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PARAMETRIZED EXPECTATIONS ALGORITHM AND
THE MOVING BOUNDS

Lilia Maliar and Serguei Maliar

A B S T R A C T

Parametrized Expectation Algorithm (PEA) is a powerful tool for solv-
ing nonlinear stochastic dynamic models. However, it has an important
shortcoming: it is not a contraction mapping technique and thus, does not
guarantee …nding the solution. We suggest a simple modi…cation that en-
hances the convergence property of the algorithm. The idea is to rule out the
possibility of (ex)implosive behavior by arti…cially restricting the simulated
series within certain bounds. As the solution is re…ned along the iterations,
the bounds are gradually removed. The modi…ed PEA can systematically
converge to the stationary solution starting from the nonstochastic steady
state.

Keywords: Parametrized expectations algorithm; Nonlinear models; Nu-
merical solutions methods; Optimal Growth.
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1 INTRODUCTION

Parameterized Expectations Algorithm (PEA) is a non…nite state space method

for computing equilibria in nonlinear stochastic dynamic models, e.g., Wright

and Williams (1982), Miranda and Helmberger (1988), den Haan and Marcet

(1990), Christiano and Fisher (2000). The method is as follows: approximate

the conditional expectation in Euler’s equation by a parametric function of

state variables and …nd the parameters, which minimize the distance between

the expectation and the approximating function.

Several properties make PEA an attractive tool for researchers in the

area of economic dynamics. First, the cost of the algorithm does not practi-

cally depend on the dimensionality of the state space. Second, in principle,

PEA a¤ords a high degree of accuracy in the solution. Third, this method

can be applied for analyzing not only the optimal economies but also the

economies with externalities, distortions, liquidity constraints, etc. In addi-

tion, the algorithm is fast and simple to program. For an extensive discussion

of the method and its applications, see Marcet and Lorenzoni (1999), and

Christiano and Fisher (2000).

The main drawback of PEA is that it is not a contraction mapping tech-

nique and thus, does not guarantee …nding a solution. In fact, if the assumed

decision rule happens to be far from the true solution, the algorithm is likely
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to diverge. In order to achieve convergence, one has to wisely choose ini-

tial values for the parameters in the approximating function as well as a

procedure for updating the parameters on each iteration.

In order to systematically …nd a good initial point for iterations one can

use homotopy: ”...start with a version of the model which is easy to solve,

then modify these parameters slowly to go to the desired solution.... It is

often possible to …nd such ”known” solutions and to build a bridge that

goes to the desired solution” (Marcet and Lorenzoni 1999, p. 156). One can

also start from a solution, which is previously computed by using another

numerical method, such as the log-linear approximation (see Christiano and

Fisher, 2000). It is evident, however, that the need to search for an initial

point can seriously complicate implementing PEA in practice.

This paper describes a simple modi…cation that enhances the convergence

property of PEA. We consider the version of the algorithm that evaluates the

expectations by using Monte Carlo simulation, as in den Haan and Marcet

(1990). Our idea is to rule out the possibility of (ex)implosive behavior by

arti…cially restricting the simulated series within certain bounds. As the

solution is re…ned along the iterations, the bounds are gradually removed.

We call this modi…cation ”moving bounds”.

Introducing the moving bounds resolves the problem of …nding a good
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initial guess in the sense that the modi…ed PEA is able to converge even if

the initial guess is not very accurate. In our example, the modi…ed PEA can

systematically …nd the stochastic solution starting from the nonstochastic

steady state. It is also important to mention that the practical implemen-

tation of the moving bounds is simple: one only has to automatically insert

several lines in the original PEA code. In the remainder of the paper, we

formally describe the modi…cation of the moving bounds and provide an

illustrative example.

2 THE MOVING BOUNDS

We modify PEA described in Marcet and Lorenzoni (1999) to include the

moving bounds. Consider an economy, which is described by a vector of n

variables, zt, and a vector of s exogenously given shocks, ut. It is assumed

that the process fzt; utg is represented by a system

g (Et [Á (zt+1; zt)] ; zt; zt¡1; ut) = 0 for all t, (1)

where g : Rm £Rn £Rn £Rs ! Rq and Á : R2n ! Rm; the vector zt includes

all endogenous and exogenous variables that are inside the expectation and ut

is a …rst-order Markov process. It is assumed that zt is uniquely determined

by (1) if the rest of the arguments are given.

We consider only a recursive solution such that the conditional expecta-
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tion can be represented by a time-invariant function © (xt) = Et [Á (zt+1; zt)],

where xt is a …nite dimensional subset of (zt¡1; ut) : If the function © (¢) can-

not be derived analytically, we approximate © (¢) by a parametric function

Ã (¯; x) ; ¯ 2 Rv. The objective will be to …nd ¯¤ such that Ã (¯¤; x) is the

best approximation to © (x) given the functional form Ã (¢)

¯¤ = arg min
¯2Rv

kÃ (¯; x) ¡ © (x)k :

This can be done by using the following iterative procedure.

² Step 1: Fix upper and lower bounds, z and z, for the process fzt (¯) ; utg :

For an initial iteration i = 0; …x ¯ = ¯ (0) 2 Rv. Fix initial conditions

u0 and z0; draw and …x a random series futgT
t=1 from a given distribu-

tion. Replace the conditional expectation in (1) by a function Ã (¯; x)

and compute the inverse of (1) with respect to the second argument to

obtain

zt = h (Ã (¯; xt (¯)) ; zt¡1; ut) : (2)

² Step 2: For a given ¯ 2 Rv and given bounds z and z, recursively

calculate fzt (¯) ; utgT
t=1 according to

zt (¯) = z if zt (¯) · z;
zt (¯) = z if zt (¯) ¸ z;
zt (¯) = h (Ã (¯; xt (¯)) ; zt¡1; ut) if z < zt (¯) < z:
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² Step 3: Find a G (¯) that satis…es

G (¯) = arg min
»2Rv

kÁ (zt+1 (¯) ; zt (¯)) ¡ Ã (»; xt (¯))k :

² Step 4: Compute the vector ¯ (i + 1) for the next iteration

¯ (i + 1) = (1 ¡ ¹) ¯ (i) + ¹G (¯ (i)) ; ¹ 2 (0; 1) :

² Step 5: Compute z (i + 1) and z (i + 1) for the next iteration

z (i + 1) = z (i) ¡ ¢ (i) ;

z (i + 1) = z (i) + ¢ (i) :

where ¢ (i) and ¢ (i) are the corresponding steps.

Iterate on Steps 2 ¡ 5 until ¯¤ = G (¯¤) and z < zt (¯¤) < z for all t:

To perform Step 3; one can run a nonlinear least-squares regression with

the sample fzt (¯) ; utgT
t=1 ; taking Á (zt+1 (¯) ; zt (¯)) as a dependent variable,

Ã (¢) as an explanatory function and » as a parameter vector to be estimated.

We will not discuss the choice of the functional form for the approximation,

the parameter number, the simulation length, etc. as all these are extensively

analyzed in the previous literature, e.g., Marcet and Lorenzoni (1999). Here,

we only focus on the issue of convergence.
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Thus, our modi…cation is to arti…cially restrict the simulated series, z <

zt (¯¤) < z. If z and z are set to ¡1 and +1, respectively, the modi…ed

version is equivalent to the original one. The role of the bounds is discussed

below.

Unlike the traditional value-iterative methods, PEA does not have the

property of global convergence. To be precise, if the approximation Ã (¯; x)

happens to be far from the true decision rule, © (x), then the simulated series

fzt (¯) ; utgT
t=1 become highly nonstationary; as a result, the regression does

not work appropriately and the algorithm diverges. Hence, one has to initially

choose and subsequently update ¯ such that Ã (¯; x) remains su¢ciently

close to the true decision rule, © (x) : The need to ful…ll this requirement can

complicate the use of PEA in practice, e.g., one has to search for an initial

guess by using homotopy or the log-linear approximation.

We approach the problem from a di¤erent perspective. Speci…cally, rather

than trying to ensure that Ã (¯; x) always remains close to © (x), we attempt

to enhance the convergence property of PEA and, consequently, to prevent

the algorithm from failing if the approximation happens to be far from the

true decision rule. The moving-bounds method exploits the fact that under

the true decision rule, © (x), the process fzt; utgT
t=1 is stationary. The bounds

arti…cially induce the stationarity of possibly (ex)implosive simulated series

8



fzt (¯) ; utgT
t=1 by not allowing such series to go beyond a …xed range [z; z] :

This range is small, initially. However, it increases at each subsequent iter-

ation. The bounds, therefore, play a stabilizing role at the beginning, when

the approximation Ã (¯; x) is probably not accurate. As PEA converges to

the stationary solution, the bounds gradually loose their importance and

eventually become completely irrelevant.

In practice, there is no need to impose bounds on all the simulated se-

ries. It is su¢cient to restrict only the series for endogenous state variables,

which are calculated by using recursion and thus, have a natural tendency

to (ex)implode. In general, the remaining variables will be continuous func-

tions of state variables and thus, will be restricted automatically. Also, in

some applications, there is no need to readjust (move) the bounds on each

iteration. It is possible to …x the bounds z and z at the beginning so that

the algorithm will eventually converge.

We discuss a possible choice of the moving bounds parameters in the

next section. As an initial guess, we use the nonstochastic steady state. An

advantage of this approach is that the initial point is computed in a simple

and systematic manner. The drawback is that the nonstochastic steady state

solution can be far from the true stochastic solution and hence, the conver-

gence can be slow. It is important to mention that using the steady state as
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an initial guess is not feasible within the original PEA framework.

3 AN EXAMPLE

To illustrate the application of the moving bounds method, we consider the

simplest one-sector stochastic growth model

max
fct;ktg1

t=0

E0

1X
t=0

±t c1¡°
t ¡ 1

1 ¡ °

s.t. ct + kt = (1 ¡ d) kt¡1 + µtk
®
t¡1;

where log µt = ½ log µt¡1 + ²t with ²t » N (0; ¾2), initial condition (k¡1; µ0)

is given and ® 2 (0; 1). If the utility is logarithmic, ° = 1, and there is

full depreciation of capital, d = 1, the model allows for an analytic solution:

ct = (1 ¡ ®±) µtk
®
t¡1. In general, the closed form solution to this model is not

known.

The previous paper by den Haan and Marcet (1990) solves this model

under ° = 1 by using PEA and the homotopy approach. They start from

the solution to the model under d = 1 and change d from 1 to 0 in 10 steps;

they calculate the solution for each step and employ it as the initial guess

for the next d:

We show how to solve the model by using the modi…ed version of PEA.
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Following den Haan and Marcet (1990), we approximate the conditional ex-

pectation by

Et

£
c¡°

t+1

¡
1 ¡ d + ®µt+1k

®¡1
t

¢¤ ' exp (¯0 + ¯1 log µt + ¯2 log kt¡1) ;

where ¯ = (¯0; ¯1; ¯2) is a vector of coe¢cients to be found. We can calibrate

¯ as

¯0 = ln
£
c¡°

ss

¡
1 ¡ d + ®µssk

®¡1
ss

¢¤
; ¯1 = 0; ¯2 = 0:

However, to illustrate the convergence ability of the modi…ed PEA, in the

supplied MATLAB program, we draw ¯1 and ¯2 from the Normal distribu-

tion, N (0; 1). The algorithm has no di¢culty in converging starting from

such random initial condition.

The moving bounds parameters as follows

k (i) = kss exp (¡ai) ;

k (i) = kss (2 ¡ exp (¡ai)) ;

where a > 0, i is the number of iterations performed, and the variables with

the subscript "ss" are the steady state values. Under this choice, on the

…rst iteration (i = 0) ; the simulated series coincide with the steady state
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solution, zt (¯) = zss for all t: On the subsequent iterations, the lower and

upper bounds gradually move approaching, 0 and 2zss; respectively. The

parameter a determines the pace at which the bounds are moved.

To simulate the model, we …x the model’s parameters as follows

® ± ° d ½ ¾ k¡1 µ0

0:33 0:95 1 0:02 0:95 0:01 kss 1

We choose the updating PEA parameter ¹ = 0:5: We set the moving-bounds

parameter to a = 0:007, which corresponds approximately to having z =

0:5zss and z = 1:5zss after 100 iterations. We …x the length of simulation

to T = 1000 periods. The convergence criterion used is that the L2 distance

between vectors ¯ obtained in two subsequent iterations is less than 10¡5.

By construction, the moving bounds modi…cation may help PEA to con-

verge, although it may not a¤ect the …nal solution. Therefore, we will not

provide any results regarding the properties of the solution; the discussion

in den Haan and Marcet (1990, 1994) applies to the modi…ed PEA without

changes. We shall just illustrate how the moving bounds method works in

practice.

Figure 1 and 2 show two examples of the stochastic simulations. The

series plotted in each row are consumption, capital and the value of the

expression inside the conditional expectation, respectively. The …rst row,

”no bounds”, corresponds to the …rst iteration of the original PEA, when
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no restrictions are imposed on the simulated series. The subsequent rows,

”i = 0”, ”i = 1”, etc. are the simulated series obtained after i iterations are

performed. The last row shows the …nal time series solution.

As we can see, when no restrictions are imposed, capital series become

highly nonstationary. In the …rst case (…gure 1), capital explodes quickly to

almost 20 steady state levels, whereas in the second case (…gure 2), capital

implodes to 0 in less than 100 periods. These graphs illustrate the problem

of the initial point in the original PEA framework. To be speci…c, our initial

guess of the steady state solution here proved to be inaccurate and led to

nonstationary series which may not be used in the regression. It is not sur-

prising, therefore, that the original PEA might have di¢culty in converging.

As it follows from subsequent graphs, the poor initial guess does not create

a problem for the modi…ed PEA. Initially, ”i = 0”, the bounds make the

simulated series to coincide with the steady state. On the next iteration, ”i =

1”, the possible range for capital increases; the capital series start ‡uctuating

and hitting the bounds. On the subsequent iterations, the solution re…nes

and the range for capital continues to increase; the bounds are touched less

and less frequently and eventually, are never in operation. At this point, the

task of the moving bounds is completed, but, the iterations continue till the

required accuracy in the …xed point is achieved.
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We must point out that the convergence ability of the modi…ed PEA is

practically comparable to the property of global convergence of contraction

mapping methods. One can easily check that our simple program is capable of

…nding the solution under any meaningful values of the model’s parameters.

Furthermore, the property of convergence is not a¤ected by a choice of the

updating procedure, e.g., one can assume full updating by setting ¹ = 1:

Finally, the algorithm has no di¢culty in converging when the simulation

length increases to 10000 or even to 100000 periods.

4 CONCLUSIONS

This paper suggests a simple modi…cation that enhances the convergence

capability of PEA. Speci…cally, the modi…ed PEA does not su¤er from the

problem of the poor initial guess and can systematically converge starting

from the nonstochastic steady state solution. In the example considered,

the property of convergence proved to be robust to all meaningful changes

in both the model’s and the algorithm’s parameters. We discuss only one

example, however, we …nd the moving bounds modi…cation useful in several

other applications.
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%     MATLAB program to solve the neoclassical stochastic
%     growth model by using PEA with the moving bounds.
%
%     1. PEAmbound.m
%     2. objective.m
%
%     May 7, 2001
%
%     Written by Lilia Maliar and Serguei Maliar, University of Alicante.
%     -------------------------------------------------------------------

clear all;

% 1. Initialize the model parameters
% ----------------------------------
alpha   = 0.33;         % Capital share
delta   = .95;          % Discount factor
gam     = 1.0;          % Risk aversion parameter
d       = .02;          % Depreciation rate
sigma   = .01;          % Standard deviation for log noise
rho     = 0.95;         % Persistence of log technology shock
T       = 1000;         % Length of simulation

% 2. Allocate memory for the simulates series
% -------------------------------------------
tet  = zeros(T,1);      % Technology shocks
k    = zeros(T+1,1);    % Capital
c    = zeros(T,1);      % Consumption
e    = zeros(T-1,1);    % Conditional expectation

% 3. The steady state of k, c and the expectation
% -----------------------------------------------
ks = ( (1-delta+delta*d) / (alpha*delta) )^(1/(alpha-1) );
cs = ks^alpha - d*ks;
es = cs^(-gam)*( 1-d+alpha*ks^(alpha-1) );

% 4. Initial values of capital and technology shock
% -------------------------------------------------
k(1)   = ks;            % Initial value of capital
tet(1) = 1;             % Initial value of shock

% 5. Draw the Technology Shocks
% -----------------------------
epsi = randn(T,1)*sigma;
for t = 2:T; tet(t) = tet(t-1) r̂ho*exp(epsi(t)); end;

% 6. Initialize the Algorithm Parameters
% --------------------------------------
beta    = [log( es ); 0.00001; 0.00001];   % Initial polinomial coefficients
beta    = [log(es)*rand; rand; rand];   % Initial polinomial coefficients
crate          = 0.007;                              % Speed of moving the bound
criter  = 1e-5;                         % Convergence criterion
update  = 1.0;                            % Updating parameter for homotopy

% 7. The Main Loop
% -----------------
iteration  = 0;                                        % Initially, iteration is 0
dif      = 2e-5;    % Initally, criterion is not satified

while (dif > criter)|(hit==1)
up_bound  = ks*(2-exp(-crate*iteration));     % Upper bound
low_bound = ks*exp(-crate*iteration);         % Lower bound
hit       = 0;                                % Indicator, 1 (0) = bound is (not) hit ;

% 7.1 Given 'beta', compute the time series
% -----------------------------------------

for t = 1:T
      uprime = exp( beta(1) + beta(2)*log(k(t)) + beta(3)*log(tet(t)));
      c(t) = ( delta*uprime )^(-1/gam);
      k(t+1) = k(t)^alpha*tet(t) - c(t) + (1-d)*k(t);
      if k(t+1) > up_bound
          k(t+1) = up_bound; hit=1;
      elseif k(t+1) < low_bound
          k(t+1) = low_bound; hit=1;
      end;
      c(t) = k(t)^alpha*tet(t)  + (1-d)*k(t)-k(t+1);



   end;

% 7.2 Given simulated time series, compute the expectation part
% -------------------------------------------------------------
   for t = 1:T-1
       e(t) = c(t+1)^(-gam)*(1-d+k(t+1)^(alpha-1)*alpha*tet(t+1));
   end;

% 7.3 Recompute 'beta' by using NLLS regression
% ---------------------------------------------
   x = [ones(T-1,1) log( k(1:T-1) ) log( tet(1:T-1) )];  % Regressors
   ksi = nlinfit(x,e,'objective',beta);                  % NLLS regression
   iteration                                             % Display iteration
   dif = norm(beta-ksi)                                  % Display difference between
   beta = update*ksi + (1-update)*beta;                  % Update the coefficients (homotopy)
   iteration = iteration+1;              % Next iteration

end;

% 8. Plot the time series solution y, c and k
% -------------------------------------------
time=(1:1:T);
subplot(3,1,1);
plot (time,k(1:T,1)), xlabel('t'), ylabel('Capital')
title('Time series solution');
subplot(3,1,2);
plot (time,c), xlabel('t'), ylabel('Consumption')
subplot(3,1,3);
plot (time,tet.*k(1:T,1).^alpha), xlabel('t'), ylabel('Output')

% This is a separate file called "objective"
% -------------------------------------------
% The objective function for the NLLS
% May 7, 2001
%
% ksiz   initial coefficients
% x      regressors
% y      explanatory variable
% ---------------------------

function y = objective(ksiz,x)
y=exp(x*ksiz);



References

[1] Christiano, L., and Fisher, J. (2000), ”Algorithms for solving dynamic

models with occasionally binding constraints,” Journal of Economic Dy-

namics and Control, 24, 1179-1232.

[2] Den Haan, W., and Marcet, A. (1990), ”Solving the stochastic growth

model by parametrizing expectations,” Journal of Business and Eco-

nomic Statistics, 8, 31-34.

[3] Den Haan, W., and Marcet, A. (1994), ”Accuracy in simulations,” Review

of Economic Studies, 6, 3-17.

[4] Marcet, A., and Lorenzoni, G. (1999), ”The parameterized expectation

approach: some practical issues,” in Computational Methods for Study of

Dynamic Economies, eds. R. Marimon and A. Scott, New York: Oxford

University Press, pp. 143-171.

[5] Miranda, M., and Helmberger, P. (1988), ”The e¤ect of commodity price

stabilization programs,” American Economic Review, 78, 46-58.

[6] Wright, B., and Williams, J. (1982), ”The economic role of commodity

storage,” Economic Journal, 92, 596-614.

19


