
A Cluster-Grid Algorithm: Solving Problems

With High Dimensionality∗

Kenneth L. Judd, Lilia Maliar and Serguei Maliar

August 11, 2011

Abstract

We develop a cluster-grid algorithm (CGA) that solves dynamic

economic models on their ergodic sets and is tractable in problems

with high dimensionality (hundreds of state variables) on a desktop

computer. The key new feature is the use of methods from cluster

analysis to approximate an ergodic set. CGA guesses a solution, sim-

ulates the model, partitions the simulated data into clusters and uses

the centers of the clusters as a grid for solving the model. Thus, CGA

avoids costs of finding the solution in areas of the state space that are

never visited in equilibrium. In one example, we use CGA to solve a

large-scale new Keynesian model that includes a Taylor rule with a

zero lower bound on nominal interest rates.

  : C61, C63, C68, E31, E52

  : ergodic set; clusters; large-scale economy; new Key-

nesian model; ZLB; projection method; numerical method; stochastic

simulation

∗This paper is a substantially revised version of an earlier version that circulated as
NBER working paper 15965. We are indebted to the editor and three anonymous referees

for many useful comments and suggestions, and in particular, for a suggestion to analyze

a new Keynesian model. Errors are ours. Lilia Maliar and Serguei Maliar acknowledge

support from the Hoover Institution at Stanford University, Ivie, the Ministerio de Ciencia

e Innovación and FEDER funds under the project SEJ-2007-62656 and the Generalitat

Valenciana under the grants BEST/2011/283 and BEST/2011/282, respectively.

1

1 Introduction

This paper introduces a projection method that solves dynamic economic

models on ergodic sets realized in equilibrium. The key new feature is the

use of methods from cluster analysis to approximate an ergodic set. We guess

a solution, simulate the model, partition the simulated data into clusters and

use the centers of the clusters as a grid for solving the model. We call this

method a cluster-grid algorithm (CGA).

Making the solution domain endogenous to the model allows us to avoid

the cost of finding the solution in areas of the state space that are never

visited in equilibrium. The higher is the dimensionality of the problem, the

larger is the saving from focusing on the ergodic set. We complement the

cluster-grid construction with other computational techniques suitable for

high-dimensional applications, namely, low-cost monomial integration rules

and a fixed-point iteration method for finding parameters of the equilibrium

policy functions. Taken together, these techniques make CGA tractable in

problems with high dimensionality.

We first apply CGA to the usual test models, the standard neoclassical

growth models with one or multiple agents (countries), and find it to be

reliable and tractable. First, CGA delivers accuracy levels comparable to

the highest accuracy attained in the related literature: unit-free approxima-

tion errors (evaluated on a stochastic simulation of 10 000 observations) are

smaller than 10−3 to 10−8 for the polynomial approximations of degrees from
1 to 5, respectively. Second, CGA is tractable in larger problems than those

studied in the related literature; in particular, we compute global quadratic

solutions for the models with up to 80 state variables on a desktop com-

puter. Third, we identify combinations of the approximating functions and

integration rules that complement each other. There is no value in using

high-quality approximations without using high-quality integration, and vice

versa. Finally, the cost of the hierarchical clustering algorithm we use is

modest even if the dimensionality is high; for example, it takes about one

minute to construct a grid of 300 points (clusters’ centers) using a simulation

of 10 000 observations for an economy with 400 state variables.

Our second and more novel application is a new Keynesian model that

includes a Taylor rule with a zero lower bound (ZLB) on nominal interest

rates. Our model has eight state variables and is characterized by a kink

in policy functions due to the ZLB. We parameterize the model using the

estimates of Smets and Wouters (2003, 2007), and Del Negro, Schorfheide,

Smets and Wouters (2007). We compute CGA polynomial solutions of de-

grees 2 and 3, referred to as CGA2 and CGA3, respectively. The running

time of CGA is less than 25 minutes for all cases. For comparison, we also

2

compute perturbation solutions of orders 1 and 2, referred to as PER1 and

PER2, respectively. When we simulate the perturbation solutions, we set the

nominal interest rate to the maximum of zero and the interest rate implied

by the perturbation solution, as is commonly done in the literature.

We find that the importance of the ZLB depends on the target inflation

rate. The ZLB is quantitatively important in the economy with 0% (net)

target inflation (the ZLB binds in 8% of cases) but not in the economy with

5.98% target inflation rate (the ZLB binds in just 013% of cases). We find

that the perturbation method is unreliable. PER1 is highly inaccurate — the

approximation errors can be as large as 17%. PER2 has the maximum error

that ranges from 2% to 9% depending on the parameterization. The errors

increase with the target inflation rate (even if the ZLB is not imposed) and

are particularly large when the ZLB binds. In contrast, the accuracy of CGA

solutions is not significantly affected by the target inflation rate and ZLB. In

all experiments considered, CGA2 and CGA3 produce the maximum errors

of less than 2% and 1%, respectively. The difference in accuracy between the

CGA and perturbation methods is economically important. In particular, the

perturbation method significantly understates the duration of ZLB episodes.

The CGA method is related to three classes of methods in the literature.1

First, CGA is similar to stochastic simulation methods of Fair and Tay-

lor (1984), Den Haan and Marcet (1990), Rust (1996), Pakes and McGuire

(2001), Maliar and Maliar (2005), and Judd, Maliar and Maliar (2011) in

that it computes a solution on the ergodic set. The key difference between

CGA and those methods is that we use a cluster-grid representation of the

ergodic set, which is more efficient than a set of simulated points containing

many redundant closely located points.

Second, CGA is similar to projection methods of Judd (1992) and Krueger

and Kubler (2004) in that it computes a solution on a grid of points, how-

ever, in CGA, this grid is iteratively adapted to approximate the ergodic set,

whereas the previous projection methods use only one fixed grid of preselected

points. At the solution, CGA will place its grid points on the ergodic-set do-

main, which is typically much smaller than the hypercube domains examined

by the above methods (the size of a hypercube grows exponentially with the

dimensionality of the state space).2 We perform experiments that compare

1For reviews of methods for solving dynamic economic models, see Taylor and Uhlig

(1990), Gaspar and Judd (1997), Judd (1998), Marimon and Scott (1999), Santos (1999),

Christiano and Fisher (2000), Aruoba, Fernández-Villaverde and Rubio-Ramírez (2006),

Den Haan (2010), and Kollmann, Maliar, Malin and Pichler (2011).
2The key difference between the methods of Judd (1992) and Kubler and Krueger (2004)

is that the former uses a tensor-product grid within a hypercube, while the latter relies on

a (non-product) Smolyak sparse grid with a smaller set of points within the hypercube.

3

the solutions under the cluster and hypercube grids. We find that the cluster

grid leads to more accurate solutions in the ergodic set than the Smolyak grid,

however, the Smolyak grid does better on the hypercube domain, illustrating

the trade-off between the fit inside and outside the ergodic set. We also find

that the cluster grid is autocorrecting — even if our initial guess implies a

poor approximation of the ergodic set, the cluster grid quickly converges to

the ergodic set along iterations.

Finally, CGA is similar to perturbation methods in that it can solve

problems with high dimensionality.3 However, CGA solutions are global in

the sense that they are accurate on the ergodic set, whereas perturbation

solutions are accurate in some neighborhood of the steady state, which is

typically much smaller than the ergodic set. The accuracy of perturbation

solutions decreases rapidly away from the steady state; see, e.g., Judd and

Guu (1993), Aruoba et al. (2006), and Kollmann et al. (2011) for assessments

of accuracy of perturbation methods.

CGA can be used to accurately solve small-scale models that were studied

using other solution methods. However, a comparative advantage of CGA is

its ability to solve large-scale problems that other methods find intractable

or expensive. Such problems commonly arise in macroeconomics (multiple

agents), international trade (multiple countries and goods), industrial orga-

nization (multiple firms), finance (multiple assets), climate change (multiple

countries and sectors), etc. The speed of CGA also makes it useful in es-

timation methods that solve economic models at many parameters vectors;

see Fernández-Villaverde and Rubio-Ramírez (2007) for a discussion.

The rest of the paper is as follows: In Section 2, we describe the con-

struction of our endogenous cluster grid. In Section 3, we provide a general

description of CGA for the studied class of dynamic economic models. In

Section 4, we apply the CGA algorithm to solving the standard neoclassical

growth model. In Section 5, we use CGA to solve a new Keynesian model

with the ZLB. In Section 6, we conclude.

2 Cluster grid

The objective of this paper is to develop a projection method that solves

dynamic models on the ergodic set. In this section, we construct a grid that

approximates the ergodic set and that will be used as a solution domain.

3Perturbation methods are studied in, e.g., Judd and Guu (1993), Gaspar and Judd

(1997), Collard and Juillard (2001), and Kollmann, Kim and Kim (2011).

4

2.1 An advantage of focusing on the ergodic set

Consider an example of the standard representative-agent neoclassical growth

model with a closed-form solution (see Section 3 for a description of this

model). In Figure 1a, we plot simulated series for capital and productivity

over 10 000 periods, which we use as an approximation of the ergodic set

realized in equilibrium. The ergodic set has the shape of an ellipse. We can

therefore save on cost by solving the model just on this ellipse instead of the

standard rectangular domain that encloses the ellipse.4

The savings increase rapidly with the dimensionality of the problem. Sup-

pose that the ergodic set is a hypersphere. With  state variables, the ratio

of the volume of a hypersphere to the volume of a hypercube that encloses

it is equal to

V =

⎧⎨⎩ (2)
−1
2

1·3·· for  = 1 3 5

(2)

2

2·4·· for  = 2 4 6
 (1)

For dimensions 2, 3, 4, 5, 10, 30 and 100, the ratio V is 079, 052, 031, 016,

3·10−3, 2·10−14 and 2·10−70, respectively. The ratio between the volume of a
hyperelliptic ergodic set and the enclosing hypercube is even smaller. Thus,

in high-dimensional problems, enormous cost savings are possible when we

focus on the ergodic set instead of the standard hypercube domain.

2.2 A grid approximating the ergodic set

The simplest possible finite set of points that approximates the ergodic set is

a set of points from simulations; effectively, this is the grid used by stochastic

simulation methods, see Judd, Maliar and Maliar (2011). In this paper, we

propose a more efficient grid that approximates the ergodic set: we replace a

large number of closely located simulated points with a relatively small num-

ber of "representative" points. We construct such a grid using techniques

from cluster analysis. A clustering algorithm partitions a set of observations

into disjointed subsets called clusters so that observations within each clus-

ter are more similar to one another than observations belonging to different

clusters. In Figure 1b, we show an example of a partition of the simulated

points from the previous example into 4 clusters. We then replace observa-

tions in each cluster with just one point, the cluster’s center, computed as

the average of all observations in the given cluster. In Figure 1c, we show

the corresponding centers of 4 clusters. We call the collection of the clusters’

4Having a control over the domain on which a problem is solved is particularly useful

in applications where non-ergodic-set areas are relevant for the analysis.

5

centers a cluster grid, and we use such a grid as a solution domain for our

projection method.5

2.3 Hierarchical clustering algorithm

We study a hierarchical algorithm which begins from individual objects (ob-

servations) and agglomerates them iteratively into larger objects — clusters.

Data preprocessing In the example shown in Figure 1a, the two state

variables — capital and productivity level — have different ranges of values

and are significantly correlated. Both, measurement units of variables and

correlation between variables, affect the distances between observations and,

hence, the resulting clusters. We preprocess the simulated data prior to

constructing clusters. We first orthogonalize the variables (i.e., transform

correlated variables into uncorrelated ones), and we then normalize them

(i.e., transform into a unit-invariant form).

Let  ∈ R×L be a set of simulated data. Let  be an element of 
in the th row, denoted by , and th column, denoted by . We refer to

 ≡
¡
1   

L


¢
as an observation  (there are  observations), and we refer

to  ≡ ¡1  ¢> as a variable  (there are L variables). Thus, we have
 =

¡
1  L

¢
= (1  )

>
.

To orthogonalize the data, we use a principal components (PCs) trans-

formation. Let the variables
¡
1  L

¢
be normalized to zero mean and

unit variance. Consider the singular value decomposition of , defined as

 =  >, where  ∈ R×L and  ∈ RL×L are orthogonal matrices, and
 ∈ RL×L is a diagonal matrix with diagonal entries 1 ≥ 2 ≥  ≥ L ≥ 0,
called singular values of . Perform a linear transformation of  using the

matrix of singular vectors  as follows:  ≡  , where  =
¡
1  L

¢ ∈
R×L. The variables 1  L are called principal components of , and are
orthogonal (uncorrelated),

¡


0¢>
 = 0 for any 0 6=  and

¡

¢>

 = 2 .

The sample variance of  is 2, and, thus, 
1 and L have the largest and

smallest sample variances, respectively. Figure 2a shows the directions of two

principal components for our example. In Figure 2b, we switch to the PC

directions by translating the origin and rotating the system of coordinates.

Finally, in Figure 2c, we normalize PCs to unit variance. The resulting er-

godic set will be used for constructing clusters (in our example, this set has

5Clustering techniques are used in the unsupervised classification literature to identify

natural groups in the data. Our use of clustering tools has a more limited goal: we simply

construct a set of evenly spaced points that approximates the cloud of simulated data.

6

the shape of a circle). After clusters are constructed, we return to the original

system of coordinates by using an inverse PCs transformation.

Distance between individual observations As a measure of distance

between two points (observations)  and , we use the Euclidean (or 2
norm) distance

 ( ) =

" LX
=1

¡
 − 

¢2#12
 (2)

where  ≡
¡
1   

L


¢ ∈ RL and  ≡ ¡1   L ¢ ∈ RL.
Distance between groups of observations As a measure of distance

between two groups of observations (clusters),  ≡ {1  } and  ≡
{1  }, we use Ward’s measure of distance.6 This measure shows how
much the dispersion of observations changes when the clusters  and  are

merged together compared to the case when  and  are separate clusters.

Formally, we proceed as follows:

Step 1. Consider the cluster . Compute the cluster’s center  ≡¡
1  L

¢
as a simple average of the observations,  ≡ 1



P

=1 

 .

Step 2. For each  ∈ , compute the distance (2) to its own cluster’s

center by  ( ).

Step 3. Compute the dispersion of observations in cluster  as a squared

sum of distances to its own center, i.e.,  () ≡
P

=1

[ ( )]
2
.

Repeat Steps 1-3 for the cluster and for the cluster obtained by merging

the clusters  and  into a single cluster  ∪.
Ward’s measure of distance between  and  is defined as

 () =  ( ∪)− [ () +  ()]  (3)

This measure is known to lead to spherical clusters of a similar size, see, e.g.,

Everitt et al. (2011, p. 79). This is in line with our goal of constructing a

uniformly spaced grid that covers the ergodic set. In our experiments, Ward’s

measure yielded somewhat more accurate solutions than the other measures

of distance considered, such as the nearest neighbor, furthest neighbor, group

average; see, e.g., Romesburg (1984) and Everitt et al. (2011) for reviews.

6If a measure of distance between groups of observations does not fulfill the triangular

inequality, it is not a distance in the conventional sense and is referred to in the literature

as dissimilarity.

7

Steps of the agglomerative hierarchical clustering algorithm The

zero-order partition P(0) is the set of singletons — each observation represents
a cluster.

Initialization. Choose measures of distance between observations and

clusters. Choose  , the number of clusters to be created.

Step 1. On iteration , compute all pairwise distances between the clusters

in the partition P().
Step 2. Merge a pair of clusters with the smallest distance into a new

cluster. The resulting partition is P(+1).
Iterate on Steps 1 and 2. Stop when the number of clusters in the partition

is . (In the online Appendix A, we illustrate the operation of this algorithm

by way of example.)

In Figures 2d, 2e and 2f, we draw, respectively, 4, 10 and 100 clusters on

the normalized PCs shown in Figure 2c (the clusters in Figure 1c are obtained

from those in Figure 2d). We draw attention to two features of the cluster

grid. First, the constructed clusters provide a relatively uniform coverage of

the ergodic set. Second, clustering algorithms can identify disjointed areas of

the state space and hence, can cover ergodic sets of irregular shapes including

those composed of multiple recurrent classes (for example, in the upper part

of Figure 2f, we observe a cluster which is considerably separated from the

rest of the clusters).

3 General description of the CGA algorithm

In this section, we outline the studied class of problems and provide a general

description of the CGA algorithm.

3.1 The studied class of problems

We study a class of dynamic economic models, whose solutions are charac-

terized by the set of equilibrium conditions for  = 0 1    ∞,

 [ (   +1 +1 +1)] = 0 (4)

+1 =  ( +1)  (5)

where the initial condition (0 0) is given;  denotes the expectations op-

erator conditional on information available at ;  ∈ R is a vector of

endogenous state variables at ;  ∈ R is a vector of exogenous (random)

state variables at ;  ∈ R is a vector of non-state variables — prices, con-

sumption, labor supply, etc. — also called non-predetermined variables;  is

8

a continuously differentiable vector function; +1 ∈ R is a vector of distur-

bances whose probability distribution is given (+1 is not known at ); +1
in (5) has a unique invariant measure with finite moments; +1 is known at

, while +1 is not known at .

A solution is given by a set of policy functions +1 =  ( )  and

 =  ( ) that satisfy (4), (5) in the relevant area of the state space. We

assume that the functions and  satisfy jointly a set of regularity conditions

that ensure that the solution exists and is unique. We also assume that there

is a unique steady state. Finally, we assume that the ergodic set consists of

a unique recurrent class.

3.2 The CGA algorithm

The cluster-grid projection algorithm had two stages and proceeds as follows:

Stage 1. Compute a candidate solution.

• Initialization. Choose initial state (0 0) for simulations. Choose a
simulation length,  . Draw a sequence for shocks {}=1 . Con-
struct and fix {+1}−1=0 using +1 =  ( +1). Parameterize the

policy functions for endogenous variables with flexible functional forms

+1 =  ( ) ≈ b ( ; ) and  =  ( ) ≈ b ( ; ).7
Make an initial guess on the coefficients vectors  and .

• Step 1. (Construct the cluster grid.) Given  and , simulate the

model  periods forward. Construct clusters on the simulated series

of state variables { }=1 and compute the clusters’ centers G ≡
{ }=1 to be used as a grid for finding a solution.

• Step 2. (Solve for the policy functions on the grid G.) Substituteb ( ; ) and b ( ; ) in (4). For  = 1  , approximate

the conditional expectation by a weighted average of the integrand in

a set of  nodes

X
=1

 ·
¡
   

0
 

0
 

0


¢
= 0 (6)

where  ≡ b ( ; ), 0 ≡ b ( ; ), 0 ≡  ( ),

0 ≡ b ³ b ( ; )   ( )´; the primes on the variables mean
7Typically, we do not numerically approximate all policy functions but a minimal subset

of such functions that is sufficient for inferring all variables using analytical relations

derived from equilibrium conditions.

9

their next-period values; and  and  are the integration nodes and

weights, respectively. Find  and  that solve the system (6).8

Iterate on Steps 1 and 2 until the convergence of the cluster grid.

Stage 2. Accuracy check.

Subject the candidate solution obtained in Stage 1 to a tight accuracy

check. Construct a set of points for the state variables {  }=1 test
that represents the domain on which accuracy is tested. Evaluate the size of

approximation errors in those points using

E (  ) ≡
 testX
=1

test · £ ¡      0  0 0¢¤  (7)

where  = b (   ; ), 0 = b (   ; ), 0 = 
¡
  

test


¢
and 0 =b ³ b (   ; )   ¡  test

¢´
; and test and test are the integration nodes

and weights, respectively. Find a mean and/or maximum of (7) and judge

whether the candidate solution has an economically acceptable error. If

not, modify the choices made in Stage 1 (i.e., simulation length, number of

clusters, approximating functions, integration method) and repeat Stage 1.

4 Neoclassical stochastic growth model

In this section, we use CGA to solve the standard neoclassical stochastic

growth model. We discuss some relevant computational choices and assess

the performance of the algorithm in one- and multi-agent setups.

4.1 The model

The representative agent solves

max
{+1}=0∞

0

∞X
=0

 () (8)

s.t.  + +1 = (1− )  +  ()  (9)

ln +1 =  ln  + +1 +1 ∼ N
¡
0 2

¢
 (10)

8Different combinations of computational techniques can be used to implement this

step. In Section 4, we discuss some possible choices including those of a family of approx-

imating functions, integration method and iterative procedure for finding  and .

10

where initial condition (0 0) is given; ,  and  are, respectively, con-

sumption, capital and productivity level;  ∈ (0 1) is the discount factor;
 ∈ (0 1] is the depreciation rate of capital;  ∈ (−1 1) and  ≥ 0 are the
autocorrelation coefficient of the productivity level and standard deviation

of the productivity shock, respectively;  is a normalizing constant;  and

 are the utility and production functions, respectively; both are strictly in-

creasing, continuously differentiable and concave. The Euler equation that

corresponds to (8)—(10) is

0 () =  {0 (+1) [1−  + +1
0 (+1)]}  (11)

where 0 and  0 are the first derivatives of the utility and production func-
tions, respectively. We look for a solution to (8)—(10) in the form of capital

policy function, +1 =  ( ), that satisfies (9)—(11). Under our assump-

tions, the solution exists and is unique; see, e.g., Stockey and Lucas with

Prescott (1989, p. 392). In particular, under  () = ln (),  = 1 and

 () = , the model admits a closed-form solution +1 = 

 (this

solution was used to produce Figures 1 and 2).

4.2 Implementation of CGA

To solve the model described in Section 3, we parameterize the capital pol-

icy function with a flexible functional form,  ( ) ≈ b ( ; ), that
depends on a coefficients vector . We then rewrite the Euler equation (11)

in the following equivalent form

+1 = 

½

0 (+1)
0 ()

[1−  + +1
0 (+1)] +1

¾
 (12)

We need to compute  which makes b ( ; ) be the best possible approxi-
mation of ( ) in the relevant area of the state space given the functional

form b. The optimal capital policy function is a fixed-point solution to (12):
if we substitute  ( ) into the right side of (12) and compute conditional

expectation, we must get the same function +1 =  ( ) for all ( )

in the relevant area of the state space.

Step 1 of the CGA algorithm is as described in Section 3.2: we make

a guess on , use +1 = b ( ; ) to simulate the series { }=1 ,
construct clusters on these series, and compute the grid of clusters’ centers

G = { }=1 . Step 2 is elaborated below.
Step 2 (i). At iteration , given the current guess (), approximate the

11

conditional expectation in (12) in each point of G,

b0 ≡
X

=1

 ·
"

0
¡
0

¢
0 ()

[1−  +  exp ()
0 (0)] 

0


#
 (13)

 = (1− )  +  ()− 0 (14)

0 = (1− ) 0 +  exp () (
0
)− 00 (15)

with 0 = b ¡ ; ()¢ and 00 =
b ¡0  exp () ; ()¢; and  and

 are the integration nodes and weights, respectively.

Step 2 (ii). Run a regression with some norm k·k to get

b ≡ argmin


X
=1

°°°b0 − b ( ; )°°°  (16)

Step 2 (iii). Check for convergence and end Step 2 if

1



X
=1

¯̄̄̄
¯0 − b00

¯̄̄̄
¯   (17)

Step 2 (iv). Compute (+1) for iteration +1 using fixed-point iteration

(+1) = (1− ) () + b (18)

where  ∈ (0 1] is a damping parameter. Go to Step 2 (i).

We now provide a discussion of the steps of the above solution method.

Approximating function The approximating function b can be any

(polynomial or non-polynomial) function that is flexible enough to accurately

approximate the policy function. We restrict attention to polynomial func-

tions that are linear in the coefficients , i.e., b ( ; ) = X
=0

 ( ),

where  ≡ (0 1  )
> ∈ R+1, and { |  = 0  } is a set of basis

functions. Thus, the regression in Step 2 (ii) is linear.

Integration in Step 2 (i) The formula (13) for evaluating the conditional

expectation is consistent with a variety of numerical integration methods in-

cluding Monte Carlo and deterministic (Gaussian quadrature and monomial)

methods. We restrict attention to deterministic integration methods as they

dominate the Monte Carlo method in terms of accuracy and cost in the con-

text of the studied models; see Judd et al. (2011) for a comparison of Monte

Carlo and deterministic integration methods.

12

Approximation method in Step 2 (ii) To implement regression in Step

2 (ii), we must choose a norm for regression errors. An obvious choice is the

2 norm that leads to the ordinary least-squares (OLS) method. However, if

regressors are either collinear or poorly scaled, a least-squares (LS) problem

is ill-conditioned, and the OLS method is numerically unstable. Judd, Maliar

and Maliar (2011) describe a variety of approximation methods suitable for

dealing with ill-conditioned problems. Such methods include least-squares

methods using singular value decomposition and QR factorization, Tikhonov

regularization, least-absolute deviations method, and principal component

regression method.

Convergence criteria in Step 2 (iii) We focus on the convergence of

the values of the policy function on the grid, rather than on the convergence

of the coefficients of the policy function. The difference in the values of the

capital policy function has an economic meaning (it informs us about the size

of the error in the capital choice), while the difference in the coefficients has

no economic meaning and depends on a specific choice of basis functions (for

example, coefficients of Chebyshev polynomials are not equal to coefficients

of ordinary polynomials). In all our experiments, the convergence of the

coefficients of policy functions implied the convergence of the values on the

grid and vice versa.

Procedure for updating the coefficients in Step 2 (iv) Fixed-point

iteration is a derivative-free method, unlike time iteration and quasi-Newton

methods, which are two other iterative schemes for finding fixed-point coef-

ficients; see Judd (1998, pp. 553-558 and 103-119, respectively). To attain

numerical stability, fixed-point iteration requires setting the damping para-

meter  to a small value. As a result, fixed-point iteration might need a

larger number of iterations for convergence than do time-iteration and quasi-

Newton methods, however, it might still have a smaller overall cost because

of a much smaller per-iteration cost. Fixed-point iteration is particularly well

suited for high-dimensional problems in which the cost of finding derivatives

(Jacobian and Hessian) is prohibitive. In all our experiments, fixed-point

iteration was numerically stable under appropriate damping.

4.3 Numerical experiments

In this section, we investigate the performance of CGA in the context of the

representative-agent model.

13

4.3.1 Implementation details

Parameters, computational techniques, software and hardware We

parameterize the model (8)—(10) by assuming  () =

1−
 −1
1− with  ∈©

1
5
 1 5

ª
and  () =  with  = 036. We set  = 099,  = 0025,

 = 095 and  = 001. We normalize the steady state of capital to one by

assuming  =
1−(1−)


. The simulation length is  = 10 000, the damp-

ing parameter in (18) is  = 01, and the convergence parameter in (17)

is  = 10−11. We parameterize the capital policy function using complete
ordinary polynomials of degrees up to 5. We use a 10-node Gauss-Hermite

quadrature rule in the formula (13) for approximating the conditional ex-

pectation; see Judd (1998, p. 261). We compute the regression coefficients

using an LS method based on QR factorization. We construct a cluster grid

using the agglomerative hierarchical algorithm with Ward’s distance. We

use MATLAB software, version 7.6.0.324 (R2008a) and a desktop computer

ASUS with Intel(R) Core(TM)2 Quad CPU Q9400 (2.66 GHz), RAM 4MB.

Accuracy check We generate a new random draw of 10 200 points and

discard the first 200 points. At each point (  ), we compute a Euler-

equation error in a unit-free form by using a 10-node Gauss-Hermite quadra-

ture rule, E (  ) ≡
 testX
=1

test ·
∙

0(0)
0()

£
1−  +  exp

¡
test

¢
 0 (0)

¤¸−1,
where  and 0 are defined similarly to  and 0 in (14) and (15), re-

spectively. We report the mean and maximum of absolute value of E (  ).

Initial guess The ergodic set is unknown before the model is solved. We

initialize CGA using (arbitrary) initial guess +1 = 095 + 005 (this

guess matches the steady state level of capital equal to one). Given this

initial guess, we simulate the model, construct the clusters and compute

a first-degree polynomial solution on the constructed grid of the clusters’

centers; we repeat this procedure one more time using the obtained solution

as an initial guess. To compute polynomial approximations of degrees higher

than 1, we use the cluster grid derived from the polynomial approximation

of degree 1, and we use the coefficients vector obtained from the polynomial

approximation of the previous degree.

4.3.2 Accuracy and speed of the benchmark CGA algorithm

In Table 1, we provide the results under the grid of  = 25 points. The

accuracy of solutions delivered by CGA is comparable to the highest accuracy

14

attained in the related literature. Approximation errors decrease with each

polynomial degree by one or more orders of magnitude. For the fifth-degree

polynomials, the largest unit-free error in our least accurate solution is still

less than 10−6 (see the experiment with high degree of risk aversion  = 5).

Most of the cost of CGA comes from the clustering routine (the time for

constructing clusters twice is included in the total time for computing the

polynomial solution of degree 1 and is about 18 seconds). Computing high-

degree polynomial solutions is relatively fast (a few seconds) for a given

grid. We performed sensitivity experiments in which we varied the number

of clusters, recomputed the cluster grid iteratively a large number of times

and modified the concept of distance between clusters. The results were

robust to all modifications considered. We also tried to vary the number of

nodes in the Gauss-Hermite quadrature rule, and we found that even the

2-node rule leads to essentially the same accuracy levels as the 10-node rule

(except the fourth and fifth-degree polynomials under which the accuracy

was somewhat lower). This result is in line with the finding of Judd (1992)

that in the context of the standard growth model, even few quadrature nodes

lead to very accurate solutions.

4.3.3 Overidentification versus collocation

To compute the results in Table 1, we use a grid that overidentifies the poly-

nomial coefficients, namely, we use the same grid of 25 points for polynomial

degrees from 1 to 5 (the number of polynomial coefficients ranges from 3 to

21). An alternative technique used in the related literature is collocation,

when the number of grid points is the same as the number of polynomial

terms, and the polynomial coefficients are identified exactly. In Table 2, we

use collocation to recompute the solutions reported in Table 1.

The comparison of the results in Tables 1 and 2 indicates that collocation

is not a good choice in the context of CGA. First, computing a separate clus-

ter grid for each polynomial degree increases the cost. Second, our overidenti-

fying grid generally leads to more accurate solutions than the collocation grid.

Finally, collocation is less numerically stable than overidentification (CGA

with collocation failed to converge under  = 5 for the polynomial degrees

4 and 5). Collocation is designed for approximating smooth functions on

hypercube domains using orthogonal polynomials and becomes fragile when

we deviate from this case; see Judd (1992) for a discussion.

15

4.3.4 Autocorrection of the cluster grid

Suppose our initial guess on the ergodic set is poor. To check whether the

cluster grid is autocorrecting, we perform the following experiment. We

scaled up the time-series solution for capital by a factor of 10, and used the

resulting series for constructing the first grid of clusters (thus, the capital

values in this grid are spread around 10 instead of 1). We solved the model

on this grid and use the solution to construct the second grid of clusters. We

repeated this procedure two more times. Figure 3 shows that the cluster grid

converges rapidly to the ergodic set.

We tried out various initial guesses away from the ergodic set, and we

observed autocorrection of the cluster grid in all the experiments performed.

Furthermore, the cluster grid approach was autocorrecting in our challeng-

ing applications such as a multi-agent neoclassical growth model and a new

Keynesian model with a zero lower bound on nominal interest rates. Note

that the property of autocorrection of the grid is a distinctive feature of

CGA. Conventional projection methods operate on fixed domains and have

no built-in mechanism for correcting their domains if the choices of their

domains are inadequate.

In our analysis, the cluster grid was always autocorrecting, however, there

is no guarantee that this will be always the case. It might happen that in the

presence of strong non-linearities and kinks in policy functions, we are stuck

in a computational self-confirming equilibrium.9 Furthermore, some models

(for example, dynamic games) might have ergodic sets consisting of multiple

recurrent classes. In those cases, we must train the algorithm to focus on

the relevant recurrent class by imposing appropriate equilibrium restrictions

such as monotonicity, concavity, continuity, steady state, etc. In addition,

we must check the accuracy of solutions not only on a stochastic simulation

but also on deterministic sets of points representing different areas of the

state space; see Juillard and Villemot (2011) for examples of accuracy tests

on deterministic sets of points.

4.3.5 Cluster grid versus Smolyak grid

Krueger and Kubler (2004), and Malin, Krueger and Kubler (2011) develop a

projection method that relies on a Smolyak space grid. Like conventional pro-

jection methods, Smolyak’s method operates on a hypercube domain (and,

hence, the size of the domain grows exponentially with the dimensionality of

9An interesting case to explore would be a model with occasionally binding borrowing

constraints. Christiano and Fisher (2000) show how projection methods could be used to

solve such a model.

16

the state space). However, it uses a specific discretization of the hypercube

domain which yields a sparse grid of carefully selected points (the number of

points in the Smolyak grid grows only polynomially with the dimensionality

of the state space).

We now compare the accuracy of solutions under the Smolyak and cluster

grids.10 We construct the Smolyak grid as described in Malin et al. (2011),

namely, we use the interval for capital [08 12], and we use the interval for

productivity
h
exp

³
− 08
1−

´
 exp

³
08
1−

´i
. The Smolyak grid has 13 points, so

we use the same number of points in the cluster grid; the two grids are shown

in Figures 4a and 4b, respectively. With 13 grid points, we can identify the

coefficients in ordinary polynomials up to degree 3. In this case, we evaluate

the accuracy of solutions not only on a stochastic simulation but also on a

set of 100 × 100 points which are uniformly spaced on the same domain as
the one used by Smolyak’s method for finding a solution. The results are

shown in Table 3.

In the test on a stochastic simulation, the cluster grid leads to consider-

ably more accurate solutions than the Smolyak grid. This is because under

the cluster grid, we fit a polynomial directly in the ergodic set, while under

the Smolyak grid, we fit a polynomial in a larger rectangular domain and

face a trade-off between the fit inside and outside the ergodic set. In the

test on the rectangular domain, however, the Smolyak grid produces signifi-

cantly smaller maximum errors than the cluster grid. This is because CGA

is designed to be accurate in the ergodic set and its accuracy decreases more

rapidly away from the ergodic set than the accuracy of methods operating

on larger hypercube domains. We repeated this experiment by varying the

intervals for capital and productivity in the Smolyak grid, and we had the

same regularities. These regularities are also observed in high-dimensional

applications.11

10Also, the Smolyak and CGA methods differ in the number of grid points (colloca-

tion versus overidentification), the polynomial family (a subset of complete Chebyshev

polynomials versus complete ordinary polynomials), the interpolation procedure (Smolyak

interpolation versus polynomial interpolation) and the procedure for finding fixed-point

coefficients (time iteration versus fixed-point iteration). These differences are important,

for example, time iteration is more expensive than fixed-point iteration, the collocation is

less robust and stable than overidentification.
11Kollmann et al. (2011) compare the accuracy of solutions produced by several solution

methods, including the CGA algorithm introduced in the present paper and Smolyak’s

algorithm of Krueger and Kubler (2004) (see Maliar, Maliar and Judd, 2011, and Malin

et al., 2011, for implementation details of the respective methods in the context of those

models). Their comparison is performed using a collection of 30 real-business cycle models

with up to 10 heterogeneous agents. Their findings are the same as ours: on the ergodic

set and near the steady state, the CGA solutions are more accurate than the Smolyak

17

In some problems (such as, e.g., dynamic games), in order to have an

accurate solution in the ergodic set, we must have a sufficiently accurate

solution at the boundaries of the ergodic set (points that are not visited in

equilibrium but which can communicate with points that are visited). In

particular, different sets of perceptions on what occurs outside of a recurrent

class can support different recurrent classes as "equilibria". We find that the

accuracy range of CGA can be expanded by using the following technique:

we increase the variance of exogenous shocks when simulating series for con-

structing clusters. This fattens up the cloud of simulated data and expands

the solution domain. In our experiments, this technique increased accuracy

outside the ergodic set at a cost of a moderate accuracy loss inside the ergodic

set. The "fattened-up ergodic set" is still far smaller in large-scale problems

than the conventional hypercube domain.

4.4 CGA in problems with high dimensionality

We now explore the tractability of CGA in problems with high dimension-

ality. We extend the one-agent model (8)—(10) to include multiple agents.

This is a simple way to expand the size of the problem and to have a con-

trol over its dimensionality. There are  agents, interpreted as countries,

which differ in initial capital endowment and productivity level. The coun-

tries’ productivity levels are affected by both country-specific and worldwide

shocks. We study the social planner’s problem. We do not make use of the

symmetric structure of the economy and approximate the planner’s solution

in the form of  capital policy functions, each of which depends on 2 state

variables ( capital stocks and  productivity levels). For each country,

we use essentially the same computational procedure as that used in the

representative-agent case. For a description of the multicountry model and

details of the computational procedure, see the online Appendix B.

Determinants of cost in problems with high dimensionality The

cost of finding numerical solutions increases with the dimensionality of the

problem for various reasons. There are more equations to solve and more

policy functions to approximate. The number of terms in an approximating

polynomial function increases and we need to increase the number of grid

points to identify the polynomial coefficients. The number of nodes in inte-

gration formulas increases. Finally, operating with large data sets can slow

down computations or can lead to a memory congestion. If a solution method

relies on product-rule constructions (of grids, integration nodes, derivatives,

solutions whereas the situation reverses for large deviations from the steady state.

18

etc.), the cost increases exponentially (curse of dimensionality) as is in the

case of conventional projection methods such as a Galerkin method of Judd

(1992). Below, we show that the cost of CGA grows at a relatively moderate

rate.

Cost of constructing clusters We first assess how the cost of construct-

ing clusters depends on the dimensionality of the problem. In Table 4, we

report the time necessary for constructing  = 3, 30, 300 clusters under

three simulation lengths  = 1000, 3000, 10 000 with the number of coun-

tries ranging from  = 1 to  = 200. The cost of constructing clusters

depends primarily on  . An increase in  by one order of magnitude (from

1000 to 10 000) increases the clustering time by about two orders of magni-

tude. In turn, an increase in  by two orders of magnitude (from 1 to 100)

only triplicates the clustering time. In the most expensive case,  = 200

and  = 10 000, the clustering time is around one minute. Given that clus-

ters must be constructed just few times, we do not explore possibilities of

reducing the cost of constructing clusters.12

Accuracy and cost of solutions We solve the model with  ranging

from 2 to 200. The results about the accuracy and cost of solutions are

provided in Table 5. We consider four alternative integration rules such

as the Gauss-Hermite product rule with 2 nodes, denoted by  (2), the

monomial rule with 22+1 nodes, denoted by 2, the monomial rule with

2 nodes, denoted by 1, (see Judd, 1998, formulas 7.5.9—7.5.11), and the

Gauss-Hermite rule with one node, denoted by  (1).

The accuracy of solutions here is similar to that we had for the one-

agent model. For the polynomial approximations of degrees 1, 2 and 3, the

errors are typically smaller than 01%, 001% and 0001%, respectively. A

specific integration method used plays only a minor role in the accuracy of

solutions. For the polynomial approximation of degree 1, all the integration

methods considered lead to virtually the same accuracy. For the polynomial

approximation of degree 2,  (2), 2 and 1 lead to the approximation

errors which are identical up to the fourth digit, while  (1) yields the errors

which are 5 − 10% larger. These regularities are robust to variations in the

model’s parameters such as the volatility and persistence of shocks and the

12A -means clustering algorithm is a cheaper alternative to the hierarchical clustering

algorithm used in our analysis. -means clustering starts with  random clusters, and

then moves observations between those clusters (with the aim of minimizing variability

within clusters and maximizing variability between clusters). A drawback of -means

clustering is that it can give different clusters with each run.

19

degrees of risk aversion (see Table 8 in Judd, Maliar and Maliar, 2010, a

working-paper version of the present paper).

The running time ranges from 30 seconds to 24 hours depending on the

number of countries, the polynomial degree and the integration technique

used. In particular, CGA was able to compute quadratic solutions to the

models with up to 40 countries and linear solutions to the models with up to

200 countries when using inexpensive (monomial and one-node quadrature)

integration rules. Thus, CGA was able to solve much larger problems than

those studied in the related literature. A proper coordination between the

choices of approximating function and integration technique is needed to

make CGA cost-efficient. An example of such a coordination is a combination

of a flexible second-degree polynomial with a cheap one-node Gauss-Hermite

quadrature rule (as opposed to an inefficient combination of a rigid first-

degree polynomial with expensive product integration formulas).

5 A new Keynesian model with the ZLB

In this section, we use CGA to solve a stylized new Keynesian model with

Calvo-type price frictions and a Taylor (1993) rule. Our setup builds on

the models considered in Christiano, Eichenbaum and Evans (2005), Smets

and Wouters (2003, 2007), Del Negro et al. (2007). This literature estimates

their models using the data on actual economies, while we use their parameter

estimates and compute solutions numerically. We solve two versions of the

model, one in which we allow for negative nominal interest rates and the

other in which we impose a zero lower bound (ZLB) on nominal interest

rates. Our setup has eight state variables. It is large scale in the sense that

it is expensive to solve or even intractable under conventional global solution

methods that rely on product rules.

The literature that finds numerical solutions to new Keynesian models

typically relies on local perturbation solution methods or applies expen-

sive global solution methods to low-dimensional problems. As for perturba-

tion, most papers compute linear approximations, and some papers compute

quadratic approximations (e.g., Kollmann, 2002, and Schmitt-Grohé and

Uribe, 2007) or cubic approximations (e.g., Rudebusch and Swanson, 2008).

Few papers use global solution methods; see, e.g., Adam and Billi (2006), An-

derson, Kim and Yun (2010), and Adjemian and Juillard (2011). The above

papers have at most 4 state variables and employ simplifying assumptions.13

13In particular, Adam and Billi (2006) linearize all the first-order conditions except for

the non-negativity constraint for nominal interest rates, and Adjemian and Juillard (2011)

assume perfect foresight to implement an extended path method of Fair and Taylor (1984).

20

Finally, Fernández-Villaverde, Posch and Rubio-Ramírez (2011) formulate

and study a continuous-time version of the new Keynesian model.

5.1 The set up

The economy is populated by households, final-good firms, intermediate-good

firms, monetary authority and government; see Galí (2008, Chapter 3) for a

detailed description of the baseline new Keynesian model.

Households The representative household solves

max
{}=0∞

0

∞X
=0

 exp
¡

¢ ∙1−

 − 1
1− 

− exp ¡¢ 1+ − 1
1 + 

¸
(19)

s.t.  +


exp
¡


¢


+  = −1 + +Π (20)

where the initial condition
¡
0 0 0 0

¢
is given; , , and  are

consumption, labor and nominal bond holdings, respectively; ,  and 

are the commodity price, nominal wage and (gross) nominal interest rate,

respectively;  and  are exogenous preference shocks to the overall

momentary utility and disutility of labor, respectively;  is an exogenous

premium in the return to bonds;  is lump-sum taxes; Π is the profit of

intermediate-good firms;  ∈ (0 1) is the discount factor;   0 and   0

are the utility-function parameters. The processes for shocks are

+1 =  + +1 +1 ∼ N
¡
0 2

¢
 (21)

+1 =  + +1 +1 ∼ N
¡
0 2

¢
 (22)

+1 =  + +1 +1 ∼ N
¡
0 2

¢
 (23)

where , ,  are the autocorrelation coefficients, and , ,  are the

standard deviations of disturbances.

Final-good firms Perfectly competitive final-good firms produce final goods

using intermediate goods. A final-good firm buys  () of an intermediate

good  ∈ [0 1] at price  () and sells  of the final good at price  in a

perfectly competitive market. The profit-maximization problem is

max
()

 −
Z 1

0

 () ()  (24)

s.t.  =

µZ 1

0

 ()
−1
 

¶ 
−1

 (25)

where (25) is a Dixit-Stigltz aggregator function with  ≥ 1.

21

Intermediate-good firms Monopolistic intermediate-good firms produce

intermediate goods using labor and are subject to sticky prices. The firm 

produces the intermediate good . To choose labor in each period , the firm

 minimizes the nominal total cost, TC (net of government subsidy ),

min
()

TC ( ()) = (1− ) () (26)

s.t.  () = exp
¡

¢
 ()  (27)

+1 =  + +1 +1 ∼ N
¡
0 2

¢
 (28)

where  () is the labor input; exp
¡

¢
is the productivity level;  is the

autocorrelation coefficient, and  is the standard deviation of the distur-

bance. The firms are subject to Calvo-type price setting: a fraction 1 − 

of the firms sets prices optimally,  () = e, for  ∈ [0 1], and the fraction
 is not allowed to change the price and maintains the same price as in the

previous period,  () = −1 (), for  ∈ [0 1]. A reoptimizing firm  ∈ [0 1]
maximizes the current value of the profit over the time when e remains

effective,

max
∞X
=0



n
Λ+

h e+ ()− +mc++ ()
io

(29)

s.t.  () = 

µ
 ()



¶−
 (30)

where (30) is the demand for an intermediate good  following from (24),

(25); Λ+ is the Lagrange multiplier on the household’s budget constraint

(20); mc+ is the real marginal cost of output at time + (which is identical

across the firms).

Government Government finances a stochastic stream of public consump-

tion by levying lump-sum taxes and by issuing nominal debt. The govern-

ment budget constraint is

 +


exp
¡


¢


= 



exp
¡


¢ +−1 +  (31)

where 

exp()
=  is government spending,  is the subsidy to the

intermediate-good firms, and  is a government-spending shock,

+1 =  + +1 +1 ∼ N
¡
0 2

¢
 (32)

where  is the autocorrelation coefficient, and  is the standard deviation

of disturbance.

22

Monetary authority Themonetary authority follows a Taylor rule. When

the ZLB is imposed on the net interest rate, this rule is  = max {1Φ}
with Φ being defined as

Φ ≡ ∗

µ
−1
∗

¶
"µ



∗

¶
µ





¶
#1−

exp
¡


¢
 (33)

where  and ∗ are the gross nominal interest rate at  and its long-run
value, respectively; ∗ is the target inflation;  is the natural level of

output; and  is a monetary shock,

+1 =  + +1 +1 ∼ N
¡
0 2

¢
 (34)

where  is the autocorrelation coefficient, and  is the standard deviation

of disturbance. When the ZLB is not imposed, the Taylor rule is  = Φ.

Natural level of output The natural level of output  is the level of

output in an otherwise identical economy but without distortions. It is a

solution to the following planner’s problem

max
{}=0∞

0

∞X
=0

 exp
¡

¢ ∙1−

 − 1
1− 

− exp ¡¢ 1+ − 1
1 + 

¸
(35)

s.t.  = exp
¡

¢
 − (36)

where  =


exp()
is given, and +1, +1, +1, and  follow the

processes (21), (22), (28), and (32), respectively. The FOCs of the problem

(35), (36) imply that  depends only on exogenous shocks,

 =

"
exp

¡

¢1+£

exp
¡


¢¤−
exp

¡

¢# 1

+

 (37)

5.2 Summary of equilibrium conditions

We summarize the equilibrium conditions below (the derivation of the first-

order conditions is provided in Appendix C):

 =
exp

¡
 + 

¢
exp

¡

¢ 

  + 

©
+1+1

ª
 (38)

 = exp
¡

¢

−
  + 

©
−1+1+1

ª
 (39)

23





=

∙
1− −1

1− 

¸ 1
1−

 (40)

∆ =

"
(1− )

∙
1− −1

1− 

¸ 
−1
+ 


∆−1

#−1
 (41)


−
 =

 exp
¡


¢


exp
¡

¢ 

"

−
+1 exp

¡
+1

¢
+1

#
 (42)

 = exp
¡

¢
∆ (43)

 =

Ã
1− 

exp
¡


¢! (44)

where the variables  and  are introduced for a compact representation

of the profit-maximization condition of the intermediate-good firm and are

defined recursively; +1 ≡ +1

is the gross inflation rate between  and +1;

∆ is a measure of price dispersion across firms (also referred to as efficiency

distortion). The conditions (38)—(44) correspond to (C17), (C18), (C23),

(C33), (C3), (C27) and (C36) in the online Appendix C.

An interior equilibrium satisfies 8 equilibrium conditions (38)—(44), the

Taylor rule (with or without the ZLB) in which Φ and  are given by

(33) and (37), respectively, and 6 processes for exogenous shocks, (21)—

(23), (28), (34) and (32). The 8 equilibrium conditions must be solved

with respect to 8 unknowns {   ∆   }. There are 2 en-
dogenous state variables, {∆−1 −1}, and 6 exogenous state variables,©
     

ª
.

5.3 Numerical analysis

Methodology We use the estimates of Smets and Wouters (2003, 2007)

and Del Negro et al. (2007) to assign values to parameters. We approximate

numerically the policy functions for ,  and 
−
 using the Euler equa-

tions (38), (39) and (42), respectively, and we solve for the other variables

analytically using the remaining equilibrium conditions. We compute the

polynomial solutions of degrees 2 and 3, referred to as CGA2 and CGA3,

respectively. For comparison, we also compute first-and second-order pertur-

bation solutions, referred to as PER1 and PER2, respectively (we use Dynare

4.2.1 software; see http://www.dynare.org). When solving the model with

the ZLB by CGA, we impose the ZLB both in the solution procedure and

in subsequent simulations (accuracy checks). Perturbation methods do not

allow us to impose the ZLB in the solution procedure. The conventional ap-

24

proach in the literature is to disregard the ZLB when computing perturbation

solutions and to impose the ZLB in simulations when running accuracy checks

(that is, whenever  happens to be smaller than 1 in simulation, we set it

at 1). A detailed description of the methodology of our numerical analysis is

provided in the online Appendix C.

Accuracy and cost of solutions In Table 6, we report the results for 3

experiments: in the first 2 experiments, we allow for negative net interest

rates and consider two alternative values of the target inflation rate, ∗ = 1
(a zero target net inflation rate) and ∗ = 10598 (the estimate of Del Negro
et al., 2007), and in the last experiment, we introduce the ZLB in the model

with ∗ = 1.
The perturbation methods are fast: the time necessary for computing

both PER1 and PER2 is about 10 seconds. CGA is more costly: the compu-

tational time ranges from 6 to 25 minutes; this cost is modest given that we

use MATLAB and a standard desktop computer. Our results for the mul-

ticountry model indicate that CGA would be tractable in much larger new

Keynesian models.

The accuracy of PER1 is low. The approximation errors in some equilib-

rium conditions can be as large as 17% (see the maximum error of 10−076 for
the model with ∗ = 10598 in the table). The accuracy of PER2 depends on
the model considered. When ∗ = 1 and the ZLB is not imposed, PER2 is
almost as accurate as CGA2 and has the approximation errors smaller than

2%. However, when the ZLB is imposed, the accuracy of PER2 deteriorates

dramatically: the errors in some equilibrium conditions can reach 9%. In

turn, CGA2 has the errors of less than 2% in all the experiments considered,

and CGA3 has the errors that are smaller than 01% and 1% when the ZLB

is not imposed and is imposed, respectively.

To appreciate how much the equilibrium quantities differ across the meth-

ods, we report the maximum percentage differences between variables pro-

duced by CGA3 and those produced by the other methods on a simulation of

10,000 observations. The regularities are similar to those we observed for the

approximation errors. The difference between the series produced by PER1

and CGA3 can be larger than 13%; the difference between the series pro-

duced by PER2 and CGA3 depends on the model: it is less than 2% when

∗ = 1 and the ZLB is not imposed but can be in excess of 9% when the

ZLB is imposed; and finally, the difference between the series produced by

CGA2 and CGA3 is relatively small in all models (127% at most). Gener-

ally, the supplementary variables  and  differ more across methods than

such economically relevant variables as ,  and .

25

Economic importance of the ZLB In the table, we report the minimum

and maximum values of  on a stochastic simulation, as well as a percentage

number of periods in which ≤ 1. Under ∗ = 1, the interest rate was as low
as 09801, and the frequency of  ≤ 1 was as large as 8%. In contrast, under
∗ = 10598, the interest rate never got below 09922, and the frequency of
 ≤ 1 was just 013%. Thus, a negative net interest rate is a relatively

frequent and economically significant event in a low- but not high-inflation

economy.14

When the ZLB is not imposed, the properties of the interest rate (i.e.,

ranges of values for  and frequencies of  ≤ 1) are similar under the

CGA and perturbation methods. However, when the ZLB is imposed, such

properties differ: the frequency of reaching the ZLB (i.e.,  = 1) is about

20% smaller under the perturbation methods than under the CGA methods;

see Table 6. These regularities are illustrated in Figure 5 using a fragment of

a stochastic simulation. When the ZLB is not imposed, all methods predict 4

consecutive periods of negative (net) interest rates (see periods 3-7 in Figure

5a). When the ZLB is imposed, the CGA method predicts a zero interest

rate in those 4 periods, while the perturbation methods predict a zero interest

rate just in 1 period (this is true for both PER1 and PER2). The way we deal

with the ZLB in the perturbation solution misleads the agents about the true

state of the economy. To be specific, when we chop the interest rate at zero

in the simulation procedure, agents perceive the drop in the interest rate as

being small and respond by an immediate recovery. In contrast, under CGA,

agents accurately perceive the drop in the interest rate as being large and

respond by 4 consecutive periods of a zero net interest rate (which correspond

to 4 consecutive periods of negative net interest rates predicted in the case

when the ZLB is not imposed).

Lessons In new Keynesian models, local (perturbation) and global solution

methods may produce qualitatively different results. This is not a hypotheti-

cal possibility but something we observe in a stylized model under empirically

plausible parameterizations. When the ZLB is ignored, the accuracy of per-

turbation methods can be increased by using higher order approximations.

When the ZLB is imposed, the accuracy depends critically on the way we

deal with the ZLB. The approximation errors are large if we neglect the ZLB

in the solution procedure and introduce it just in simulation. This is because

we use one set of equations to solve the model, and we use another set of

14Chung, Laforte, Reifschneider, and Williams (2011) provide estimates of the incidence

of the ZLB in the US economy. Christiano, Eichenbaum and Rebelo (2009) study the

economic significance of the ZLB in the context of a similar model.

26

equations to simulate the model afterwords. Increasing the order of pertur-

bation solutions will not fix this problem. We need global solution methods

that can handle policy functions with kinks.

6 Conclusion

The ergodic set of a typical economic model is a tiny fraction of the hypercube

domains, normally used by global solution methods. We propose the cluster-

grid algorithm, CGA, which provides a simple way of solving dynamic eco-

nomic models on their ergodic sets. Unlike perturbation methods, CGA can

handle applications with strong non-linearities and kinks in policy functions

(an example is a new Keynesian model with the ZLB). We combine the effi-

cient choice of solution domain with other computational techniques that are

particularly suitable for large-scale applications, namely, nonproduct (mono-

mial and 1-node quadrature) integration rules, and a derivative-free fixed-

point iteration method for computing the coefficients of policy functions. In

combination, these techniques enable us to accurately solve economic models

with hundreds of state variables using a desktop computer and MATLAB

software. The speed of CGA can be substantially increased by using more

powerful hardware and software, as well as parallelization techniques.

References

[1] Adam, K. and R. Billi, (2006). Optimal monetary policy under commit-

ment with a zero bound on nominal interest rates. Journal of Money,

Credit, and Banking 38 (7), 1877-1905.

[2] Adjemian, S. and M. Juillard, (2011). Accuracy of the extended path

simulation method in a new Keynesian model with zero lower bound on

the nominal interest rate. Manuscript.

[3] Anderson, G., J. Kim and T. Yun, (2010). Using a projection method

to analyze inflation bias in a micro-founded model. Journal of Economic

Dynamics and Control 34 (9), 1572-1581.

[4] Aruoba, S., J. Fernández-Villaverde and J. Rubio-Ramírez, (2006).

Comparing solution methods for dynamic equilibrium economies. Jour-

nal of Economic Dynamics and Control 30, 2477-2508.

27

[5] Christiano, L., M. Eichenbaum and C. Evans, (2005). Nominal rigidi-

ties and the dynamic effects of a shock to monetary policy. Journal of

Political Economy 113/1, 1-45.

[6] Christiano, L., M. Eichenbaum and S. Rebelo, (2009). When is the gov-

ernment spending multiplier large? NBER Working Paper 15394.

[7] Christiano, L. and D. Fisher, (2000). Algorithms for solving dynamic

models with occasionally binding constraints. Journal of Economic Dy-

namics and Control 24, 1179-1232.

[8] Chung, H., J.-P. Laforte, D. Reifschneider and J. Williams, (2011). Have

we underestimated the probability of hitting the zero lower bound? Fed-

eral Reserve Bank of San Francisco. Working paper 2011-01.

[9] Collard, F., and M. Juillard, (2001). Accuracy of stochastic perturba-

tion methods: the case of asset pricing models, Journal of Economic

Dynamics and Control, 25, 979-999.

[10] Del Negro, M., F. Schorfheide, F. Smets and R. Wouters, (2007). On

the fit of new Keynesian models. Journal of Business and Economic

Statistics 25 (2), 123-143.

[11] Den Haan, W. and A. Marcet, (1990). Solving the stochastic growth

model by parameterized expectations. Journal of Business and Economic

Statistics 8, 31-34.

[12] Den Haan, W., (2010), Comparison of solutions to the incomplete mar-

kets model with aggregate uncertainty. Journal of Economic Dynamics

and Control 34, 4—27.

[13] Everitt, B., S. Landau, M. Leese and D. Stahl, (2011). Cluster Analysis.

Wiley Series in Probability and Statistics. Wiley: Chichester, United

Kingdom.

[14] Fair, R. and J. Taylor, (1983). Solution and maximum likelihood esti-

mation of dynamic nonlinear rational expectation models. Econometrica

51, 1169-1185.

[15] Fernández-Villaverde, J., O. Posch and J. Rubio-Ramírez, (2011). Solv-

ing the new Keynesian model in continuous time. Manuscript.

[16] Fernández-Villaverde, J. and J. Rubio-Ramírez, (2007). Estimating

Macroeconomic Models: A Likelihood Approach. Review of Economic

Studies 74, 1059-1087.

28

[17] Galí, J., (2008). Monetary Policy, Inflation and the Business Cycles: An

Introduction to the New Keynesian Framework. Princeton University

Press: Princeton, New Jersey.

[18] Gaspar, J. and K. Judd, (1997). Solving large-scale rational-expectations

models. Macroeconomic Dynamics 1, 45-75.

[19] Judd, K., (1992). Projection methods for solving aggregate growth mod-

els. Journal of Economic Theory 58, 410-452.

[20] Judd, K., (1998). Numerical Methods in Economics. Cambridge, MA:

MIT Press.

[21] Judd, K. and S. Guu, (1993). Perturbation solution methods for eco-

nomic growth models, in: H. Varian, (Eds.), Economic and Financial

Modeling with Mathematica, Springer Verlag, pp. 80-103.

[22] Judd, K., L. Maliar and S. Maliar, (2010). A cluster-grid projection

method: solving problems with high dimensionality. NBER working pa-

per 15965.

[23] Judd, K., L. Maliar and S. Maliar, (2011). Numerically stable and accu-

rate stochastic simulation approaches for solving dynamic models. Quan-

titative Economics 2, 173-210.

[24] Juillard, M. and S. Villemot, (2011). Multi-country real business cycle

models: Accuracy tests and testing bench. Journal of Economic Dynam-

ics and Control 35, 178—185.

[25] Kollmann, R., (2002). Monetary policy rules in the open economy: ef-

fects on welfare and business cycles. Journal of Monetary Economics 49,

989-1015.

[26] Kollmann, R., S. Kim and J. Kim, (2011a). Solving the multi-country

real business cycle model using a perturbation method. Journal of Eco-

nomic Dynamics and Control 35, 203-206.

[27] Kollmann, R., S. Maliar, B. Malin and P. Pichler, (2011). Comparison

of solutions to the multi-country real business cycle model. Journal of

Economic Dynamics and Control 35, 186-202.

[28] Krueger, D. and F. Kubler, (2004). Computing equilibrium in OLG

models with production. Journal of Economic Dynamics and Control

28, 1411-1436.

29

[29] Maliar, L. and S. Maliar, (2005). Solving nonlinear stochastic growth

models: iterating on value function by simulations. Economics Letters

87, 135-140.

[30] Maliar, S., L. Maliar and K. Judd, (2011). Solving the multi-country real

business cycle model using ergodic set methods. Journal of Economic

Dynamic and Control 35, 207—228.

[31] Malin, B., D. Krueger and F. Kubler, (2011). Solving the multi-country

real business cycle model using a Smolyak-collocation method. Journal

of Economic Dynamics and Control 35, 229-239.

[32] Marimon, R. and A. Scott, (1999). Computational Methods for Study

of Dynamic Economies, Oxford University Press, New York.

[33] Pakes, A. and P. McGuire, (2001). Stochastic algorithms, symmetric

Markov perfect equilibria, and the ’curse’ of dimensionality. Economet-

rica 69, 1261-1281.

[34] Romesburg, C., (1984). Cluster Analysis for Researchers. Lifetime

Learning Publications: Belmont, California.

[35] Rudebusch, G. and E. Swanson, (2008). Examining the bond premium

puzzle with a DSGE model. Journal of Monetary Economics 55, S111-

S126.

[36] Rust, J., (1996). Numerical dynamic programming in economics, in: H.

Amman, D. Kendrick and J. Rust (Eds.), Handbook of Computational

Economics, Amsterdam: Elsevier Science, pp. 619-722.

[37] Santos, M., (1999). Numerical solution of dynamic economic models,

in: J. Taylor and M. Woodford (Eds.), Handbook of Macroeconomics,

Amsterdam: Elsevier Science, pp. 312-382.

[38] Schmitt-Grohé S. and M. Uribe, (2007). Optimal simple and imple-

mentable monetary fiscal rules. Journal of Monetary Economics 54,

1702-1725.

[39] Smets, F. and R. Wouters, (2003). An estimated dynamic stochastic

general equilibrium model of the Euro area. Journal of the European

Economic Association 1(5), 1123-1175.

[40] Smets, F. and R. Wouters, (2007). Shocks and frictions in US business

cycles: a Bayesian DSGE approach. American Economic Review 97 (3),

586-606.

30

[41] Stockey, N. L. and R. E. Lucas Jr. with E. Prescott, (1989). Recursive

Methods in Economic Dynamics. Cambridge, MA: Harvard University

Press.

[42] Taylor, J. and H. Uhlig, (1990). Solving nonlinear stochastic growth

models: a comparison of alternative solution methods. Journal of Busi-

ness and Economic Statistics 8, 1-17.

[43] Taylor, J., (1993). Discretion versus policy rules in practice. Carnegie-

Rochester Conference Series on Public Policy 39, 195-214.

31

Supplement to "A Cluster-Grid Algorithm:
Solving Problems With High
Dimensionality": Appendices

Kenneth L. Judd

Lilia Maliar

Serguei Maliar

Appendix A: A numerical example of implementing
the agglomerative hierarchical clustering algorithm

We provide a numerical example that illustrates the construction of clus-

ters under the agglomerative hierarchical algorithm. The sample data con-

tains 5 observations for 2 variables, 1 and 2

Observation Variable 1 Variable 2

1 1 05

2 2 3

3 05 05

4 3 16

5 3 1

We will consider two alternative measures of distance between clusters, the

nearest-neighbor (or single) and Ward’s ones. Both measures lead to an

identical set of clusters shown in Figure A.1. On iteration 1, we merge obser-

vations 1 and 3 into a cluster {1 3}; on iteration 2, we merge observations 4
and 5 into a cluster {4 5}; on iteration 3, we merge observations 2 and {4 5}
into a cluster {2 4 5}; and finally, on iteration 4, we merge clusters {1 3}
and {2 4 5} into one cluster that contains all observations {1 2 3 4 5}. Be-
low, we describe computations performed by the clustering algorithm. We

first consider the nearest-neighbor measure of distance which is simpler to

understand (because the distance between clusters can be inferred from the

distance between observations without additional computations). We then

show how to construct clusters using the Ward’s distance measure, which is

our preferred choice in numerical analysis.

Nearest-neighbor measure of distance The nearest-neighbor measure

of distance between the clusters  and  is the distance between the closest

pair of observations  ∈  and  ∈ , i.e.,  () = min
∈ ∈

 ( ).

32

Let  ( ) =
h¡
1 − 1

¢2
+
¡
2 − 2

¢2i12 ≡  be the Euclidean distance

(2).

Let us compute a matrix of distances between singleton clusters in which

each entry  corresponds to ,

1 =

1

2

3

4

5

⎛⎜⎜⎜⎜⎝
0

27 0

05 29 0

23 17 27 0

21 22 25 06 0

⎞⎟⎟⎟⎟⎠
The smallest non-zero distance for the five observations in 1 is 13 = 05.

Thus, we merge observations (singleton clusters) 1 and 3 into one cluster and

call the obtained cluster {1 3}. The distances for the four resulting clusters
{1 3}, 2, 4, and 5, are shown in a matrix 2,

2 =

{1 3}
2

4

5

⎛⎜⎜⎝
0

27 0

23 17 0

21 22 06 0

⎞⎟⎟⎠
where  ({1 3}  2) = min {12 32} = 27,  ({1 3}  4) = min {14 34} =
23, and  ({1 3}  5) = min {15 35} = 21. Given that  (4 5) = 45 = 06

is the smallest non-zero entry in 2, we merge singleton clusters 4 and 5 into

a new cluster {4 5}. The distances for three clusters {1 3}, {4 5} and 2 are
given in 3,

3 =

{1 3}
{4 5}
2

⎛⎝ 0

21 0

27 17 0

⎞⎠
where ({1 3}  {4 5}) = min {14 15 34 35} = 21, ({1 3}  2) = min {12 32} =
27, and  ({4 5}  2) = min {42 52} = 17. Hence, the smallest non-zero
distance in 3 is  ({4 5}  2), so we merge clusters 2 and {4 5} into a cluster
{2 4 5}. The only two clusters left not merged are {1 3} and {2 4 5}, so
that the last step is to merge those two to obtain the cluster {1 2 3 4 5}.
The procedure of constructing clusters is summarized below:

Iteration Cluster Clusters Shortest

Created Merged Distance

1 {1 3} 1 3 05

2 {4 5} 4 5 06

3 {2 4 5} 2 {4 5} 17

4 {1 2 3 4 5} {1 3} {2 4 5} 21

33

The algorithm starts from 5 singleton clusters, and after 4 iterations, it

merges all observations into a single cluster (thus, the number of clusters

existing, e.g., on the iteration 2 is 5− 2 = 3).

Ward’s measure of distance We now construct clusters using Ward’s

measure of distance (3). As an example, consider the distance between the

singleton clusters 1 and 2, i.e.,  (1 2). The center of the cluster {1 2} is
{12} =

³
1{12} 

2
{12}

´
= (15 175), and  (1) =  (2) = 0. Thus, we

have

 (1 2) =  ({1 2}) = (1−15)2+(2− 15)2+(05− 175)2+(3− 175)2 = 3625
In this manner, we obtain the following matrix of distances between singleton

clusters on iteration 1

1 =

1

2

3

4

5

⎛⎜⎜⎜⎜⎝
0

3625 0

0125 425 0

2605 148 373 0

2125 25 325 18 0

⎞⎟⎟⎟⎟⎠
Given that (1 3) = 0125 is the smallest non-zero distance in1, we merge

the singleton clusters 1 and 3 into the cluster {1 3}.
In the beginning of iteration 2, we have the clusters (13), 2, 4 and 5. To

illustrate the computation of distances between clusters that are not single-

tons, let us compute  ({1 3}  2). The center of the cluster {1 3} is
{13} =

¡
1{13} 

2
{13}

¢
= (075 05) 

and that of the cluster {1 2 3} is
{123} =

¡
1{123} 

2
{123}

¢
= (76 43) 

We have

 ({1 3}) = (1−075)2+(05− 075)2+(05− 05)2+(05− 05)2 = 0125

 ({1 2 3}) = (1− 76)2 + (2− 76)2 + (05− 76)2
+(05− 43)2 + (3− 43)2 + (05− 43)2 = 163

and  (2) = 0. Thus, we obtain

 ({1 3}  2) =  ({1 2 3})−[ ({1 3}) +  (2)] = 163−0125 = 52083

34

The distances obtained on iteration 2 are summarized in the matrix of dis-

tances 2,

2 =

{1 3}
2

4

5

⎛⎜⎜⎝
0

52083 0

41817 148 0

35417 25 018 0

⎞⎟⎟⎠
Given that  ({4 5}) = 018 is the smallest non-zero distance in 2, we

merge the singleton clusters 4 and 5 into the cluster {4 5}.
On iteration 3, the matrix of distances is

3 =

{1 3}
{4 5}
2

⎛⎝ 0

57025 0

52083 25933 0

⎞⎠
which implies that clusters {4 5} and 2 must be merged into {2 4 5}.
On the last iteration, {1 3} and {2 4 5} are merged into {1 2 3 4 5}. As

we see, Ward’s measure of distance leads to the same clusters as the nearest-

neighbor measure of distance. Finally, in practice, it might be easier to use

an equivalent representation of Ward’s measure of distance in terms of the

clusters’ centers,

 () =
 · 
 + 

LX
=1

¡
 − 

¢2


where  ≡ {1  },  ≡ {1  },  ≡ 1


P

=1 

 and  ≡ 1



P

=1 

.

For example,  (1 2) on iteration 1 can be computed as

 (1 2) =
1

2

£
(1− 2)2 + (05− 3)2¤ = 3625

where the centers of the singleton clusters 1 and 2 are the observations them-

selves.

Appendix B: The multicountry model

The set up We describe the multicountry model studied in Section 4.4. A

social planner maximizes a weighted sum of expected lifetime utilities of 

agents (countries),

max
{ +1}=1=0∞

0

X
=1



" ∞X
=0


¡

¢#

(B1)

35

subject to the aggregate resource constraint,

X
=1

 +

X
=1

+1 =

X
=1

 (1− ) +

X
=1



¡

¢
 (B2)

where the initial condition
©
0  


0

ª=1
is given;  is the operator of

conditional expectation;  , 

 , 


 and  are, respectively, consumption,

capital, productivity level and welfare weight of a country  ∈ {1  };
 ∈ (0 1) is the discount factor;  ∈ (0 1] is the depreciation rate;  is the

normalizing constant in the production function. The utility and production

functions,  and , respectively, are increasing, concave and continuously

differentiable. The process for the productivity level of country  is given by

ln +1 =  ln  + +1, (B3)

where  is the autocorrelation coefficient; +1 ≡ +1 + +1 where 

+1 ∼

N (0 2) is specific to each country and  +1 ∼ N (0 2) is identical for all
countries.

We restrict our attention to the case in which the countries are character-

ized by identical preferences,  = , and identical production technologies,

 =  , for all . The former implies that the planner assigns identical

weights,  = 1, and consequently, identical consumption  =  to all

agents. If an interior solution exists, it satisfies  Euler equations,

0 () = 

©
0 (+1)

£
1−  + +1

0 ¡+1¢¤ª  (B4)

where 0 and  0 denote the derivatives of  and  , respectively. Thus, the

planner’s solution is determined by the process for shocks (3), the resource

constraint (2), and the set of Euler equations (4).

Solution procedure Our objective is to approximate  capital policy

functions, +1 = 
³©

  



ª=1´
,  = 1   . Since the countries are

identical in their fundamentals (preferences and technology), their optimal

policy functions are also identical. We could have used the symmetry to

simplify the solution procedure, however, we will not do so. We will compute

a separate policy function for each country, thus, treating the countries as

completely heterogeneous. This approach allows us to assess the cost of

finding solutions in general multidimensional setups in which countries have

heterogeneous preferences and technology.

To solve the model, we parameterize the capital policy function of each

country with a flexible functional form


³©

  



ª=1´ ≈ b
³©

  



ª=1
; 
´


36

where  is a vector of coefficients. We rewrite the Euler equation (4) as

+1 = 

½

0 (+1)
0 ()

£
1−  + +1

0 ¡+1¢¤ +1¾  (B5)

For each country  ∈ {1  }, we need to compute a vector  such that,
given the functional form of b, the resulting function b

³©
  




ª=1
; 
´

is the best possible approximation of 
³©

  



ª=1´
on the relevant

domain.

The steps of the CGA algorithm here are similar to those described in

Section 4.2 for the one-agent model. However, we now iterate on  policy

functions of heterogenous countries instead of just one policy function of the

representative agent. That is, we make an initial guess on  coefficients

vectors
©

ª=1

, approximate  conditional expectations in Step 2 (i)

and run  regressions in Step 2 (ii). The damping parameter in (18) is

 = 01, and the convergence parameter in (17) is  = 10−8. In Stage 2, we
evaluate the size of Euler equation errors on a stochastic simulation of length

 test = 10 200 (we discard the first 200 observations to eliminate the effect

of initial condition). To test the accuracy of solutions, we use the Gauss-

Hermite quadrature product rule  (2) for  up to 12, use the monomial

rule 2 for  from 12 to 20, and use the monomial rule 1 for  larger

than 20. We use the same values of the parameters in the multicountry model

as in the one-agent model; in particular, we assume  = 1.

Appendix C: The new Keynesian model

In this section, we derive the first-order conditions (FOCs) and describe

the details of our numerical analysis for the new Keynesian economy studied

in Section 5.

Households The FOCs of the household’s problem (19)—(23) with respect

to ,  and  are

Λ =
exp

¡

¢

−




 (C1)

exp
¡
 + 

¢

 = Λ (C2)

exp
¡

¢

−
 =  exp

¡


¢


"
exp

¡
+1

¢

−
+1

+1

#
 (C3)

37

where Λ is the Lagrange multiplier associated with the household’s budget

constraint (20). After combining (C1) and (C2), we get

exp
¡

¢




 =





 (C4)

Final-good producers The FOC of the final-good producer’s problem

(24), (25) with respect to  () yields the demand for the th intermediate

good

 () = 

µ
 ()



¶−
 (C5)

Substituting the condition (C5) into (25), we obtain

 =

µZ 1

0

 ()
1−



¶ 1
1−

 (C6)

Intermediate-good producers The FOC of the cost-minimization prob-

lem (26)—(28) with respect to  () is

Θ =
(1− )

exp
¡

¢  (C7)

where Θ is the Lagrange multiplier associated with (27). The derivative of

the total cost in (26) is the nominal marginal cost, MC (),

MC () ≡ TC ( ())

 ()
= Θ (C8)

The conditions (C7) and (C8) taken together imply that the real marginal

cost is the same for all firms,

mc () =
(1− )

exp ()
· 



= mc (C9)

The FOC of the reoptimizing intermediate-good firm with respect to e

is



∞X
=0

()

Λ++

+1
+

" e

+

− 

− 1mc+
#
= 0 (C10)

From the household’s FOC (C1), we have

Λ+ =
exp

¡
+

¢

−
+

+

 (C11)

38

Substituting (C11) into (C10), we get



∞X
=0

()

exp

¡
+

¢

−
++


+

" e

+

− 

− 1mc+
#
= 0 (C12)

Let us define  such that

 ≡
½
1 if  = 0

1
+ ·+−1···+1 if  ≥ 1

 (C13)

Then  = +1−1 · 1
+1

for   0. Therefore, (C12) becomes



∞X
=0

()

exp

¡
+

¢

−
++

−


∙ee − 

− 1mc+
¸
= 0 (C14)

where ee ≡ 

. We express ee from (C14) as follows

ee =


∞X
=0

()

exp

¡
+

¢

−
++

−



−1mc+



∞X
=0

()

exp

¡
+

¢

−
++

1−


≡ 



 (C15)

Let us find recursive representations for  and . For , we have

 ≡ 

∞X
=0

()

exp

¡
+

¢

−
++

−




− 1mc+

=


− 1 exp
¡

¢

−
 mc

+

(∞X
=1

()
−1
exp

¡
+

¢

−
++

µ
+1−1
+1

¶−


− 1mc+
)

=


− 1 exp
¡

¢

−
 mc

+

(
1

−+1

∞X
=0

()

exp

¡
+1+

¢

−
+1++1+

−
+1



− 1mc+1+
)

=


− 1 exp
¡

¢

−
 mc

+

(
1

−+1
+1

Ã ∞X
=0

()

exp

¡
+1+

¢

−
+1++1+

−
+1



− 1mc+1+
!)

=


− 1 exp
¡

¢

−
 mc + 

©
+1+1

ª


39

Substituting mc from (9) into the above recursive formula for , we have

 =


− 1 exp
¡

¢

−
 

(1− )

exp
¡

¢ · 



+ 

©
+1+1

ª
 (C16)

Substituting 


from (C4) into (C16), we get

 =


− 1 exp
¡

¢

(1− )

exp
¡

¢ · exp ¡¢

 + 

©
+1+1

ª
 (C17)

For , the corresponding recursive formula is

 = exp
¡

¢

−
  + 

©
−1+1+1

ª
 (C18)

Aggregate price relationship The condition (C6) can be rewritten as

 =

µZ 1

0

 ()
1−



¶ 1
1−
=∙Z

reopt.

 ()
1−

+

Z
non-reopt.

 ()
1−



¸ 1
1−

 (C19)

where "reopt." and "non-reopt." denote, respectively, the firms that reopti-

mize and do not reoptimize their prices at .

Note that
R
non-reopt.

 ()
1−

 =
R 1
0
 ()

1−
−1 () , where −1 ()

is the measure of non-reoptimizers at  that had the price  () at  − 1.
Furthermore, −1 () = −1 (), where −1 () is the measure of firms
with the price  () in − 1, which impliesZ

non-reopt.

 ()
1−

 =

Z 1

0

 ()
1−

−1 ()  =  1−−1  (C20)

Substituting (C20) into (C19) and using the fact that all reoptimizers sete 1−
 , we get

 =
h
(1− ) e 1−

 +  1−
−1
i 1
1−

 (C21)

We divide both sides of (C21) by ,

1 =

"
(1− )ee1− + 

µ
1



¶1−# 1
1−



40

and express ee ee = ∙1− −1

1− 

¸ 1
1−

 (C22)

Combining (C22) and (C15), we obtain





=

∙
1− −1

1− 

¸ 1
1−

 (C23)

Aggregate output Let us define aggregate output

  ≡
Z 1

0

 ()  =

Z 1

0

exp
¡

¢
 ()  = exp

¡

¢
 (C24)

where  =
R 1
0
 ()  follows by the labor-market clearing condition. We

substitute demand for  () from (C5) into (C24) to get

  =

Z 1

0



µ
 ()



¶−
 = 




Z 1

0

 ()
−

 (C25)

Let us introduce a new variable  ,¡
 

¢− ≡ Z 1

0

 ()
−

 (C26)

Substituting (C24) and (C26) into (C25) gives us

 ≡  

µ
 



¶

= exp
¡

¢
∆ (C27)

where ∆ is a measure of price dispersion across firms, defined by

∆ ≡
µ
 



¶

 (C28)

Note that if  () =  (
0) for all  and 0 ∈ [0 1], then ∆ = 1, that is, there

is no price dispersion across firms.

Law of motion for price dispersion ∆ By analogy with (C21), the

variable  , defined in (C26), satisfies

  =
h
(1− ) e− + 

¡
 −1

¢−i− 1


 (C29)

41

Using (C29) in (C28), we get

∆ =

⎛⎜⎝
h
(1− ) e− + 

¡
 −1

¢−i− 1




⎞⎟⎠


 (C30)

This implies

∆
1

 =

"
(1− )

Ã e



!−
+ 

µ
 −1


¶−#− 1


 (C31)

In terms of ee ≡ 

, the condition (C31) can be written as

∆ =

"
(1− )ee− + 


−
−1

−

· 
−
−1

−−1

#−1
 (C32)

By substituting ee from (C22) into (C32), we obtain the law of motion for

∆,

∆ =

"
(1− )

∙
1− −1

1− 

¸− 
1−
+ 


∆−1

#−1
 (C33)

Aggregate resource constraint Combining the household’s budget con-

straint (20) with the government budget constraint (31), we have the aggre-

gate resource constraint

 + 



exp
¡


¢ = (1− ) +Π (C34)

Note that the th intermediate-good firm’s profit at  is Π () ≡  () ()−
(1− ) (). Consequently,

Π =

Z 1

0

Π ()  =

Z 1

0

 () () −(1− )

Z 1

0

 ()  = −(1− )

where  =
R 1
0
 () ()  follows by a zero-profit condition of the final-

good firms. Hence, (C34) can be rewritten as

 + 



exp
¡


¢ =  (C35)

In real terms, the aggregate resource constraint (C35) becomes

 =

Ã
1− 

exp
¡


¢! (C36)

42

Equilibrium conditions The conditions (39)—(44) in the main text cor-

respond to the conditions (C18), (C23), (C33), (C3), (C27) and (C36) in the

present appendix. The condition (38) in the main text follows from (C17) un-

der the additional assumption 
−1 (1− ) = 1 which ensures that the model

admits a deterministic steady state (this assumption is commonly used in

the related literature; see, e.g., Christiano et al. 2009).

Calibration procedure Most of the parameters are calibrated using the

estimates of Del Negro et al. (2007, Table 1, column "DSGE posterior");

namely, we assume  = 1 and  = 209 in the utility function (19);  = 007,

 = 221, and  = 082 in the Taylor rule (33);  = 445 in the production

function of the final-good firm (25);  = 083 (the fraction of the intermediate-

good firms affected by price stickiness);  = 023 in the government budget

constraint (31); and  = 02,  = 092,  = 095,  = 082%,  = 054%

and  = 038% in the processes for shocks (21), (28) and (32). From Smets

and Wouters (2007), we take the values of  = 023,  = 015,  = 022%

and  = 024% in the processes for shocks (23) and (34). Finally, from

Smets and Wouters (2003), we take the value of  = 0881 in the process for

shock (22), however, we use the value of  = 06%, which is lower than their

estimate of  = 3818% (the latter estimate leads to an excessive volatility

in the model). The above parameterization leads to the output volatility of

around 3%, which is grossly consistent with the data on actual economies.

We set the discount factor at  = 099. To parameterize the Taylor rule

(33), we use the steady-state interest rate ∗ = ∗

, and we consider two

alternative values of the target inflation, ∗ = 1 (a zero net inflation target)
and ∗ = 10598 (this estimate comes from Del Negro et al., 2007, Table 1,

column "DSGE posterior").

Solution procedure The CGA algorithm for the new Keynesian model

is similar to the one described in Section 4.2 for the neoclassical growth

model. We approximate the policy functions  =  (κ),  =  (κ)
and 

−
 =MU(κ), where κ =

©
∆−1 −1      

ª
is

a set of current state variables. We parameterize such functions with flex-

ible functional forms  (κ) ≈ b ¡κ; ¢,  (κ) ≈ b ¡κ; ¢, MU(κ) ≈dMU ¡κ; MU¢, where ,  and MU are the coefficients vectors. To approx-

imate the policy functions, we use the family of ordinary polynomials. We

solve for the rest of the variables analytically: given ,  and 
−
 , we find

, ∆,  and  from (40), (41), (44) and (43), respectively. To compute

the conditional expectations in the Euler equations (38), (39) and (42), we

use the monomial formula 1 with 2 nodes.

43

We use the first-order perturbation solution delivered by Dynare as an

initial guess (both for the coefficients of the policy functions and for the grid

of clusters). After the initial CGA solution was computed, we reconstruct the

clusters and repeat the solution procedure (we checked that the subsequent

reconstructions of the cluster grid do not improve the accuracy of solutions).

The simulation length is  = 10 000, and the number of clusters is

 = 1000. The damping parameter in (18) is  = 01, and the conver-

gence parameter in (17) is  = 10−7. We compute approximation errors
on a stochastic simulation of 10,200 observations (we eliminate the first 200

observations). In the test, we use the monomial rule 2 with 22 + 1

nodes which is more accurate than the rule 1 used in the solution pro-

cedure. Dynare does not evaluate the accuracy of perturbation solutions.

We wrote a MATLAB routine that simulates the perturbation solutions and

evaluates their accuracy using the Dynare’s representation of the state space

which includes the current endogenous state variables {∆−1 −1}, the past
exogenous state variables

©
−1 −1 −1 −1 −1 −1

ª
and the

current disturbances {     }. We found that the CGA
and perturbation solutions are very close to each other when the volatility of

shock is small, namely, the maximum difference between solutions produced

by the two methods was less than 0001% when the standard deviation of

all shocks was set at 001%. By construction, the CGA solutions have non-

zero errors only in the Euler equations, while the perturbation solutions have

non-zero errors in all equilibrium conditions.

References

[1] Christiano, L., M. Eichenbaum, and S. Rebelo, (2009). When is the gov-

ernment spending multiplier large? NBER Working Paper 15394.

[2] Del Negro, M., F. Schorfheide, F. Smets, and R. Wouters, (2007). On the

fit of new Keynesian models. Journal of Business and Economic Statistics

25 (2), 123-143.

[3] Smets, F. and R. Wouters, (2003). An estimated dynamic stochastic gen-

eral equilibriummodel of the Euro area. Journal of the European Economic

Association 1(5), 1123-1175.

[4] Smets, F. and R. Wouters, (2007). Shocks and frictions in US business

cycles: a Bayesian DSGE approach. American Economic Review 97 (3),

586-606.

44

Table 1. Accuracy and speed of the CGA algorithm in the one-agent model: 25 clusters. a

a Ɛmean and Ɛmax are, respectively, the average and maximum absolute unit-free Euler equation errors
(in log10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary for
computing a solution (in seconds);  is the coefficient of relative risk aversion.

 = 1/5  = 1  = 5
Polynomial

Degree Ɛmean Ɛmean CPU Ɛmean Ɛmax CPU Ɛmean Ɛmax CPU
1st -4,88 -3,92 22,41 -4,29 -3,33 19,67 -3,32 -2,30 19,16
2nd -6,58 -5,34 0,81 -6,10 -4,86 0,35 -4,86 -3,69 0,19
3rd -8,15 -6,49 0,40 -7,53 -5,90 0,13 -6,16 -4,60 0,13
4th -9,44 -7,81 0,19 -8,82 -6,96 0,11 -7,16 -5,36 0,10
5th -10,03 -8,40 0,26 -9,90 -8,01 0,14 -8,26 -6,37 1,93

Table 2. Accuracy and speed of the CGA algorithm in the one-agent model: collocation. a

a Ɛmean and Ɛmax are, respectively, the average and maximum absolute unit-free Euler equation errors (in
log10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary for computing
a solution (in seconds);  is the coefficient of relative risk aversion.

 = 1/5  = 1  = 5
Polynomial

Degree Ɛmean Ɛmax CPU Ɛmean Ɛmax CPU Ɛmean Ɛmax CPU
1st -4,86 -3,87 18,63 -4,34 -3,36 18,45 -3,39 -2,40 18,39
2nd -6,53 -5,26 9,27 -6,09 -4,84 9,00 -4,81 -3,57 9,00
3rd -8,05 -6,50 9,30 -7,45 -6,00 9,05 -5,92 -4,55 9,04
4th -8,77 -7,17 9,53 -8,14 -6,53 9,25
5th -9,88 -8,29 10,36 -9,17 -7,64 10,19 failed to converge

Table 3. Accuracy and speed in the one-agent model: Smolyak grid versus cluster grid. a

a Ɛmean and Ɛmax, respectively, the average and maximum absolute unit-free Euler equation errors (in
log10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary for
computing a solution (in seconds). The number of grid points in cluster grid is the same as that in the
Smolyak grid, and is equal to 13.

Accuracy Test on a Stochastic Simulation Accuracy Test on a Tensor-Product Grid

Smolyak Grid Cluster Grid Smolyak Grid Cluster Grid
Polynomial

Degree Ɛmean Ɛmax Ɛmean Ɛmax Ɛmean Ɛmax Ɛmean Ɛmax

1st -3,31 -2,94 -4,28 -3,27 -3,25 -2,54 -3,27 -2,39
2nd -4,74 -4,17 -6,07 -4,81 -4,32 -3,80 -4,40 -3,26
3rd -5,27 -5,13 -7,44 -5,87 -5,39 -4,78 -5,40 -4,10

Table 4. Cost of constructing clusters depending on the number of countries N.

Time Needed to Construct Clusters (in seconds) Simulation
Length

Number
of

Clusters N = 1 N = 2 N = 6 N = 10 N = 20 N = 40 N = 100 N = 200

 M = 3 0.07 0.08 0.09 0.11 0.12 0.18 0.39 1.18
T = 1000 M = 30 0.08 0.08 0.09 0.12 0.13 0.24 0.54 1.35
 M = 300 0.09 0.10 0.12 0.15 0.31 0.83 1.85 3.23
 M = 3 0.83 0.84 0.83 0.84 1.04 1.42 2.77 4.50
T = 3000 M = 30 0.80 0.81 0.85 0.86 1.13 1.54 3.08 5.15
 M = 300 0.83 0.86 1.00 1.08 1.92 3.11 7.06 11.73
 M = 3 8.93 8.87 9.18 9.51 12.05 17.36 31.45 42.08
T = 10,000 M = 30 8.99 8.94 9.28 9.77 12.46 17.81 31.87 44.23
 M = 300 9.05 9.33 10.08 10.91 14.78 22.40 43.76 66.37

Table 5. Accuracy and speed in the multicountry model depending on the integration method used. a

a Ɛmean and Ɛmax are, respectively, the average and maximum absolute unit-free Euler equation errors (in log10 units) on a stochastic
simulation of 10,000 observations; CPU is the time necessary for computing a solution (in seconds); M is the number of clusters; Q(2) and
Q(1) are the Gauss-Hermite product rule with N2 and 1 nodes, respectively, and M2 and M1 are the monomial rules with 12 2 N and

N2 nodes, respectively; b In the policy function of 1 country.

Integration Method
Q(2) M2 M1 Q(1)

Number
of Coun-

tries

Polyn.
Degree

Number
of Coeffi-
cients b

M
Ɛmean Ɛmax CPU Ɛmean Ɛmax CPU Ɛmean Ɛmax CPU Ɛmean Ɛmax CPU

1st 5 -4.09 -3.19 38 -4.09 -3.19 53 -4.09 -3.19 44 -4.07 -3.19 45
2nd 15 -5.45 -4.51 108 -5.45 -4.51 150 -5.45 -4.51 114 -5.06 -4.41 85 N = 2
3rd 35

300
-6,51 -5,29 237 -6,51 -5,29 398 -6,51 -5,29 212 -5,17 -4,92 121

1st 9 -4.13 -3.15 63 -4.13 -3.15 120 -4.13 -3.15 50 -4.11 -3.16 39 N = 4 2nd 45 300
-5.47 -4.32 287 -5.47 -4.32 517 -5.47 -4.32 206 -4.95 -4.23 90

1st 13 -4.18 -3.21 222 -4.18 -3.21 232 -4.18 -3.21 68 -4.16 -3.22 42 N = 6 2nd 91 300
-5.51 -4.38 1282 -5.51 -4.38 1440 -5.51 -4.38 301 -4.93 -4.29 97

1st 17 -4.20 -3.25 947 -4.20 -3.25 468 -4.20 -3.25 114 -4.18 -3.26 44 N = 8 2nd 153 300
-5.49 -4.51 9511 -5.49 -4.51 3774 -5.49 -4.51 422 -4.91 -4.34 109

1st 21 - - - -4.20 -3.24 1090 -4.20 -3.24 182 -4.18 -3.25 59 N = 10 2nd 231 400
- - - -5.46 -4.50 12503 -5.46 -4.50 970 -4.90 -4.33 191

1st 25 - - - -4.21 -3.28 1403 -4.21 -3.28 233 -4.19 -3.29 63 N = 12 2nd 325 400
- - - -5.23 -4.30 69025 -5.23 -4.30 1307 -4.88 -4.34 226

1st 33 - - - - - - -4.22 -3.29 843 -4.19 -3.29 175 N = 16 2nd 561 1000
- - - - - - -5.44 -4.38 6790 -4.88 -4.27 1058

1st 41 - - - - - - -4.21 -3.29 1238 -4.17 -3.28 184 N = 20 2nd 861 1000
- - - - - - -5.08 -4.17 16895 -4.83 -4.10 1911

1st 61 - - - - - - -4.23 -3.31 13985 -4.19 -3.29 3529 N = 30 2nd 1891 4000
- - - - - - - - - -4.86 -4.54 36304

1st 81 - - - - - - -4.23 -3.31 19043 -4.19 -3.29 5321 N = 40 2nd 3321 4000
- - - - - - - - - -4.86 -4.48 87748

N=100 1st 201 1000 - - - - - - -4.09 -3.24 38782 -4.06 -3.23 2174
N=200 1st 401 1000 - - - - - - - - - -3.97 -3.20 6316

Table 6. The new Keynesian model: the CGA algorithm versus perturbation. a

a Ɛmean and Ɛmax are, respectively, the average and maximum absolute percentage errors (in log10 units) across all equilibrium conditions
on a stochastic simulation of 10,000 observations; CPU is the time necessary for computing a solution (in seconds); PER1 and PER2 are
the 1st- and 2nd-order perturbation solutions, respectively; CGA2 and CGA3 are 2nd- and 3d-degree CGA polynomial solutions,
respectively; Rmin and Rmax are, respectively, the minimum and maximum gross nominal interest rates across 10,000 simulated periods;
Freq(R≤1) is a percentage number of periods in which R≤1; dif(X),% is maximum absolute percentage difference between time series for
variable X produced by the method in the given column and CGA3.

 * = 1  * = 1.0598  * = 1 and ZLB
Statistic

PER1 PER2 CGA2 CGA3 PER1 PER2 CGA2 CGA3 PER1 PER2 CGA2 CGA3

Running time
CPU 9 363 664 9 802 1401 9 445 914

Absolute errors across optimality conditions
Ɛmean -3,05 -3,81 -4,15 -4,26 -2,90 -3,60 -4,22 -4,27 -2,99 -3,40 -3,98 -4,05
Ɛmax -0,89 -1,75 -1,85 -3,14 -0,76 -1,56 -1,77 -3,08 -0,90 -1,05 -1,93 -2,06

Interest rate properties
Rmin 0,9826 0,9806 0,9801 0,9804 0,9942 0,9924 0,9922 0,9923 1 1 1 1
Rmax 1,0402 1,0382 1,0391 1,0380 1,0638 1,0615 1,0629 1,0612 1,0402 1,0382 1,0391 1,0394

Freq(R≤1),% 8,1953 8,1267 8,2737 8,4600 0,0980 0,1274 0,1372 0,1372 6,7836 6,6562 8,6266 8,3423

Difference between time series produced by the method in the given column and CGA3
dif(R),% 0,23 0,05 0,11 0 0,43 0,38 0,17 0 0,90 0,94 0,14 0
dif(),% 2,16 0,36 0,13 0 6,88 4,88 0,23 0 2,09 0,62 0,06 0
dif(S),% 8,29 1,54 0,82 0 13,09 5,28 1,17 0 11,17 9,17 1,27 0
dif(F),% 2,20 0,26 0,27 0 8,01 3,53 0,48 0 4,82 3,86 0,61 0
dif(C),% 1,35 0,18 0,17 0 4,21 2,92 0,35 0 3,22 3,58 1,06 0
dif(Y),% 1,36 0,18 0,17 0 4,21 2,92 0,35 0 3,25 3,59 1,06 0

dif(NY),% 0,04 0,00 0,00 0 0,04 0,00 0,00 0 0,04 0,00 0,00 0
dif(L),% 3,22 0,14 0,24 0 3,87 1,96 0,39 0 4,66 3,61 1,04 0

dif(),% 0,56 0,06 0,21 0 0,54 0,28 0,36 0 0,98 0,86 0,19 0

0 1 2 3 4 5 6 7 8 9 10 11

0.9

0.95

1

1.05

1.1

1.15

k
t

a t

Figure 3. Autocorrection of the cluster grid: initial guess on capital is 10 steady state levels

1st grid

2nd grid

3rd grid

4th grid

0.8 0.9 1 1.1 1.2

0.8

0.9

1

1.1

1.2

k

a

Figure 4a. Smolyak grid

0.8 0.9 1 1.1 1.2

0.8

0.9

1

1.1

1.2

k

a

Figure 4b. Cluster grid

5 10 15 20

0.98

0.99

1

1.01

1.02

Period, t

In
te

re
st

 r
at

e,
 R

 t

Figure 5a. A time-series solution to the new Keynesian model

5 10 15 20

1.1

1.15

1.2

Period, t

O
ut

pu
t,

Y
t

PER1
PER2
CGA3

5 10 15 20

0.98

0.99

1

1.01

1.02

Period, t

In
te

re
st

 r
at

e,
 R

 t

Figure 5b. A time-series solution to the new Keynesian model with ZLB

5 10 15 20

1.1

1.15

1.2

Period, t

O
ut

pu
t,

Y
t

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x1

x2

Figure A.1. Agglomerative hierarchical clustering algorithm: an example.

2

4

5

13

iteration 1
cluster {1,3}

iteration 3
cluster {2,4,5}

iteration 2
cluster {4,5}

iteration 4
cluster {1,2,3,4,5}

