ � (1 � r)aτ , (2)

aτ�1 � �b , (3)

where initial condition (at, st) is given. Here, cτ, aτ, and sτ are consumption, asset
holdings, and the labor productivity shock, respectively; r is the interest rate; w is
the wage per unit of efficiency labor; Eτ is the expectation, conditional on all
information about the agent’s idiosyncratic shocks being available at τ. The momen-
tary utility function u(c) is continuously differentiable, strictly increasing, strictly
concave, and satisfies limc→0u′(c) � ∞.

As is argued in the literature (e.g., Laibson 1997) one can view a quasi-geometric
consumer in different periods as a collection of temporal selves, who play an infinite-
horizon game. Each self t has the preferences defined over the stream of consumption
{cτ}∞

τ�t and solves the problem (1)–(3). We assume that self t has direct control
only over the current consumption, ct, i.e., the agent cannot commit herself to
future actions.

We restrict our attention to the case when β � 1, so that the short-run discount
factor, βδ, is lower than the long-run discount factor, δ. Thus, the agent is short-run
impatient: she plans to save much in the future, but as the future comes around,
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she changes her mind and saves less than she would have originally committed to
if commitment had been available. This case is often referred to in the literature as
hyperbolic discounting, because of a qualitative similarity with the case where the
discount factor is given by an increasing-over-time generalized hyperbolic function
(see, e.g., Laibson 1997). Following Krusell and Smith (2000), we refer to the case
β ≠ 1 as quasi-geometric discounting because except for the current date, the weights
on momentary utility functions decline geometrically.

The production side of the economy consists of a representative firm. Given the
factor prices, r and w, the firm rents capital, Kt, and hires labor, Nt, to maximize period-
by-period profits. The technology is described by F(Kt, Nt) � (1 � d)Kt. The
production function, F, has constant returns to scale, is strictly increasing, strictly
concave, continuously differentiable and satisfies the appropriate Inada conditions.
The depreciation rate of capital is d � (0, 1].

1.1 Recursive Formulation and the Euler Equation

As shown in Harris and Laibson (2001), the problem (1)–(3) can be written
recursively. To be specific, let us assume that in all periods, the agent decides
on consumption according to the same consumption function, ct � C(at, st). Without
time subscripts, we have the following recursive formulation:

W(a, s) � max
c

{u(c) � βδE[V(a′,s′)|s]} , (4)

where, given (a, s), the value function V solves the functional equation

V(a, s) � u[C(a,s)] � δE{V [ws � (1 � r)a � C(a,s);s′]|s} (5)

subject to the budget constraint

a′ � ws � (1 � r)a � c (6)

and the borrowing constraint

a′ � �b . (7)

The problem (4)–(7) is to be solved for the current value function, W(a, s),
the continuation value function, V(a, s), and the consumption function, C(a, s). We
assume that the above functions are continuous and differentiable. These assumptions
will be in force throughout the remainder of the paper.

If the problem (4)–(7) has an interior solution, then such a solution satisfies the
quasi-geometric Euler equation:

u′(ct) ≥ δEt {u′(ct�1)[1 � r � (1 � β)Ca(at�1, st�1)]} , (8)

where u′ is the derivative of the utility function u, and Ca is the first-order partial
derivative of the consumption function, C, with respect to assets. The Euler equation
holds with strict inequality if the borrowing limit is reached.
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1.2 Equilibrium

Let x be a probability measure defined on B, where B denotes the Borel subset
of the set of all possible individual states A × S. For all B � B, xt(B) is the mass
of agents whose individual states lie in B at time t.

P(a, s, B) denotes the conditional probability that an agent with state (a, s) will
have an individual state lying in the set B in the next period. The function P is
defined as

P(a,s,B) � Prob({s′ � S:[A(a,s),s′] � B}|s) ,

where A(a, s) ≡ a′ � ws � (1 � r)a � C(a,s) is the decision function for assets
(the asset function). The law of motion of xt then is xt�1 (B) � �

A × S
P(a, s, B)dxt

for all t � [0,∞) and all B � B.
Labor and capital inputs are given by Nt � �

S
st dxt and Kt � �

A × S
at dxt, respec-

tively. With a continuum of agents, Nt is a constant; for convenience, we normalize
it to one, Nt � 1.

We only study such equilibria in which the period-t � 1 probability measure
xt�1 is the same as the period-t probability measure xt, for all t � [0,∞). In this
case, we say that the probability measure is stationary and denote it by x*. The
stationarity of x* implies that the aggregate capital stock is constant,
K � �

A × S
atdx∗ for all t � [0,∞) (even though the assets of each agent vary stochas-

tically over time).

Definition: A stationary equilibrium is defined as a stationary probability
measure x*, an optimal consumption function C(a, s), and positive real numbers
(K, r, w) such that

1. x* satisfies x∗ � �
A × S

P(a,s,B)dx∗ for all B � B;
2. C(a, s) solves the Euler equation (8) for a given pair of prices (r, w);
3. (r, w) are such that the firm’s profit is maximum

r � FK(K,1) � d, w � FN(K,1) ,

where FK and FN are the first-order partial derivatives of the production
function, F, with respect to capital and labor inputs, respectively;

4. K is the average of the agents’ decisions: K � �
A × S

A(a, s)dx∗.

Thus, we focus exclusively on the interior solution to the individual problem (1)–
(3). It has been shown in Krusell and Smith (2000, 2003) that the assumption of
quasi-geometric discounting can lead to indeterminacy and multiplicity of equilibria.
However, as is argued in Krusell, Kuruşçu, and Smith (2002), the solution to the
Euler equation (the interior solution) is unique, as it is a unique limit of finite-horizon
equilibria.1 Focusing on the interior solution allows us to sidestep the indeterminacy
and multiplicity problems pointed out in Krusell and Smith (2000, 2003).

1. Maliar and Maliar (2004) derive a closed-form solution to the problem of a quasi-geometric
consumer (4)–(6) under the assumption of the exponential utility function. The solution obtained is
interior and unique.
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1.3 The Model’s Implications

Under the assumption of standard geometric discounting, β � 1, the discount
factor is a constant, equal to δ in all periods. However, if discounting is quasi-
geometric, β ≠ 1, the effective discount factor is an endogenous variable, which
depends on the agent’s current state. In this section, we illustrate some properties
of such an endogenous discount factor. Let us rewrite the quasi-geometric Euler
equation (8) as

u′(ct) � δt�1 (1 � r) Et [u′(ct�1)] , (9)

where δt�1 is the effective discount factor,

δt�1 ≡ δt�1 (at�1, st�1) � δ · [1 �
1 � β
1 � r

·
Et [u′(ct�1) Ca(at�1, st�1)]

Et[u′(ct�1)] ] . (10)

If β � 1, then δt�1 � δ for all t and Condition (9) reduces to the standard Euler
equation. To characterize the properties of δt�1 under β ≠ 1, we first employ the
simplifying assumption that the borrowing limit is never reached and then we discuss
the effect of a binding borrowing constraint.2

In the absence of borrowing restrictions, the quasi-geometric Euler equation (9)
holds with equality. We shall begin our analysis by establishing one useful result
regarding the properties of the consumption function.

Lemma 1: C(a, s) is strictly increasing in a for all a � A, s � S.
Proof: See Appendix A. ||
The proof of Lemma 1 relies on the assumption that a solution to the Euler

equation (8) exists, that it is unique, and that the value function W is continuously
differentiable. All of these properties were satisfied in our simulations, when β was
sufficiently close to one. In general, the properties of the solution to the model
studied here are not known.3

The implication of this result for the discount factor δt�1 is as follows:

Proposition 1: If β � 1, then δt�1 � δ for all a � A, s � S.
Proof: Under the assumption that u is strictly concave and with the result of

Lemma 1, the proof of Proposition 1 follows from Equation (10) directly. ||

Proposition 1 shows that a quasi-geometric short-run impatient agent has the
discount factor δt�1 � δ and, therefore, is less patient than one with β � 1. Precisely
what determines the patience of the agent? Two factors are relevant here. First, self
t is impatient because she is impatient in the short-run, i.e., she has the short-run
discount factor, βδ, which is lower than the long-run discount factor, δ. Secondly,

2. At the point where the borrowing constraint begins to bind, the consumption function has a kink
and, therefore, is not continuously differentiable.

3. For a similar utility-maximization problem with iid shocks, Harris and Laibson (1999, 2001) prove
the existence of equilibrium and provide sufficient conditions for continuity and differentiability of
the value and policy functions.
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self t is impatient because the subsequent self t � 1 is impatient in the short-run.
To see the point, consider the first-order condition of the problem (4)–(7) with
respect to consumption. Self t � 1’s choice of ct�1 is determined by the short-run
discount factor, βδ,

u′(ct�1) � βδEt�1 Va(at�2, st�2) ,

where Va is the first-order partial derivative of V with respect to assets. For self t,
however, the discount factor between periods t � 1 and t � 2 is the long-run one,
δ, and thus, the values of consumption and assets for self t at period t � 1 are related as

u′(ct�1) � δEt�1 Va(at�2, st�2) .

Given that the marginal utility of consumption is decreasing, from the perspective
of self t, self t � 1 overconsumes. The fact that a part of savings is misused by
self t � 1, makes self t save less, i.e., act impatiently.

The assumption of quasi-geometric discounting has another important implication:
the effective discount factor, δt�1, depends on the agent’s wealth. By finding a partial
derivative of δt�1 with respect to at�1 from Equation (10) and omitting the arguments
of the functions for the sake of compactness, we can write

∂δt�1

∂at�1
� �

δ(1 � β)
1 � r

·
Et[u″C2

a � u′Caa]Et[u′] � Et[u′Ca]Et[u″Ca]
(Et[u′])2

, (11)

where Caa ≡ Caa(at�1, st�1) is the second-order partial derivative of C with respect
to assets. Consider a nonstochastic steady state of Expressions (9) and (10) such
that st � s̄, ct � c̄ and at � ā for all t. By evaluating Equation (11) in the steady
state, we get

∂δ(ā, s̄)
∂a

� �
δ(1 � β)

1 � r
· Caa(ā, s̄) . (12)

Hence, if the consumption function is strictly concave, Caa � 0, then the effective
discount factor of short-run impatient consumers is strictly increasing in wealth, at
least near the steady state.4

Let us now analyze what happens to δt�1 when the borrowing limit is reached.
As implied by the budget constraint (6), the marginal propensity to consume out of
assets of a liquidity-constrained agent is Ca(at�1, st�1) � 1 � r (except at the point
where the borrowing limit is just reached and where there is a kink). Thus, according
to Equation (10), the effective discount factor is δt�1 � βδ, i.e., δt�1 � δ. Furthermore,
by evaluating Equation (11) in the presence of binding borrowing restrictions,
we obtain

4. Carroll and Kimball (1996) show analytically that introducing labor income uncertainty into a
similar finite-horizon problem with standard geometric discounting, β � 1, and with no restrictions on
borrowing induces a concave consumption function. Carroll and Kimball (2001) demonstrate that the
concavity of the consumption function is preserved even in the presence of borrowing restrictions.
The proof of a parallel result for our setup is beyond the scope of this paper. In our simulations, the
consumption function was concave under all parameterizations considered.
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∂δt�1

∂at�1
� �

δ(1 � β)
1 � r

·
Et[u′Caa]

Et[u′]
. (13)

Again, given a strict concavity of the consumption function, Caa � 0, we have that
the effective discount factor of short-run impatient consumers is strictly increasing
in wealth. Consequently, the properties of δt�1 are the same here as they were in
the absence of borrowing restrictions.

The fact that the effective discount factor of agents depends on wealth can play
a potentially important role in the model’s distributional implications. We should
recall that under standard geometric discounting, β � 1, the model severely underpre-
dicts the wealth of rich agents and overpredicts the wealth of poor agents (see, e.g.,
Aiyagari, 1994, Quadrini and Rı́os-Rull, 1997). Note that the assumption of quasi-
geometric discounting can help us improve on the above shortcoming. Specifically,
if β � 1, the rich act more patiently (have a higher discount factor) than do the
poor. As a result, the difference between the rich and the poor will be greater in an
economy with β � 1 than in one with β � 1, where rich and poor are equally
patient. In the remainder of the paper, we shall evaluate the effects associated with
the assumption of quasi-geometric discounting by using numerical methods.

2. QUANTITATIVE ANALYSIS

In this section, we describe the calibration and solution procedures and discuss
the numerical results.

2.1 Calibration and Solution Procedures

The model’s period is 1 year. The long-run discount factor is set at δ � 0.96.
We assume that the production function is Cobb–Douglas, F(K, N) � Kα N1�α,
with a capital share set at α � 0.36. The depreciation rate of capital, d, is equal to
0.08. The debt limit is set at zero, b � 0.

We assume that the momentary utility function is of the Constant Relative Risk
Aversion (CRRA) type,

u(c) �
c1�γ � 1

1 � γ
, γ � 0 , (14)

where γ is a coefficient of relative risk aversion. As in Aiyagari (1994), we assume
that idiosyncratic shocks follow an AR(1) process given by

log st�1 � ρlog st � σ(1 � ρ2)1�2 εt�1, εt�1 � N(0,1) ,

where ρ � [0, 1] is the autocorrelation coefficient, and σ ≥ 0 is the unconditional
standard deviation of the variable log st.

We consider four alternative sets of values of

(γ, ρ, σ) � {(1.0, 0.6, 0.2), (1.0, 0.9, 0.2), (3.0, 0.9, 0.2), (1.0, 0.9, 0.4)} .
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We assume two alternative values of β � {0.8, 1.0}, which correspond to the
cases of quasi-geometric short-run impatient consumers and the standard geometric
consumers, respectively.

As we argued in Section 1.3, the presence of quasi-geometric discounting in the
model has two effects. First, if β � 1, the effective discount factor, δt�1, is lower
than one in the standard case, β � 1, which raises the equilibrium interest rate.
Secondly, the effective discount factor, δt�1, is not a constant, as in the standard
case, but rather is a function of the individual state (at�1, st�1). To distinguish
between the two effects and to isolate the role of the short-run discount factor in
the equilibrium, we also solve the quasi-geometric-discounting model by setting the
interest rate, r (the aggregate capital stock, K ), at the value obtained in the standard
geometric-discounting model and by adjusting the long-run discount factor, δ,
correspondingly.

We also analyze the robustness of our results to the introduction of two types of
consumers who differ in the degrees of their short-run patience. We specifically
consider an economy in which a fraction λ of the population is quasi-geometric
short-run impatient, β � 0.8, and a fraction (1 � λ) is standard geometric, β � 1,
with λ � {1/3, 2/3}. In fact, we would have the same distributional implications
if everyone was short-run impatient, β � 0.8, but a fraction (1 � λ) of the population
could commit while the rest could not. Indeed, if a short-run impatient agent commit-
ted, starting from the second period, her behavior would be the same as one of the
standard geometric agent, except that it would be in the first period. However, given
that we solve for stationary distributions, the first-period decisions play no role
in the distributional implications of the model.

Thus, for each parameterization (γ, ρ, σ), we report seven computational experi-
ments: one experiment under the standard geometric-discounting, β � 1, and δ �
0.96; three experiments under β � 0.8 and λ � {1/3, 2/3, 1} holding the long-run
discount factor fixed; and three experiments under β � 0.8 and λ � {1/3, 2/3, 1}
holding the interest rate fixed.

To solve the model, we use an algorithm iterating on the Euler equation. The
description of the algorithm is provided in Appendix B.5 In the standard geometric-
discounting case, β � 1, the algorithm had no difficulty in computing the solution.
Under quasi-geometric discounting, β � 1, however, the convergence was more
costly to achieve. In several experiments, it was necessary to make a good initial
guess at the interest rate, r, and then to slowly update the decision rules. Furthermore,
the algorithm typically failed to converge when β was lower than 0.8. The computa-
tional problems described, however, do not appear to be specific to our solution
method.6

5. Maliar and Maliar (2005) study the convergence properties of this Euler equation method in the
context of models with quasi-geometric discounting. The method used in the present paper is shown to
yield the same solutions as those obtained by the perturbation method proposed by Krusell, Kuruşçu,
and Smith (2002).

6. The difficulties in finding numerical solutions have been reported in other papers on quasi-geometric
discounting. Laibson, Repetto, and Tobacman (1998) study a finite-horizon model similar to ours and
also find that solution can be computed only if β is not too low (they use β � 0.85). In the context
of a deterministic version of the neoclassical growth model with quasi-geometric discounting, Krusell
and Smith (2000) argue that numerical problems are related to the fact that in addition to a smooth
interior solution, the model has an infinite number of discontinuous solutions.
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Fig. 1. The Asset Distribution: The Benchmark Cases

2.2 Results

Figures 1–3 plot the stationary probability distribution of assets (wealth) in the
model under γ � 1.0, ρ � 0.6, and σ � 0.2. A comparison of the cases λ � 1 and
λ � 0 in Figure 1 reveals the following tendencies: if δ is fixed, the unconditional
mean of the wealth distribution increases in β and the fraction of the liquidity-
constrained population decreases in β. The latter tendency is still observed if δ is
adjusted to hold the same interest rate, r (the same mean of the wealth distribution),
in the economies with λ � 1 and λ � 0. Figures 2 and 3 plot the wealth distribution
obtained in the sensitivity experiments with respect to λ holding δ and r fixed,
respectively. As is seen, independently of whether δ or r is fixed, an increase in
the fraction of short-run impatient agents in the economy raises the fraction of the
liquidity-constrained population and, hence, increases the dispersion of wealth.

Table 1 summarizes the statistics on the wealth distribution generated by the
model economies. We report two measures of wealth inequality: the Gini coefficient
and the percentages of wealth held by different groups of the population. For the sake
of comparison, we also provide the corresponding statistics on the U.S. economy.

We must first note that the model with standard geometric discounting, β � 1,
cannot generate the realistic relative degrees of wealth inequality. To be more
specific, the poor agents are not so poor and the rich agents are not so rich in
the model as they are in the data. For instance, in the model, under γ � 1.0, ρ �
0.6, and σ � 0.2 (the first panel in the table), the bottom 40% of the population
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Fig. 2. The Asset Distribution under δ � 0.96

holds 17.1% of total wealth and the upper 1% of the population holds 3.1% of
total wealth, whereas in the U.S. economy, these numbers are 2.2% and 28.2%,
respectively. The Gini coefficient reflects the same tendency: it is much lower in
the model (0.32) than in the data (0.76). Variations in the parameters γ, ρ, and σ
(the remaining three panels in the table) can help generate a higher concentration
of wealth in the model; however, the improvements are not sufficient to account
for the data.

We now analyze the case of quasi-geometric discounting. As we mentioned before,
the consumption function proved to be concave in our simulations, which implies that
under the assumption of short-run impatience, β � 1, wealth inequality increases
in comparison to the standard geometric-discounting case, β � 1. The results in
Table 1 make it possible to appreciate the quantitative expressions of this effect.
First, consider the model with short-run impatient agents, λ � 1, when δ is fixed
at 0.96. For example, under γ � 1.0, ρ � 0.6, and σ � 0.2, we have that the wealth
holdings of the poorest 40% of the population are 12.3% and those of the richest 1%
of the population are 3.4% (i.e., decline by 28% and increase by 10%, respectively,
compared to the corresponding statistics in the geometric-discounting case β � 1.0);
similarly, the Gini coefficient rises to 0.38 (i.e., increases by 19%). The same
regularities are observed under the other parameterizations of (γ, ρ, σ).

Furthermore, as is seen from Table 1, the predictions of the model with short-
run impatient agents, λ � 1, do not significantly change if instead of δ, the interest
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Fig. 3. The Asset Distribution under r � 3.9823%

rate, r, is fixed. We therefore conclude that the effect of quasi-geometric discounting
on the degrees of wealth inequality in the model comes mostly from the endogenous
dependence of the individual effective discount factor on the individual state and
not from the implied differences in the equilibrium interest rate (the aggregate
capital stock).

Finally, the sensitivity experiments λ � {1/3, 2/3} show that in order to increase
wealth inequality, it is not necessary that the entire population be short-run impatient,
but just a fraction of it. In fact, the dispersion of wealth in the economy populated by
both quasi-geometric short-run impatient and standard geometric agents can be
even larger than in the economy, where all agents are short-run impatient.

In Table 2, we include the same statistics on the income distribution, as we
previously did for the wealth distribution. As one can see, in the U.S. economy,
there is much less dispersion across individuals in income compared with wealth.
All model economies are capable of reproducing this regularity, but, again, they
dramatically underpredict the degrees of income inequality. The main point to note
from the table is that the role of quasi-geometric discounting in the income distribu-
tion is quite modest.

The results in Table 3 allow us to appreciate the effect of quasi-geometric dis-
counting on aggregate capital stock. The comparison of the models with λ � {0,
1/3, 2/3, 1} under fixed δ shows that an increase in the fraction of the short-run
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TABLE 1

Selected Statistics of the Wealth Distribution in the U.S. and Artificial Economies

Wealth Groups

λ r, % δ Gini 0%–40% 80%–100% 90%–95% 95%–99% 99%–100%

γ �1.0, ρ � 0.6, σ � 0.2
1 5.0530 0.9600 0.3832 12.2587 40.4248 10.4202 10.3289 3.3584
2/3 4.7012 0.9600 0.3814 14.0402 41.1009 10.4438 10.3862 3.4389
1/3 4.3502 0.9600 0.3664 14.0346 41.0514 10.2353 10.0030 3.3818
1 3.9823 0.9683 0.3777 12.8730 40.2449 10.3571 10.0481 3.3418
2/3 3.9823 0.9659 0.3805 12.9006 40.4797 10.4906 10.3743 3.4520
1/3 3.9823 0.9633 0.3666 15.4237 39.8945 10.2369 9.9384 3.3441
0 3.9823 0.9600 0.3221 17.1209 38.0764 9.4314 9.3635 3.0890
γ �1.0, ρ � 0.9, σ � 0.2
1 4.9723 0.9600 0.4427 9.1699 45.7881 11.2498 11.4023 3.9160
2/3 4.6250 0.9600 0.4430 10.7607 44.6939 11.4690 11.7306 3.9854
1/3 4.2757 0.9600 0.4371 10.4274 44.8827 11.4269 11.5875 3.9171
1 3.9067 0.9682 0.4362 9.9773 45.2729 11.4580 11.5234 3.8455
2/3 3.9067 0.9659 0.4400 9.8947 45.5243 11.4198 11.5996 3.9590
1/3 3.9067 0.9632 0.4358 9.9829 45.2272 11.3716 11.5473 3.9446
0 3.9067 0.9600 0.4127 12.5869 42.5223 10.8946 11.0387 3.7187
γ � 3.0, ρ � 0.9, σ � 0.2
1 4.2086 0.9600 0.4197 10.8272 43.7405 11.1473 10.9888 3.6610
2/3 3.8858 0.9600 0.4117 12.5302 43.8980 10.8683 10.9044 3.6102
1/3 3.5874 0.9600 0.4014 12.3919 42.3923 10.7028 10.5768 3.5583
1 3.3076 0.9677 0.4161 11.4832 43.6710 10.9409 11.0198 3.7318
2/3 3.3076 0.9653 0.4088 11.7127 43.3011 10.9243 10.9010 3.6331
1/3 3.3076 0.9628 0.3996 11.9999 42.8423 10.7349 10.5379 3.5299
0 3.3076 0.9600 0.3890 14.1303 42.3206 10.4659 10.5094 3.5029
γ � 1.0, ρ � 0.9, σ � 0.4
1 4.4031 0.9600 0.4640 9.8054 46.7830 12.0835 12.5520 4.3022
2/3 4.0689 0.9600 0.4632 9.3941 47.1823 12.0195 12.4920 4.3228
1/3 3.7162 0.9600 0.4573 9.0731 47.0350 11.8894 12.2560 4.2151
1 3.3252 0.9689 0.4604 10.2048 47.5991 12.2376 12.5323 4.3149
2/3 3.3252 0.9666 0.4602 10.1668 47.4830 12.1909 12.4856 4.3100
1/3 3.3252 0.9637 0.4550 10.2394 47.0156 11.9712 12.0935 4.1977
0 3.3252 0.9600 0.4437 10.4973 46.2484 11.6965 11.9547 4.0663
U.S. Economy(a) 0.76 2.2 77.1 12.6 23.1 28.2

(a)Source: Quadrini and Rı́os-Rule (1997).

impatient population drives down the aggregate capital stock. This effect is quite
sizable: for example, under γ � 1.0, ρ � 0.6, and σ � 0.2, the aggregate capital stock
in the economy with quasi-geometric short-run impatient agents, λ � 1, is 12.5%
lower than in the economy with geometric agents, λ � 0. In Table 3, we also report
the amount of precautionary savings, PS, %, which are defined as the percentage
difference between the capital stocks in the stochastic economy, K, and in the associ-
ated deterministic economy, Kss. The main finding here is that the difference in
precautionary savings across the models in each panel is relatively small. In fact,
precautionary savings in the economy with quasi-geometric consumers can be even
larger than those in the standard geometric-discounting case (see the panel γ � 3.0,
ρ � 0.9, and σ � 0.2 in Table 3). This is in contrast to the result of Laibson,
Repetto, and Tobacman (1998) where under low values of β (specifically, they use
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TABLE 2

Selected Statistics of the Income Distribution in the U.S. and Artificial Economies

Income Groups

λ r, % δ Gini 0%–40% 80%–100% 90%–95% 95%–99% 99%–100%

γ � 1.0, ρ � 0.6, σ � 0.2
1 5.0530 0.9600 0.1294 31.2398 26.9603 6.7298 6.0367 1.7627
2/3 4.7012 0.9600 0.1284 31.2080 26.9331 6.7347 6.0199 1.7557
1/3 4.3502 0.9600 0.1265 31.1930 26.8051 6.6625 5.9683 1.7374
1 3.9823 0.9683 0.1258 31.2656 26.7582 6.6732 5.9707 1.7463
2/3 3.9823 0.9659 0.1262 31.5868 26.7520 6.6672 5.9678 1.7466
1/3 3.9823 0.9633 0.1255 31.6263 26.6791 6.6596 5.9683 1.7427
0 3.9823 0.9600 0.1227 31.6205 26.4795 6.5753 5.9169 1.7163
γ � 1.0, ρ � 0.9, σ � 0.2
1 4.9723 0.9600 0.1368 30.6160 27.4283 6.9277 6.1128 1.7538
2/3 4.6250 0.9600 0.1353 30.7182 27.3726 6.9232 6.0964 1.7480
1/3 4.2757 0.9600 0.1337 30.9087 27.2600 6.8864 6.0561 1.7313
1 3.9067 0.9682 0.1312 31.1122 27.1301 6.8631 6.0117 1.7094
2/3 3.9067 0.9659 0.1316 31.0789 27.1367 6.8757 6.0217 1.7120
1/3 3.9067 0.9632 0.1319 31.0409 27.1085 6.8604 6.0116 1.7107
0 3.9067 0.9600 0.1314 31.0490 27.0449 6.8599 5.9979 1.6984
γ � 3.0, ρ � 0.9, σ � 0.2
1 4.2086 0.9600 0.1329 30.9465 27.2226 6.8689 6.0240 1.7102
2/3 3.8858 0.9600 0.1312 31.0517 27.0234 6.8564 5.9990 1.6954
1/3 3.5874 0.9600 0.1294 31.1683 26.9785 6.8371 5.9728 1.6772
1 3.3076 0.9677 0.1286 31.2709 26.9275 6.8110 5.9650 1.6777
2/3 3.3076 0.9653 0.1284 31.2674 26.9075 6.8092 5.9601 1.6727
1/3 3.3076 0.9628 0.1281 31.2681 26.8842 6.8071 5.9482 1.6616
0 3.3076 0.9600 0.1276 31.2731 26.8595 6.8018 5.9433 1.6581
γ � 1.0, ρ � 0.9, σ � 0.4
1 4.4031 0.9600 0.2292 24.8330 33.4053 8.4104 8.1016 2.3548
2/3 4.0689 0.9600 0.2294 24.8016 33.4565 8.4075 8.0989 2.3463
1/3 3.7162 0.9600 0.2296 24.8084 33.4828 8.3660 8.0940 2.3324
1 3.3252 0.9689 0.2270 25.0795 33.2413 8.3370 8.1027 2.3239
2/3 3.3252 0.9666 0.2279 24.9973 33.2493 8.3335 8.1186 2.3329
1/3 3.3252 0.9637 0.2288 24.8921 33.4464 8.3706 8.1222 2.3290
0 3.3252 0.9600 0.2294 24.7770 33.4579 8.3686 8.1350 2.3225
U.S. Economy (a) 0.51 10.3 53.6 10.7 13.5 14.1

(a)Source: Quadrini and Rı́os-Rule (1997).

β � 0.85), the presence of quasi-geometric discounting leads to the missing precau-
tionary savings effect.7 The discrepancy between the results of Laibson, Repetto,
and Tobacman (1998) and ours is explained by the fact that in their model, the interest
rate is given exogenously, whereas, in our model, it is determined endogenously. In
a general-equilibrium setup like ours, the agents’ willingness to save more (less)
drives the interest rate down (up), which, in turn, decreases (increases) the incentive
to save. This is precisely what mitigates the effect of quasi-geometric discounting
on precautionary savings.

7. The empirical findings about the importance of a precautionary savings motive are mixed. For
example, Carroll (1994), Carroll and Samwick (1997) find strong evidence of precautionary savings,
while Dynan (1993), Guiso, Jappelli, and Terlizzese (1992) report the missing precautionary savings effect.
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TABLE 3

The Aggregate Capital Stock and Precautionary Savings in the Artificial Economies

λ r (%) δ K ∆K (%) Kss PS (%)

γ � 1.0, ρ � 0.6, σ � 0.2
1 5.0530 0.9600 4.8801 �12.5176 4.7907 1.8657
2/3 4.7012 0.9600 5.0929 �8.7027 4.9956 1.9480
1/3 4.3502 0.9600 5.3209 �4.6158 5.2140 2.0492
1 3.9823 0.9683 5.5783 0 5.4960 1.4986
2/3 3.9823 0.9659 5.5783 0 5.4827 1.7435
1/3 3.9823 0.9633 5.5783 0 5.4722 1.9396
0 3.9823 0.9600 5.5783 0 5.4468 2.4148
γ � 1.0, ρ � 0.9, σ � 0.2
1 4.9723 0.9600 4.9276 �12.5339 4.7907 2.8580
2/3 4.6250 0.9600 5.1410 �8.7459 4.9956 2.9116
1/3 4.2757 0.9600 5.3714 �4.6567 5.2140 3.0183
1 3.9067 0.9682 5.6337 0 5.4886 2.6440
2/3 3.9067 0.9659 5.6337 0 5.4801 2.8046
1/3 3.9067 0.9632 5.6337 0 5.4717 2.9617
0 3.9067 0.9600 5.6337 0 5.4468 3.4317
γ � 3.0, ρ � 0.9, σ � 0.2
1 4.2086 0.9600 5.4176 �11.2889 4.7907 13.0866
2/3 3.8858 0.9600 5.6492 �7.4966 4.9956 13.0835
1/3 3.5874 0.9600 5.8782 �3.7475 5.2140 12.7388
1 3.3076 0.9677 6.1070 0 5.4421 12.2188
2/3 3.3076 0.9653 6.1070 0 5.4508 12.0398
1/3 3.3076 0.9628 6.1070 0 5.4524 12.0063
0 3.3076 0.9600 6.1070 0 5.4468 12.1214
γ � 1.0, ρ � 0.9, σ � 0.4
1 4.4031 0.9600 5.2855 �13.2418 4.7907 10.3282
2/3 4.0689 0.9600 5.5159 �9.4594 4.9956 10.4161
1/3 3.7162 0.9600 5.7775 �5.1647 5.2140 10.8074
1 3.3252 0.9689 6.0922 0 5.5574 9.6226
2/3 3.3252 0.9666 6.0922 0 5.5401 9.9660
1/3 3.3252 0.9637 6.0922 0 5.5081 10.6040
0 3.3252 0.9600 6.0922 0 5.4468 11.8488

Notes: Statistic ∆K is the percentage difference between the capital stock in a given row, K, and the one in the row λ � 0 of the same
panel, K(λ � 0), i.e., ∆K � (K � K(λ � 0))/K(λ � 0) × 100%. Precautionary savings, PS (%), are the percentage difference between
the capital stock in the stochastic model, K, and the one in the deterministic model, Kss, i.e., PS � (K � Kss)/Kss × 100%.

3. CONCLUDING REMARKS

The standard one-sector growth model, with a large number of agents who are
subject to uninsured idiosyncratic shocks, predicts substantially less wealth
inequality than what is observed in the data. One way of generating more skewness in
the distribution of wealth is to assume that agents differ in patience (discount factors)
(e.g., Krusell and Smith, 1995, 1998, Carroll, 2000). In the paper, we argue that
the introduction of quasi-geometric discounting can have the same effect on the
equilibrium as postulating heterogeneity in the discount factors. This is because
the effective discount factor becomes an endogenous state-dependent variable. In
particular, if agents are short-run impatient, then the effective discount factor
increases in wealth, which accentuates the differences between the saving rates of
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rich and poor agents. The consequence is that the model with quasi-geometric
short-run impatient agents produces a larger dispersion of wealth than does the
standard geometric-discounting setup. We evaluate the effects associated with quasi-
geometric discounting in a calibrated version of the model. We find that such effects
are quantitatively significant but not sufficiently so for the model to be able to
reproduce the true degree of inequality in wealth or income as observed in the data.

APPENDICES

Appendix A contains the proof to Lemma 1. Appendix B presents a description
of the computational algorithm.

APPENDIX A

Proof to Lemma 1: Denote u(ct) � u((1 � r)at � wst � at�1) ≡ u(at,at�1).
We first prove that the asset function, A(at, st), is strictly increasing in at. For

any two levels of current wealth a1
t and a2

t and the corresponding next period’s
wealth a1

t�1 � A(a1
t , st) and a2

t�1 � A(a2
t , st), we have

u(a1
t ,a

1
t�1) � βδEt[V(a1

t�1,st�1)] � u(a1
t ,a

2
t�1) � βδEt[V(a2

t�1,st�1)]

u(a2
t ,a

2
t�1) � βδEt[V(a2

t�1,st�1)] � u(a2
t ,a

1
t�1) � βδEt[V(a1

t�1,st�1)] .

On adding up these equations and rearranging the terms, we obtain

u(a1
t ,a

1
t�1) � u(a1

t ,a
2
t�1) � u(a2

t ,a
1
t�1) � u(a2

t ,a
2
t�1) .

The strict concavity of the utility function implies that if a1
t � a2

t , then
a1

t�1 � a2
t�1, i.e., that A(at, st) is strictly increasing in at.

In order to prove that the consumption function, C(at, st), is strictly increasing
in at, we use the results that the optimal value function W(at, st) is strictly increasing and
strictly concave in at.

The fact that W is strictly increasing in at follows from the assumption of the
strictly increasing utility function, u, and by the definition of

W(at,st) � max
at�1

{u((1 � r)at � wst � at�1) � βδEt[V(at�1, st�1)]} .

The strict concavity of W can be shown as follows: fix a sequence of realizations
for shocks (st, st�1,…) � S. Consider a1

t and a2
t such that a1

t � a2
t . By using the asset

function, A(at, st), iteratively, we find the corresponding optimal sequences for assets
(a1

t , a1
t�1,…) � A and (a2

t , a2
t�1, …) � A. The fact that A(at, st) is strictly increasing

in at implies that a1
τ � a2

τ for all τ ≥ t.
Consider the sequence (va1

t � (1 � v)a2
t ,va1

t�1 � (1 � v)a2
t�1,…) � A, where

v � [0, 1]. The strict concavity of W follows from the strict concavity of the utility
function, u
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W(va1
t � (1 � v)a2

t ,st) � u(va1
t � (1 � v)a2

t ,va1
t�1 � (1 � v)a2

t�1)

� Et �
∞

τ � t
βδτ�1�tu(va1

τ�1 � (1 � v)a2
τ�1,va1

τ�2

� (1 � v)a2
τ�2) �

� v[u(a1
t ,a

1
t�1) � Et �

∞

τ � t
βδτ�1�tu(a1

τ�1,a
1
τ�2)]

� (1 � v)[u(a2
t ,a

2
t�1) � Et�

∞

τ � t
βδτ�1�tu(a2

τ�1,a
2
τ�2)]

� vW(a1
t ,st) � (1 � v)W(a2

t ,st) .

To complete the proof, we find the derivative of W with respect to assets from
Equations (4)–(6):

Wa(at,st) � u′(C(at,st))(1 � r) .

The fact that W is strictly increasing and strictly concave in at implies that
C(at, st) is strictly increasing in at. ||

APPENDIX B

In our economy, each agent solves the problem (4)–(7), which is, in effect, a
variant of the problem with an occasionally binding inequality constraint studied
in Christiano and Fisher (2000). Let us rewrite the Euler equation (8) as

u′(C(a,s)) � h(a,s) � δE{u′(C(a′,s′))[1 � r � (1 � β)Ca(a′,s′)]} , (B1)

where h(a, s) is the Lagrange multiplier associated with the borrowing constraint
(7). The corresponding set of Kuhn-Tucker conditions is given by

h(a, s) ≥ 0 , (B2)

A(a, s) � b ≥ 0, h(a, s) (A(a,s) � b) � 0 . (B3)

The solution to the individual problem is defined as a set of time-invariant
functions C(a, s), A(a, s), and h(a, s) satisfying the Euler equation (B1), the
budget constraint (6) and the Kuhn-Tucker conditions (B2) and (B3).

Our solution method is similar to the parameterized expectations algorithm used
in Den Haan and Marcet (1990) and Christiano and Fisher (2000), however, unlike
those papers, we parameterize the asset function and not the expectation term
in the Euler equation. We compute the solution on a grid of prespecified points. We
approximate the autoregressive process for the shocks by a seven-state Markov
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chain, as in Aiyagari (1994). For each state s � {s1, …, s7}, we parametrize the
asset demand by a function of the agent’s current asset holdings.8 The grid for asset
holdings consists of 100 equally spaced points in the range [amin, amax], where
amin ≡ b � 0 and amax is the maximum sustainable capital stock (i.e., the solution
to F(a, 1) � da). Our choice of the value of amax ensures that the upper bound is
never reached in equilibrium. To evaluate the asset function outside the grid, we
use cubic polynomial interpolation.

Under the assumption of the CRRA momentary utility function (14), the Euler
equation (B1) and the budget constraint (6), combined together, yield

a′ � (1 � r)a � ws � (B4)

�{h(a,s) � δ �
s�{s1,…,s7}

(1 � r � (1 � β)Ca(A(a,s),s′))Prob(s′|s)
(A(a,s)(1 � r) � ws′ � A(A(a,s),s′))γ }

�1�γ

.

Consequently, we implement the following iterative procedure:

• Step 1. Fix some asset function, A(a, s), on the grid and compute the correspond-
ing consumption function, C(a, s), from the budget constraint (6).

• Step 2. Use the decision rules to calculate the right side of Equation (B4)
in each point on the grid by setting the Lagrange multiplier equal to zero,
h(a, s) � 0 for all a, s. The left side of Equation (B4) will be the new asset
function, Ã(a, s). For each point, such that Ã(a, s) does not belong to [amin,
amax], set Ã(a, s) at the corresponding boundary value.

• Step 3. Compute the asset function for next iteration A
≈(a, s) by using the

updating:

A
≈(a,s) � ηÃ(a,s) � (1 � η)A(a,s), η � (0,1].

• Iterate on Steps 1–3 until A
≈(a, s) � A(a, s) with a given precision.

Note that by construction, the obtained solution satisfies the Euler equation (B1),
the budget constraint (6), and the Kuhn-Tucker conditions in Equation (B3). We
are left to check that our solution satisfies the remaining Kuhn–Tucker condition
(B2), i.e., that the Lagrange multiplier is nonnegative whenever the borrowing
constraint (7) binds. Notice that under γ � 0, the term {h(a, s) � …}�1/γ in Equation
(B4) is decreasing in the value of h(a, s). Thus, when the unconstrained solution, which
we obtained under h(a, s) � 0, violates the borrowing constraint (7), so that we set
the asset holdings in the left side of Equation (B4) at the borrowing limit, we should
increase the Lagrange multiplier in the right side of Equation (B4) in order to

8. The borrowing restriction on assets used in our paper, a′ ≥ 0, is not equivalent to the one in
Aiyagari (1994). In the latter paper, the restriction is imposed on total resources. These are restricted
to being no lower than the wage corresponding to an interest rate equal to the time preference rate (the
highest possible interest rate under β � 1). Such restriction on the total resources would not be appropriate if
discounting is quasi-geometric, β ≠ 1, as the equilibrium interest rate can be either higher and or lower
than the time preference rate.
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preserve the equality sign. Hence, our method ensures that the Lagrange multiplier
is always nonnegative.

In the stochastic version of the model, we compute the interest rate corresponding
to a given asset function, A(a, s), by calculating the stationary probability distribution
of shocks and assets, as described in Rı́os-Rull (1999):

Prob(a′,s′) � �
s�{s1,…,s7}

Prob(A�1(a′, s),s) · Prob(s′|s) ,

where A�1 (a′, s) � {a, a′ � A(a, s)} is the inverse of the asset function. In the
deterministic case, we compute the interest rate corresponding to a given asset
function, A(a, 1), by solving for a capital stock satisfying a fixed-point property
A(a*, 1) � a*.

Finally, in order to solve for the equilibrium interest rate, r, in the model with
fixed discount factor, and to solve for the equilibrium discount factor, δ, in the model
with fixed interest rate, we use the bisection method, described in Aiyagari (1994).
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