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1. INTRODUCTION

We introduce a numerical algorithm for solving dynamic economic models that merges
stochastic simulation and projection approaches: we use simulation to approximate the
ergodic measure of the solution, we cover the support of the constructed ergodic mea-
sure with a fixed grid, and we use projection techniques to accurately solve the model on
that grid. The construction of the grid is the key novel piece of our analysis: we replace
a large cloud of simulated points with a small set of “representative” points. We present
three alternative techniques for constructing representative points: a clustering method,
an e-distinguishable set method, and a locally-adaptive variant of the e-distinguishable
set method. As an illustration, we solve one- and multi-agent neoclassical growth mod-
els and a large-scale new Keynesian model with a zero lower bound on nominal interest
rates. The proposed solution algorithm is tractable in problems with high dimensional-
ity (hundreds of state variables) on a desktop computer.

One broad class of numerical methods for solving dynamic economic models builds
on stochastic simulation. First, this class includes iterative methods for solving rational
expectations models; see, for example, Marcet (1988), Smith (1993), Maliar and Maliar
(2005), and Judd, Maliar, and Maliar (2011a). Second, it includes learning-based anal-
ysis; see, for example, Marcet and Sargent (1989), Bertsekas and Tsitsiklis (1996), Pakes
and McGuire (2001), and Powell (2011). Finally, it includes methods that use simula-
tion to reduce information sets of decision makers; see, for example, Krusell and Smith
(1998) and Weintraub, Benkard, and Van Roy (2008). The key advantage of stochastic
simulation methods is that the geometry of the set on which the solution is computed
is adaptive. Namely, these methods solve dynamic economic models on a set of points
produced by stochastic simulation, thus avoiding the cost of finding solutions in areas
of the state space that are effectively never visited in equilibrium; see Judd, Maliar, and
Maliar (2011a) for a discussion. However, a set of simulated points itself is not an effi-
cient choice either as a grid for approximating a solution (it contains many closely lo-
cated and, hence, redundant points) or as a set of nodes for approximating expectation
functions (the accuracy of Monte Carlo integration is low).

Another broad class of numerical methods for solving dynamic economic models re-
lies on projection techniques; see, for example, Wright and Williams (1984), Judd (1992),
Christiano and Fisher (2000), Krueger and Kubler (2004), Aruoba, Ferndndez-Villaverde,
and Rubio-Ramirez (2006), Anderson, Kim, and Yun (2010), Malin, Krueger, and Kubler
(2011), Pichler (2011), and Judd, Maliar, Maliar, and Valero (2014). Projection methods
use efficient discretizations of the state space and effective deterministic integration
methods, and they deliver very accurate solutions. However, a conventional projection
method is limited to a fixed geometry such as a multidimensional hypercube. So as to
capture all points that are visited in equilibrium, a hypercube must typically include
large areas of the state space that have a low probability of happening in equilibrium.
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FiGURE 1. (a) A set of random draws. (b) Cluster grid. (c) EDS grid. (d) Adaptive EDS grid.

Moreover, the fraction of the irrelevant areas of a hypercube domain grows rapidly with
the dimensionality of the problem.

The solution method introduced in this paper combines the best features of stochas-
tic simulation and projection methods, namely, it combines the adaptive geometry of
stochastic simulation methods with the efficient discretization techniques of projection
methods. As an example, in Figure 1(a), we show a set of points that is obtained by sim-
ulating two state variables x} and x? of a typical dynamic economic model; this set of
points identifies a high-probability area of the state space. In Figure 1(b), (c), and (d), we
distinguish three different subsets of the simulated points: we call them grids.

The grid shown in Figure 1(b) is constructed using methods from clustering anal-
ysis: we partition the simulated data into clusters and we compute the centers of the
clusters. The resulting cluster grid mimics the density function by placing more points
in regions where the cloud of simulated points is more dense and fewer points where it
isless dense. The grid shown in Figure 1(c) is produced by an e-distinguishable set (EDS)
technique: we select a subset of points that are situated at the distance at least ¢ from
one another, where ¢ > 0 is a parameter. The EDS grid is roughly uniform. Finally, in
Figure 1(d), we show an example of a locally-adaptive EDS grid: instead of using a con-
stant ¢, we allow it to vary across the domain, that is, for each point (x}, x%), we have a
different ¢, that is, it is a function ¢ = a(x}, x%) (in this specific example, we decrease the
value of & as we approach a hyperbola x! = [x?]?). This kind of grid construction enables
us to control the density of grid points (and, hence, the quality of approximation) over
the solution domain.

An important question is. Which of these techniques delivers the best grid of points
to be used within a projection method? Crude simulation shown in Figure 1(a) is not
an efficient choice: having many closely located grid points does not increase accuracy,
but does increase the cost. Cluster grids tend to produce a good fit in a high-probability
area of the state space, but may result in larger errors in low-probability areas of the
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state space. EDS grids with a constant ¢ tend to deliver more uniform accuracy. Finally,
locally-adaptive EDS grids allow us to automate the control of accuracy over the solu-
tion domain using the following two-step procedure: (i) compute a solution using an
EDS grid with a constant &£ and evaluate the quality of approximation; (ii) define ¢ to be
a decreasing function of the size of approximation errors, construct an EDS grid with
a space-dependent ¢, and recompute the solution; iterate on steps (i) and (ii) if neces-
sary. Thus, in those areas in which errors are large, we use a smaller ¢; this increases the
density of grid points and, hence, augments the accuracy.

An important role in our analysis plays the choice of an interpolation method, that
is, the way in which we approximate functions off the EDS grid. We consider two kinds
of interpolant. One is a global polynomial function that approximates a given decision
function on the whole solution domain. The other is a combination of local polynomial
bases, each of which approximates a decision function only in a small neighborhood
of a given EDS grid point; a global approximation is then obtained by tying up local
approximations together. There are many ways to construct local approximations and
to tie them up into a global approximation. Our baseline technique is as follows: For
each grid point x in the EDS grid, we construct a hypercube centered at that specific
point. We populate this hypercube with low-discrepancy points (namely, Sobol points)
and we solve the model using those points as a grid; see Niederreiter (1992) for a review
of low-discrepancy methods. Here, we compute a solution to the model as many times
as the number of points in the EDS grid (since we construct a Sobol grid around each
EDS grid point). Finally, to simulate a solution, we use a nearest-neighbor approach.

We next incorporate the EDS and cluster-grid techniques into a numerical method
for solving dynamic economic models. Our solution method requires some initial guess
about the true solution to the model at the initialization stage, such as a log-linearized
solution. In particular, we need an initial guess to produce simulated points that we
can use for constructing a grid. We therefore proceed iteratively: guess a solution,
simulate the model, construct a grid, solve the model on that grid using a projection
method, and perform a few iterations on these steps until the grid converges. We com-
plement the efficient grid construction with other computational techniques suitable
for high-dimensional problems, namely, low-cost monomial integration rules and a
fixed-point iteration method for finding parameters of equilibrium rules.! Taken to-
gether, these techniques make our solution algorithm tractable in problems with high
dimensionality—hundreds of state variables!

We first apply the EDS method to the standard neoclassical growth models with one
and multiple agents (countries). The EDS method delivers accuracy levels comparable
to the best accuracy attained in the related literature. In particular, we are able to com-
pute global quadratic solutions for equilibrium problems with up to 80 state variables
on a desktop computer using a serial MATLAB software (the running time ranges from
30 seconds to 24 hours). The maximum unit-free approximation error on a stochastic
simulation is always less than 0.01%.

In the present paper, we focus on equilibrium problems in which solutions are characterized by Euler
equations. However, in a working paper version of the paper (Judd, Maliar, and Maliar (2012)), we also show
applications of the EDS technique to dynamic programming.
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Our second and more novel application is a new Keynesian model that includes
a Taylor rule with a zero lower bound (ZLB) on nominal interest rates; see Woodford
(2003) and Gali (2008). This model has eight state variables and is characterized by a
kink in equilibrium rules due to the ZLB. We focus on equilibrium in which target infla-
tion coincides with actual inflation in the steady state. We parameterize the model us-
ing the estimates of Smets and Wouters (2003, 2007) and Del Negro, Schorfheide, Smets,
and Wouters (2007). The EDS method is tractable for global polynomial approximations
of degrees 2 and 3 (at least): the running time for solving the new Keynesian model is
less than 25 minutes in all the cases considered; and for some versions of our method,
the running time can be as low as 5 seconds at only moderate reductions in accuracy.
For comparison, we also assess the performance of perturbation solutions of orders 1
and 2. We find that if the volatility of shocks is low and if we allow for negative nomi-
nal interest rates, both the EDS and perturbation methods deliver sufficiently accurate
solutions. However, if either the ZLB is imposed or the volatility of shocks increases,
the perturbation method is significantly less accurate than the EDS method. In partic-
ular, under some empirically relevant parameterizations, the perturbation methods of
orders 1 and 2 produce errors that are as large as 25% and 38% on a stochastic simula-
tion, while the corresponding errors for the EDS method are less than 5%. The difference
between the EDS and perturbation solutions is economically significant. Namely, when
the ZLB is active, the perturbation method considerably understates the duration of the
ZLB episodes and the magnitude of the crises. We also solve the new Keynesian model
with an active ZLB using a locally-adaptive EDS method, and we find that consecutive
refinements of the EDS grid can considerably increase the quality of approximation.

The mainstream of the literature on new Keynesian models relies on local perturba-
tion solution methods.? However, recent developments in numerical analysis triggered
a quickly growing body of literature that computes nonlinear solutions to medium- and
large-scale new Keynesian models; see Judd, Maliar, and Maliar (2011b), Braun, Kérber,
and Waki (2012), Coibion, Gorodnichenko, and Wieland (2012), Fernandez-Villaverde,
Gordon, Guerrén-Quintana, and Rubio-Ramirez (2012), Gust, Lopez-Salido, and Smith
(2012), Schmitt-Grohé and Uribe (2012), Aruoba and Schorfheide (2014), Gavion, Keen,
Richter, and Throckmorton (2013), Mertens and Ravn (2013), and Richter and Throck-
morton (2013). As is argued in Judd, Maliar, and Maliar (2011b), Ferndndez-Villaverde
et al. (2012), and Braun, Korber, and Waki (2012), perturbation methods, which were
traditionally used in this literature, do not provide accurate approximation in the con-
text of new Keynesian models with the ZLB. Moreover, recent papers of Schmitt-Grohé
and Uribe (2012), Mertens and Ravn (2013), and Aruoba and Schorfheide (2014) argue
that new Keynesian economies may have multiple equilibria in the presence of ZLB. In
particular, the last paper accurately computes a deflation and sunspot equilibria with a
full set of stochastic shocks using a modified variant of a cluster-grid algorithm (CGA)
introduced in Judd, Maliar, and Maliar (2010, 2011b). Namely, to increase the accuracy

2Most papers use linear approximations. However, there are also papers that compute quadratic ap-
proximations (e.g., Kollmann (2002) and Schmitt-Grohé and Uribe (2007)) and cubic approximations (e.g.,
Rudebusch and Swanson (2008)). Earlier applications of nonlinear solution methods either focus on low-
dimensional problems or employ simplifying assumptions; see Adam and Billi (2006), Anderson, Kim, and
Yun (2010), and Adjemian and Juillard (2011).
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of solutions in the ZLB area, first, they add grid points near the ZLB area using the ac-
tual data on the U.S. economy; second, they apply two piecewise bases to separately
approximate the solution in the areas with active and nonactive ZLB.

Our locally-adaptive EDS methods are related to several other methods in the lit-
erature. First, the EDS technique with local bases has a similarity to finite-element ap-
proximation methods that construct a global approximation using a combination of dis-
joint local approximations; see Hughes (1987) for a mathematic review of finite-element
methods, and see McGrattan (1996) for their applications to economics. Second, a
locally-adaptive EDS technique with space-dependent ¢ resembles locally-adaptive
sparse-grid techniques that refine an approximation by introducing new grid points and
basis functions in those areas in which the quality of approximation is low; see Ma and
Zabaras (2009) for a review of such methods, and see Brumm and Scheidegger (2013)
for their applications to economic problems. Finally, a locally-adaptive EDS technique
is also related to the analysis of Aruoba and Schorfheide (2014), who show the benefits
of adaptive grid points and basis functions in the context of a new Keynesian model with
the ZLB.

The CGA and EDS projection methods can be used to accurately solve small-scale
models that were previously studied using other global solution methods.> However,
a comparative advantage of these algorithms is their ability to solve large-scale prob-
lems that other methods find intractable or expensive. The speed of the CGA and
EDS algorithms also makes them potentially useful in estimation methods that solve
economic models at many parameters vectors; see Ferndndez-Villaverde and Rubio-
Ramirez (2007) and Winschel and Krétzig (2010). Finally, cluster grids and EDS grids can
be used in other applications that require us to produce a discrete approximation to the
ergodic distribution of a stochastic process with a continuous density function, in line
with Tauchen and Hussey (1991).

The rest of the paper is as follows: In Section 2, we describe the construction of the
simulation-based grids using EDS, locally-adaptive EDS, and clustering techniques. In
Section 3, we integrate the EDS grid into a projection method for solving dynamic eco-
nomic models. In Section 4, we apply the EDS algorithm to solve one- and multi-agent
neoclassical growth models. In Section 5, we compute a solution to a new Keynesian
model with the ZLB. In Section 6, we conclude. An appendix and replication files are
available in supplementary files on the journal website, http://qeconomics.org/supp/
364/supplement.pdf and http://geconomics.org/supp/364/code_and_data.zip.

2. DISCRETE APPROXIMATIONS TO THE ERGODIC SET

In this section, we introduce techniques that produce a discrete approximation to the
ergodic set of a stochastic process with a continuous density function. Later, we will use
the resulting discrete approximation as a grid for finding a solution in the context of a
projection-style numerical method for solving dynamic economic models.

3For reviews of methods for solving dynamic economic models, see Taylor and Uhlig (1990), Gaspar
and Judd (1997), Judd (1998), Marimon and Scott (1999), Santos (1999), Christiano and Fisher (2000), Adda
and Cooper (2003), Aruoba, Ferndndez-Villaverde, and Rubio-Ramirez (2006), Den Haan (2010), Kollmann,
Maliar, Malin, and Pichler (2011), and Maliar and Maliar (2014).
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2.1 A class of stochastic processes

We focus on a class of discrete-time stochastic processes that can be represented in the
form

xt+1=g0(-xl7€l+1)’ t=07 17"'7 (1)

where € € E C R” is a vector of p independent and identically distributed shocks, and
x € X C R%is avector of d (exogenous and endogenous) state variables. The distribution
of shocks is given by a probability measure Q defined on a measurable space (£, E), and
x is endowed with its relative Borel o -algebra denoted by X.

Many dynamic economic models have equilibrium laws of motion for state variables
that can be represented by a stochastic system in the form (1). For example, the standard
neoclassical growth model, described in Section 4, has the laws of motion for capital
and productivity that are given by k1 = K(k, a;) and a,,1 = a? exp(€,11), respectively,
where €,,1 ~ N (0, 0%), o > 0and p € (—1, 1); by setting x, = (k,, a,), we arrive at (1).

To characterize the dynamics of (1), we use the following definitions.

DEerINITION 1. A transition probability is a function P: X x X — [0, 1] that has two
properties: (i) for each measurable set A € X, P(-, A) is X-measurable function; (ii) for
each point x € X, P(x, -) is a probability measure on (X, X).

DEerFINITION 2. An (adjoint) Markov operator is a mapping M*:X — X such that
Byt (A) = (M*u)(A) = [ Px, Ap(dx).

DEerINITION 3. An invariant probability measure w is a fixed point of the Markov oper-
ator M* satisfying u = M*pu.

DEFINITION 4. A set Ais called invariant if P(x, A) =1 for all x € A. An invariant set A*
is called ergodic if it has no proper invariant subset A C A*.

DEFINITION 5. An invariant measure u is called ergodic if either w(A) =0 or n(A) =1
for every invariant set A.

These definitions are standard to the literature on dynamic economic models; see
Stokey, Lucas, and Prescott (1989) and Stachursky (2009). The function P(x, A) is the
probability that stochastic system (1) whose state today is x, = x and will move tomor-
row to a state x;;1 € A. The Markov operator M* maps today’s probability into tomor-
row’s probability, namely, if u;(.A) is the probability that the system (1) is in A at ¢, then
(M*uy)(A) is the probability that the system will remain in the same set at ¢ + 1. Apply-
ing the operator M* iteratively, we can describe the evolution of the probability starting
from a given ug € X. An invariant probability measure u is a steady-state solution of the
stochastic system (1). An invariant set .4 is the one that keeps the system (1) forever in A,
and an ergodic set .A* is an invariant set of the smallest possible size. Finally, an invari-
ant probability measure is ergodic if all the probability is concentrated in just one of the
invariant sets.
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The dynamics of (1) produced by economic models can be very complex. In par-
ticular, the Markov process (1) may have no invariant measure or may have multiple
invariant measures. These cases represent challenges to numerical methods that ap-
proximate solutions to dynamic economic models. However, there is another challenge
that numerical methods face—the curse of dimensionality. The most regular problem
with a unique, smooth and well behaved solution can become intractable when the di-
mensionality of the state space gets large. The challenge of high dimensionality is the
focus of our analysis. We employ the simplest possible set of assumptions that allows us
to describe and to test computational techniques that are tractable in high-dimensional
applications.

AssumPTION 1. There exist a unique ergodic set A* and the associated ergodic mea-
sure .

AssuMPTION 2. The ergodic measure p admits a representation in the form of a density
function g: X — R* such that [ , g(x) dx = uw(A) for every A C X.

2.2 An EDS technique for approximating the ergodic set

We propose a two-step procedure for forming a discrete approximation to the ergodic
set. First, we identify an area of the state space that contains nearly all the probability
mass. Second, we cover this area with a finite set of points that are roughly evenly spaced.

2.2.1 An essentially ergodic set 'We define a high-probability area of the state space us-
ing the level set of the density function.

DEFINITION 6. A set A" C A* is called an n-level ergodic set if > 0 and
AT={xeX:g(x)>=n}.

The mass of A" under the density g(x) is equal to p(n) = fg(x)Zn gx)dx.If p(n) ~1,
then A" contains all X except for points where the density is lowest, in which case A" is
called an essentially ergodic set.

By construction, the correspondence A":R* = R¢ maps 7 to a compact set. The
correspondence A" is upper semicontinuous but may be not lower semicontinuous
(e.g., if x is drawn from a uniform distribution [0, 1]). Furthermore, if g is multimodal,
then for some values of n, A" may be disconnected (composed of disjoint areas). Finally,
for n > max,{g(x)}, the set A" is empty.

Our approximation to the essentially ergodic set builds on stochastic simulation.
Formally, let P be a set of n independent random draws x1, ..., x,;, € R4 generated with
the distribution function w:R¢ — R*. For a given subset J € R?, we define C(P;J) as a
characteristic function that counts the number of points from P in J. Let J be a family
generated by the intersection of all subintervals of R? of the form ]_[?:1[—00, v;), where
Vi > 0.
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AssumpTION 3. The empirical distribution function u(J) = @

distribution function w(J) for everyJ € J when n — cc.

converges to the true

If random draws are independent, the asymptotic rate of convergence of & to u
is given by the so-called law of iterated logarithms of Kiefer’s (1961), namely, it is
(loglogn)'/2(2n)~1/2, For serially correlated processes like (1), the convergence rate de-
pends on specific assumptions; see Zhao and Woodroofe (2008) for the results on gen-
eral stationary processes.

We use the following algorithm to select a subset of simulated points that belongs to
an essentially ergodic set .A".

ArcoriTHM A" (Selection of Points Within an Essentially Ergodic Set).

Step 1. Simulate (1) for T periods.

Step 2. Select each «th point to get a set P of n points x,...,x, € X C R4,
Step 3. Estimate the density function g(x;) ~ g(x;) for all x; € P.

Step 4. Remove all points for which the density is below 7.

In Step 2, we include in the set P only each «th observation to make random draws
(approximately) independent. As far as Step 3 is concerned, there are various methods
in statistics that can be used to estimate the density function from a given set of data;
see Scott and Sain (2005) for a review. We use one such method, namely, a multivariate
kernel algorithm with a normal kernel that estimates the density function in a point x as

D
) = dZe [ G 21" ] 2)
n(27‘r)d/2h i—1 2h

where / is the bandwidth parameter, and D(x, x;) is the distance between x and x;. The
complexity of Algorithm A" is O(n?) because it requires us to compute pairwise dis-
tances between all the sample points. Finally, in Step 3, we do not choose the density
cutoff n, but choose a fraction of the sample to be removed, §, that is related to n by
p(n) = fg(x)zn g(x)dx =1 — 8. For example, § = 0.05 means that we remove 5% of the
sample that has the lowest density.

2.2.2 An e-distinguishable set Our next objective is to construct a uniformly spaced
set of points that covers the essentially ergodic set (to have a uniformly spaced grid for
a projection method). We proceed by selecting an e-distinguishable subset of simulated
points in which all points are situated at least on the distance ¢ from one another. Simu-
lated points are not uniformly spaced but the EDS subset will be roughly uniform, as we
will show in Appendix A.3.

DErINITION 7. Let (X, D) be a bounded metric space. A set P¢ consisting of points
x{, ., xyeXC R4 is called e-distinguishable if D(x7, xf) >egforalll <i,j<M:i+#j,
where ¢ > 0 is a parameter.
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EDSs are used in mathematical literature that studies entropy; see Temlyakov (2011)
for a review. This literature focuses on a problem of constructing an EDS that covers a
given subset of R? (such as a multidimensional hypercube). We study a different prob-
lem, namely, we construct an EDS for a given discrete set of points. To this purpose, we
introduce the following algorithm.

ArGgoriTHM P? (Construction of an EDS). Let P be a set of n points x1,...,x, € X C R4,
Let P® begin as an empty set, P® = {&}.

Step 1. Select x; € P. Compute D(x;, x;) to all x; in P.
Step 2. Eliminate from P all x; for which D(x;, x;) < e.

Step 3. Add x; to P* and eliminate it from P.

Iterate on Steps 1-3 until all points are eliminated from P.

The complexity of Algorithm P¢ is O(nM), where M is the number of points into
the set P¢. Indeed, consider the worst-case scenario such that ¢ is smaller than all in-
terpoint distances for the first M points. Then the algorithm will go through n — M it-
erations without eliminating any point, and it will eliminate » — M points at the end.
Under this scenario, the complexityis (n — 1)+ (n —2)+---+ (n — M) = Z?il(n —i)=
nM — w < nM.When no points are eliminated from P, thatis, M = n, the complex-
ity is quadratic, O(n?). However, the number of points M in an EDS is bounded from
above if X is bounded; see Proposition 2 in Appendix A.2. This means that asymptoti-
cally, when n — oo, the complexity of Algorithm P¢ is linear, O(n).

2.2.3 Distance between points Both estimating the density function and constructing
an EDS require us to measure the distance between simulated points. Generally, vari-
ables in economic models have different measurement units and are correlated. This af-
fects the distances between the simulated points and, hence, affects the resulting EDS.
Therefore, prior to using Algorithm A" and Algorithm P¢, we normalize and orthogo-
nalize the simulated data.

To be specific, let X € R"*4 be a set of simulated data normalized to zero mean and

unit variance. Let x; = (x}, e, xf) be an observation i = 1 (there are n observations) and
let x* = (x4,...,x5)7 be a variable ¢ (there are d variables), that is, X = (x!,...,x%) =
(x1,...,Xx,) . We first compute the singular value decomposition of X, that is, X =

UQVT, where U € R"*? and IV € R?*¢ are orthogonal matrices, and Q € R4*? is a di-
agonal matrix. We then perform a linear transformation of X using PC = XV'. The
variables PC = (PC', ..., PCd) e R4 are called principal components (PCs) of X and
are orthogonal (uncorrelated), that is, (PC’Z’)TPCZ = 0 for any ¢ # ¢. As a measure of
distance between two observations x; and x;, we use the Euclidean distance between
their PCs, namely, D(x;, x;) = [Zle(PCf — PCf-)z]l/ 2 where all principal components
PC!,..., PC? are normalized to unit variance.
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2.2.4 An illustration of the EDS technique In this section, we will illustrate the EDS
technique described above by way of example. We consider the standard neoclassical
stochastic growth model with a closed-form solution (see Section 4 for a description of
this model). We simulate time series for capital and productivity level of length 1,000,000
periods, and we select a sample of 10,000 observations by taking each 100th point (to
make the draws independent); see Figure 2(a). We orthogonalize the data using the prin-
cipal component (PC) transformation, and we normalize the PCs to unit variance; see
Figure 2(b). We estimate the density function using the multivariate kernel algorithm
with the standard bandwidth of & = n~1/(@+% and we remove from the sample 5% of
simulated points in which the density is lowest; see Figure 2(c). We construct an EDS; see
Figure 2(d). We plot such a set in the PC and original coordinates in Figure 2(e) and (f),
respectively. As we see, the EDS technique delivers a set of points that covers the same
area as does the set of simulated points but that is spaced roughly uniformly.*
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F1GURE 2. (a) Simulated points. (b) Principal components (PCs). (c) Density levels on PCs.
(d) Constructing EDS. (e) EDS on PCs. (f) EDS on original data.

40ur two-step procedure produces an approximation not only to the ergodic set, but to the whole er-
godic distribution (because in the first step, we estimate the density function in all simulated points in-
cluding those that form an e-distinguishable set). The density weights show what fraction of the sample
each representative point represents, and can be used to construct weighted-average approximations. If
our purpose is to construct a set of evenly spaced points, we do not need to use the density weights and
should treat all points equally.



12 Maliar and Maliar Quantitative Economics 6 (2015)

2.2.5 Dispersion and discrepancy of EDS grids In our examples, the EDS grids con-
structed on simulated series appear to be uniform. However, an important question is
whether our construction guarantees the uniformity of grid points in general. We ad-
dress this question in Appendices A.1 and A.3; specifically, we provide formal results
about the degrees of dispersion and discrepancy of EDS grids from a uniform distribu-
tion.

Our analysis is related to recent mathematical literature on covering-number prob-
lems (see Temlyakov (2011)) and random sequential packing problems (see Baryshnikov,
Eichelbacker, Schreiber, and Yukich (2008)). A well known example from this literature
is a car-parking model of Rényi (1958). Cars of a length ¢ park at random locations along
the roadside of a length one subject to a nonoverlap with the previously parked cars. It
is known that when cars arrive at uniform random positions, they are also distributed
uniformly in the limit £ — 0.°

Our analysis differs from Rényi’s (1958) analysis in that cars can arrive at random
positions with an arbitrary density function (normally, we do not know density func-
tions of stochastic processes arising in an economic model that we try to solve). In terms
of Rényi’s (1958) problem, our results are as follows: We show that EDS grids are low-
dispersion sequences for any density function, namely, any two points (cars) in the EDS
grid are situated on the distance between ¢ and 2¢ from each other, and this distance
converges to 0 as ¢ — 0 (see Proposition 1 in Appendix A.1). However, we find that this
fact alone is not sufficient to guarantee the asymptotic uniformity (low discrepancy) of
the EDS grids (see Proposition 3 in Appendix A.3). To see the intuition, consider Rényi’s
(1958) setup such that on the interval [0, A*], evil drivers park their cars on the distance
2¢ to leave as little parking space for other drivers as possible, and on the interval [A*, 1],
a police officer directs the cars to park on the distance ¢ in a socially optimal way. Under
this construction, there are twice as many points in the second subinterval as in the first
one for any ¢ (and this nonuniformity is not reduced when ¢ — 0). Finally, we establish
that even though EDS grids do not possess the property of low-discrepancy sequences
in general, their discrepancy from the uniform distribution is bounded from above for
any density function; see Proposition 3 in Appendix A.3.

2.2.6 Number of points in EDS grids Under our baseline Algorithm P¢, the cardinality
of an EDS grid (i.e., the number of points in it) depends on the value of ¢ > 0: the smaller
is &, the more points are included in the EDS grid. We derive bounds on the number of
points in the EDS grids in Proposition 2 of Appendix A.2; however, the exact relation is
hard to characterize analytically, in particular, because the cardinality of the EDS grid
depends on the order in which points are processed.

In applications, it may be necessary to control the number of grid points, for exam-
ple, in a projection method, we need to construct a grid with a given number of grid
points M. To construct the relation between £ and M = M (&), we can use a simple nu-
merical bisection method.

5Rényi (1958) shows that they occupy about 75% of the roadside at jamming, namely, lim, o E[M]e ~
0.748.
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ALGORITHM M (Construction of an EDS With a Target Number of Points M). For itera-
tioni=1,fixs'.) and ey such that M(sna) <M < M(s!) ).

£ ol

Step 1. On iteration i, take & = -min , construct an EDS, and compute M (&).

Step 2. If M(&) > M, then set e;’;;l) — &; otherwise, set it = .

Iterate on Steps 1 and 2 until M (&) converges.

To find initial values of emax and ey, we use the bounds established in Appendix A.2
(see Proposition 2), namely, we set el = O.Srmaxﬁ_l/d and Sgi)n = rmm(ﬁl/d - DY
where rmax and ryin are, respectively, the largest and smallest PCs of the simulated
points. Since the essentially ergodic set is not necessarily a hypersphere (as is assumed
in Proposition 2), we take ryj, and rmax to be the radii of the limiting hyperspheres that

contain none and all PCs of the simulated points, respectively.

2.3 Reducing the cost of constructing an EDS on the essentially ergodic set

The two-step procedure described in Section 2.2 has a complexity O(n?). This is because
the estimation of the density function in Step 3 of Algorithm A" has a complexity O(n?),
and the construction of an EDS set in Step 1 of Algorithm P¢ has a complexity O(nM).
(The latter is significantly lower than the former if M « n.) The complexity O(n?) does
not imply a substantial cost for the size of applications we study in the present paper;
however, it might be expensive for larger applications.

We now describe an alternative implementation of the two-step procedure that has
a lower complexity, namely, O(nM). The idea is to invert the steps in the two-step pro-
cedure described in Section 2.2, namely, we first construct an EDS with M points using
all simulated points and we then remove from the EDS a subset of points with the lowest
density. Since we need to estimate the density function only in M simulated points, the
complexity is reduced to O(nM).

ALGORITHM P?-CHEAP (Construction of an EDS).

Step 1. Simulate (1) for T periods.

Step 2. Select each kth point to get a set P of n points x1, ..., x, € X CR<.
Step 3. Select an EDS P? of M points, x{, ..., x§, using Algorithm P?.

Step 4. Estimate the density function g(x?) ~ g(x?) for all x? € P® using (2).
Step 5. Remove a fraction of points 6 of P that has the lowest density.

To control the fraction of the sample removed, we use the estimated density func-
8(x%)
P 8(x?)
sample. We therefore can proceed with eliminations of points from the EDS one by one

until their cumulative mass reaches the target value of 6.

tion g. Note that when eliminating a point x}? € P¢, we remove of the original
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FIGURE 3. (a) Simulated points. (b) Principal components (PCs). (c) EDS on PCs. (d) Density
levels on PCs. (e) EDS after removing low-probability points. (f) EDS on original data.

To illustrate the application of the above procedure, we again use the example of
the neoclassical stochastic growth model with a closed-form solution studied in Sec-
tion 2.2.4; see Figure 3(a)—(f).

We first compute the normalized PCs of the original sample; see Figure 3(b) (this
step in the same as in Figure 2(b)). We compute an EDS P¢ on the normalized PCs; see
Figure 3(c). We then estimate the density function in all points of P¢ using the kernel
density algorithm. We next remove from P¢ a set of points that has the lowest density
function and that represents 5% of the sample. The removed points are represented with
crosses in Figure 3(d). The resulting EDS is shown in Figure 3(e). Finally, we plot the EDS
grid in the original coordinates in Figure 3(f).

2.4 Cluster-grid technique

We have described one specific EDS procedure for forming a discrete approximation to
the essentially ergodic set of the stochastic process (1). There are other procedures that
can be used for this purpose. In particular, we can use methods from cluster analysis to
select a set of representative points from a given set of simulated points; see Everitt, Lan-
dau, Leese, and Stahl (2011) for a review of clustering techniques. Namely, we partition
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the simulated data into clusters (groups of closely located points) and we replace each
cluster with one representative point. In this paper, we study two clustering methods
that can be used in the context of our analysis: agglomerative hierarchical and K-means.
The steps of an agglomerative hierarchical method are shown below, and a K-means
method is described in Appendix B.2.6

ALGORITHM P° (Agglomerative Hierarchical Clustering Algorithm).
Initialization. Choose M, the number of clusters to be created.
In a zero-order partition P9, each simulated point represents a cluster.

Step 1. Compute all pairwise distances between the clusters in a partition P,

Step 2. Merge a pair of clusters with the smallest distance to obtain a partition
P(i+1).

Iterate on Steps 1 and 2. Stop when the number of clusters in the partition is M. Repre-
sent each cluster with a simulated point that is closest to the cluster’s center.

As a measure of distance between two clusters, we use Ward’s measure of distance;
see Appendix B.1. In Figure 4(a)-(c), we show an example in which we partition a set
of simulated points into four clusters and construct four representative points. A repre-
sentative point is the closest point to the cluster center (computed as the average of all
observations in the given cluster).

The advantage of the clustering methods is that we can control the number of grid
points directly (while the number of points in an EDS is controlled via ¢). The drawbacks
are that their complexity is higher, namely, it is O(n%) and O(n*M+11og n) for the agglom-
erative hierarchical and K-means algorithms, respectively. Also, the properties of grids
produced by clustering methods are hard to characterize analytically.
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F1GURE 4. (a) Simulated points. (b) Four clusters. (c) Clusters grid.

6The clustering methods were used to produce all the numerical results in the earlier versions of the
paper (Judd, Maliar, and Maliar (2010, 2011b)). In our examples, projection methods operating on cluster
grids and those operating on EDSs deliver comparable accuracy of solutions.
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As in the case of the EDS technique, two versions of the cluster-grid technique can be
constructed: we can first remove the low-density points and then construct representa-
tive points using clustering methods (this is parallel to the basic two-step EDS procedure
of Section 2.2) or we can first construct clusters and then eliminate representative points
in which the density function is the lowest (this is parallel to the cheap version of the
two-step procedure described in Section 2.3). Prior to applying the clustering methods,
we preprocess the data by constructing the normalized PCs, as we do when constructing
an EDS grid in Section 2.2.3.

2.5 Locally-adaptive EDS grids

The locally-adaptive EDS grid technique makes it possible to control the quality of ap-
proximation over the state space. Namely, we place more grid points in those areas in
which the accuracy is low.

In simple cases, we may know a priori that an approximation is less accurate in some
area X; € R4 than in other areas. Consequently, we can use a small &1 in the area X; and
we can use a large ¢, everywhere else. This produces denser grid points in X; than in the
rest of the domain; an example of this construction is shown in Figure 1(d). However, in
the typical case, it is not a priori known where the solution is accurate, and we proceed
as follows.

ALGORITHM P?-LocaLLy ADAPTIVE (Construction of a Locally Adaptive EDS).

Step 1. Define ¢4, ..., &, foragivenset xq,...,x, € X C R4 (initially &; = ¢ for all ).
Step 2. Construct an EDS P? by using ¢; for each x; € X and approximate f% f.
Step 3. Evaluate approximation errors R(x;) = ||f(xi) — f(x)| forall x; € X.

Step 4. Define £(R(x;)) to be a decreasing function of approximation errors.

Step 5. Compute ¢; = E(R(x;)) for all x; € X and go to Step 2.

Under the above algorithm, the larger is the approximation error in a given data
point x;, the smaller is the corresponding value of ¢; = £(R(x;)) and, hence, the higher
is the density of grid points. In a certain sense, this construction is similar to locally-
adaptive techniques in the sparse-grid literature in that it refines an approximation by
introducing new grid points and basis functions in those areas in which the quality
of approximation is low; see Ma and Zabaras (2009) for a review of this literature, and
see Brumm and Scheidegger (2013) for examples of economic applications. The locally-
adaptive EDS grid technique is especially useful in applications with kinks and strong
nonlinearities. In Section 5, we will study an example of such an application—a new
Keynesian model with a ZLB on the nominal interest rate.

2.6 Approximating a function off the EDS grid

There is a variety of numerical techniques in mathematical literature that can be used to
approximate functions off the grid. They typically require us to assume a flexible func-
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tional form f(x; b) characterized by a parameters vector b and to find a parameters vec-
tor b that minimizes the approximation errors, e(x;; b) = f(xf; b) — f(x{), on the con-
structed EDS grid x§, ..., x;;, € P® according to some norm || - ||. If the constructed f( b)
coincides with f in all grid points, then we say that f( b) interpolates f off the EDS grid
(this requires that the number of grid points in the EDS grid is the same as the number
of the parameters in b). Otherwise, we say that f( b) approximates f on the EDS grid
(this is similar to a regression analysis in econometrics when the number of data points
is larger than the number of regression coefficients).

Global polynomial basis functions A convenient choice for an approximating function
is a high-degree ordinary polynomial function. Such a function is easy to construct, and
it can be fitted to the data using simple and reliable linear approximation methods;
see Judd, Maliar, and Maliar (2011a). Orthogonal polynomial families are another use-
ful choice even though the property of orthogonality is not satisfied for the simulation-
based grid points; see Judd, Maliar, and Maliar (2011a) for a discussion. However, global
polynomial approximations may not be sufficiently flexible to accurately approximate
decision functions with strong nonlinearities and kinks.

Piecewise local basis functions Piecewise local bases are more flexible than global ones
because each local polynomial basis function approximates a decision function just in
a small neighborhood of a given EDS grid point. A global approximation is obtained by
combining local approximations together. There are many ways to construct local ap-
proximations and to tie them up into a global approximation. Our baseline technique is
as follows: For each grid point x;" in the EDS grid, we construct a hypercube centered
at that specific point, cover the hypercube with a uniformly distributed set of points,
and solve the model on this set of points. As a set of points that covers the hypercube
uniformly, we use low-discrepancy sequences, namely, a Sobol sequence: an example
of such a sequence is shown in Figure 5(b); see Niederreiter (1992) for a review of low-
discrepancy methods. Thus, we recompute a solution to the model as many times as
the number of points in the EDS grid. Under piecewise local polynomial approxima-
tions, we use low-degree polynomial bases, which helps us to keep the cost reasonably
low. Finally, to simulate the solution, we rely on a nearest-neighbor approach. Our con-
struction of local bases has similarity to finite-element methods; see Hughes (1987) for
a mathematic review of such methods, and see McGrattan (1996) for their applications
to economics.

Piecewise local basis functions with locally-adaptive EDS grids Piecewise local basis
functions can be naturally combined with the locally-adaptive EDS grid technique. This
combination enables us to refine the solution only in those areas in which the accuracy
is not sufficient and to hold fixed the solution in the remaining points. That is, when we
add new points to the EDS grid, we need to compute the solutions in the neighborhood
of these new grid points but we need not recompute it in the existing grid points. This
useful feature is specific to approximations with local basis functions; for global approx-
imations, we need to recompute the solution entirely when changing either grid points
or an approximating function.
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3. INCORPORATING THE EDS GRID INTO PROJECTION METHODS

In this section, we incorporate the EDS grid into projection methods for solving dynamic
economic models, namely, we use the EDS grid as a set of points on which the solution
is approximated.

3.1 Comparison of the EDS grid with other grids used in the context of numerical
solution methods

Let us first compare the EDS grid to other grids used in the literature for solving dy-
namic economic models. We must make a distinction between a geometry of the set on
which the solution is computed and a specific discretization of this set. A commonly
used geometry in the context of projection solution methods is a fixed multidimen-
sional hypercube. Figure 5(a)-(d) plots four different discretizations of the hypercube:
a tensor-product Chebyshev grid, a low-discrepancy Sobol grid, a sparse Smolyak grid,
and a monomial grid, respectively (in particular, these type of grids were used in Judd
(1992), Rust (1997), Krueger and Kubler (2004), and Pichler (2011), respectively).”
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FIGURE 5. (a) Tensor-product Chebyshev grid. (b) Sobol grid. (c) Smolyak grid. (d) Monomial
grid. (e) Simulated points. (f) EDS on simulated points.

7Also, Tauchen and Hussey (1991) propose a related discretization technique that delivers an approx-
imation to a continuous density function of a given stochastic process. Their key idea is to approximate
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In turn, stochastic simulation methods use the adaptive geometry; see Marcet
(1988), Smith (1993), Maliar and Maliar (2005), and Judd, Maliar, and Maliar (2011a) for
examples of methods that compute solutions on simulated series.? Focusing on the right
geometry can be critical for the cost, as the following example shows.

ExampLE. Consider a vector of uncorrelated random variables x € R? drawn from a
multivariate Normal distribution x ~ N'(0, I;), where I; is an identity matrix. An essen-
tially ergodic set .A" has the shape of a hypersphere. Let us surround such a hypersphere
with a hypercube of a minimum size. For dimensions 2, 3, 4, 5, 10, 30, and 100, the ratio
of the volume of a hypersphere to the volume of the hypercube is equal to 0.79, 0.52,
0.31,0.16,3-1073,2-10~ ', and 2 - 10~79, respectively. These numbers suggest that enor-
mous cost savings are possible by focusing on an essentially ergodic set instead of the
standard multidimensional hypercube.

However, a stochastic simulation is not an efficient discretization of a high-probabi-
lity set: a grid of simulated points is unevenly spaced, has many closely located redun-
dant points, and contains some points in low-density regions.

The EDS grid is designed to combine the best features of the existing grids. It com-
bines the adaptive geometry (similar to that used by stochastic simulation methods)
with an efficient discretization (similar to that produced by low-discrepancy methods
on a hypercube). In Figure 5(e), we show an example of a cloud of simulated points of
irregular shape, and in Figure 5(f), we plot the EDS grid delivered by the two-step pro-
cedure of Section 2.2. As we can see, the EDS grid appears to cover the high-probability
set uniformly.

There are cases in which the EDS grid may not be a good choice. First, focusing on
a high-probability set may not have advantages relative to a hypercube; for example, if
a vector x € R is drawn from a multivariate uniform distribution, x ~ [0, 1]¢, then an
essentially ergodic set coincides with the hypercube [0, 1]¢ and no cost savings is pos-
sible. Second, in some applications, one may need to have a sufficiently accurate solu-
tion outside the high-probability set, for example, when analyzing a transition path of
a developing economy with low initial endowment. In those cases, one may augment
the grid on a high-probability set to include some “important” points situated outside
this set. An example of this approach is shown by Aruoba and Schorfheide (2014) in the
context of a new Keynesian model. They construct a grid by combining selected draws
from the ergodic distribution of the model with a set of values for state variables filtered
from the actual data. In this way, they augment the grid to include points from the 2008-
2009 Great Recession that do not naturally belong to a high-probability set of the studied

a Markov process with a finite-state Markov chain. This discretization technique requires the distribution
function of the Markov process to be specified explicitly and is primarily useful for forming discrete approx-
imations of density functions of exogenous variables. In contrast, the EDS discretization technique builds
on stochastic simulation and does not require the distribution function to be known. It can be applied to
both exogenous and endogenous variables.

8For a detailed description of Marcet’s (1988) method, see Den Haan and Marcet (1990) and Marcet and
Lorenzoni (1999).
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model. Finally, our worst case analysis in Appendix A.3 shows that there are scenarios in
which EDSs constructed on simulated data are highly nonuniform. However, these sce-
narios require extreme assumptions about the density of simulated points, for example,
a set of highly uneven Dirac point masses. We did not observe the worst-case outcomes
in our experiments. If we know that we are in those cases, we may opt for grids on a
multidimensional hypercube.

3.2 General description of the EDS algorithm

In this section, we develop a projection method that uses the EDS grid. We focus on equi-
librium problems, but the EDS method can be also used to solve dynamic programming
problems; see Judd, Maliar, and Maliar (2012) for examples.

3.2.1 An equilibrium problem We study an equilibrium problem in which a solution is

characterized by the set of equilibrium conditions for t =0, 1, ..., oo,
E[G(st, 2t, Yis Si415 Zig1, Yes1) ] =0, 3)
Zi41 = Z(21, €141), (4)

where (sg, zg) is given, E; denotes the expectations operator conditional on information
available at ¢, s, € R% is a vector of endogenous state variables at ¢, z; € R4 is a vector
of exogenous (random) state variables at ¢, y; € R% is a vector of nonstate variables—
prices, consumption, labor supply, etcetera (also called non-predetermined variables),
G is a continuously differentiable vector function, and €, € R” is a vector of shocks.
A solution is given by a set of equilibrium functions s,y = S(s;, z;) and y; = Y (s, 1)
that satisfy (3) and (4) in the relevant area of the state space. In terms of the notation
in Section 2.1, we have ¢ = (S,Y), x; = (s, z;), and d = d; + d,. The solution (S, Y) is
assumed to satisfy the assumptions of Section 2.1.

3.2.2 A projection algorithm based on the EDS grid Our construction of the EDS grid
in Section 2.2 is based on the assumption that the stochastic process (1) for the state
variables is known. However, the law of motion for endogenous state variables is un-
known before the model is solved: it is precisely our goal to approximate this law of mo-
tion numerically. We therefore proceed iteratively: guess a solution, simulate the model,
construct an EDS grid, solve the model on that grid using a projection method, and it-
erate on these steps until the grid converges. Below, we elaborate a description of this
procedure for the equilibrium problem (3)-(4).

EDS ALGORITHM (A Projection Algorithm for Equilibrium Problems).
Step 0. Initialization.

a. Choose (sg, z9) and simulation length, 7.
b. Draw {e€;{1};=0,..,7—1. Compute and fix {z;11};=0,... 7—1 using (4).

c. Choose approximating functions S ~ §(~; bSyand Y ~ ?(-; bY).
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d. Make an initial guess on b* and b”.

e. Choose integration nodes €; and weights w;, j=1,...,J.
Step 1. Construction of an EDS grid.

a. Use §(~; b®) to simulate {s;41}/=0,...,7-1-

b. Construct an EDS grid, I" = {8, Zm}m=1,.. M-
Step 2. Computation of a solution on EDS grid using a projection method.

a. Form=1,..., M, construct residuals

J
R(Sm>2m) = Y @)+ G(Sm> Zms Yims Sops 21 > Vi )
j=1
where y =Y (sm, Zm: b¥), 5y = S(sm, 2m: b°), 23, ;= Z(zm, €j), and y,, . =Y (s, 7,,, ;3 ).

b. Find b® and b’ that minimize residuals according to some norm.

Iterate on Steps 1 and 2 until convergence of the EDS grid.

3.2.3 Discussion of the computational choices We construct the EDS grid as described
in Section 2.2. We guess the equilibrium rule S, simulate the solution for T periods, con-
struct a sample of n points by selecting each «th observation, estimate the density func-
tion, remove a fraction 6 of the sample with the lowest density, and construct an EDS grid
with a target number of points M using a bisection method. Below, we discuss some of
the choices related to the construction of the EDS grids.

Initial guesson b® To insure that the EDS grid covers the right area of the state space, we
need a sufficiently accurate initial guess about the equilibrium rules. Furthermore, the
equilibrium rules used must lead to nonexplosive simulated series. For many problems
in economics, linear solutions can be used as an initial guess; they are sufficiently ac-
curate, numerically stable and readily available from automated perturbation software
(we use Dynare solutions; see Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and
Villemot (2011)). Finding a sufficiently good initial guess can be a nontrivial issue in
some applications, and techniques from learning literature can be useful in this con-
text; see Bertsekas and Tsitsiklis (1996) for a discussion.

Choices of n and T Our construction of an EDS relies on the assumption that sim-
ulated points are sufficiently dense on the essentially ergodic set. Technically, in Ap-
pendix A.1, we require that each ball B(x; ¢) inside .A" contains at least one simulated
point. The probability Pr(0) of having no points in a ball B(x; ) inside A" after n draws
satisfies Pr(0) < (1 — p.)", where p. = fB(x;a) ndx ~ Agen and A4 is the volume of
a d-dimensional unit ball. (Note that on the boundary of A" where g = 1, we have
Pr(0) = (1 — p.)".) Thus, given ¢ and 7, we must choose n and T = n«, so that Pr(0)
is sufficiently small. We use 7' = 100,000 and « = 10, so that our sample has » = 10,000
points, and we choose 7 to remove 1% of the points with the lowest density.
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Choices of e and M We need to have at least as many grid points in the EDS as the pa-
rameters b* and b¥ in S and Y (to identify these parameters). Conventional projection
methods rely on collocation, when the number of grid points is the same as the number
of parameters to identify. Collocation is a useful technique in the context of orthogo-
nal polynomial constructions but is not convenient in our case (because our bisection
method does not guarantee that the number of grid points is exactly equal to the target
number M). Hence, we target a slightly larger number of points than parameters, which
also helps us to increase both accuracy and numerical stability.

Reconstructing the EDS grid iteratively Under Assumptions 1 and 2, the convergence
of the equilibrium rules implies the convergence of the time-series solution; see Santos
and Peralta-Alva (2005). Therefore, we are left to check that the EDS grid constructed on
the simulated series also converges. Let I'" = {x}};—,  y and I'" = {x}/}j=1,...,M” be the
EDS grids constructed on two different sets of simulated points. Our criteria of conver-
gence is SUP/e infycp D(x, x;.’) < 2¢. That s, each grid point of I"” has a grid point of
I'” at a distance smaller than 2¢ (this is the maximum distance between the grid points
on the essentially ergodic set; see Proposition 3 in Appendix A.3).

How often do we need to reconstruct the EDS grid? Constructing EDS grids may be
costly, especially in problems with high dimensionality, because we need to produce
a long simulation to estimate the density function and to construct EDS grids several
times until a bisection procedure locates a grid with the target number of grid points.
The cost of constructing EDS grids can be especially high in those applications in which
researchers must solve their models repeatedly using different parameter vectors, for
example, in estimation or calibration studies.

Hence, an important question is, “How often do we need to reconstruct the EDS
grid in a given application?” We found that, typically, the properties of solutions are
not sensitive to small changes in the EDS grid. For example, the EDS grid constructed
on a log-linear solution would normally lead to nonlinear solutions as accurate as the
one constructed using highly accurate nonlinear solutions. Furthermore, we found that
small changes in the model parameters do not require us to recompute the grid. In the
presence of kinks, such as the ZLB in the new Keynesian model, the solution is more
sensitive to a specific construction of the EDS grid; however, using more accurate solu-
tions for constructing the grid does not necessarily lead to smaller approximation errors.
Thus, our experiments suggest that in many applications, we can construct an EDS grid
just once using a relatively rough initial guess, and we can keep this grid when iterating
on decision functions until convergence (without a visible accuracy loss).

Integration Unlike simulation- and learning-based methods, we rely on determinis-
tic integration methods such as the Gauss—-Hermite quadrature and monomial integra-
tion methods. Deterministic methods dominate the Monte Carlo method in accuracy
by orders of magnitude in the context of the studied class of models; see Judd, Maliar,
and Maliar (2011a) for comparison results.? The cost of Gaussian product rules is pro-
hibitive in high-dimensional problems, but monomial formulas are tractable even in

9For example, assume that a Monte Carlo method is used to approximate an expectation of y ~ (0, ay)
with 7 random draws. The distribution of y = 1 37 y; is y ~ A (0, %). If oy = 1% and n = 10,000, we have
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models with hundreds of state variables; see Judd, Maliar, and Maliar (2011b) for a de-
scription of these formulas.

Solving systems of nonlinear equations: The convergence issue In Step 2 of the EDS algo-
rithm, we must find the parameter vector b = (b°, b?) in the decision functions §(-; b%)
and Y(-; b) that satisfy the model’s equations. Here, we have a system of n = M x H
nonlinear equations, where H is the number of equations in the vector function G with
n’ unknown parameters in b. By construction, n’ < n.If n’ = n, that s, if we have the same
number of unknowns (grid points) as equations, we may have a unique solution that sat-
isfies all equations exactly (this case is referred to as collocation). However, if n’ < n, we
construct a solution that satisfies the model’s equations by minimizing a weighted sum
of residuals in the model’s equations (this case is similar to regression in econometrics).

Avariety of numerical methods in the literature can be used to solve a system of non-
linear equations in Step 2 of the EDS algorithm; see, for example, Judd (1998, pp. 93-128)
for a review of such methods. In the paper, we restrict attention to a simple derivative-
free fixed-point iteration method; see Wright and Willams (1984), Marcet (1988), Den
Haan (1990), and Gaspar and Judd (1997) for early applications of fixed-point iteration
to economic problems. In terms of our problem, fixed-point iteration can be written as
follows.

ArcoriTHM FPI (Fixed-Point Iteration With Damping).
Initialization. Write a system of equations in the form b= v(b).
Fix initial guess (%, anorm | - ||, and a convergence criterion .

Step 1. On iteration i, compute b = ¥(b?).
Step 2. If |b — b || < w, then stop.

Otherwise, set b1 = £b + (1 — £)b), where £ € (0, 1] and go to Step 1.

That is, for iteration i, we guess some b”), compute new b, and use it to update our
guess for iteration i + 1, where ¢ is the damping parameter that controls the speed of up-
dating. The advantage of fixed-point iteration is that it can iterate in this simple manner
on objects of any dimensionality, for example, on a vector of the polynomial coefficients.
The cost of this procedure does not grow rapidly with dimensionality of the problem,
unlike the cost of Newton-style methods does. As other nonlinear solvers, fixed-point it-
eration may fail to converge. The following example, borrowed from Judd (1998, p. 159),
illustrates the possibility of nonconvergence.

ExaMPLE. Let us find a solution to x> — x — 1 = 0 using a fixed-point iteration. We can
rewrite it as x = (x 4+ 1)!/3 and construct a sequence x(t1 = (x® 4 1)1/3 starting from
x® =1. This yields a sequence x" =1.26, x® =1.31, x® =1.32, ..., which converges

approximation errors of order % =10~*. To bring the error to the level of 10~8, which we attain using

quadrature methods, we need to have n = 10'2. That is, such a slow ,/z rate of convergence makes it very
expensive to obtain highly accurate solutions using stochastic simulation.
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to a solution. However, we can also rewrite this equation as x = x> — 1 and construct a
sequence xD = (x(0)3 — 1, starting from x©) = 1, which diverges to —co.

This example shows that whether fixed-point iteration succeeds in finding a solution
may depend on the specific way in which it is implemented. Judd (1998, pp. 557-558)
also shows that fixed-point iteration may fail to converge in growth models like those
studied in the present paper under some parameterizations. Damping helps us to in-
crease the likelihood of convergence; see Judd (1998, pp. 78-84). Newton-style methods
may have better convergence properties, but they may also fail if an initial guess is not
sufficiently accurate. In sum, CGA and EDS solution methods are effective numerical
methods for solving high-dimensional applications, but they share limitations that are
common for all projection methods, namely, they may fail to converge. In our examples,
the studied EDS and CGA solution methods were highly accurate and reliable; however,
the reader must be aware of the existence of the above potential problems, and must
be ready to detect and to address such problems if they arise in applications; see Feng,
Miao, Peralta-Alva, and Santos (2014).

3.2.4 Evaluating the accuracy of solutions Provided that the EDS algorithm succeeds in
producing a candidate solution, we subject such a solution to a tight accuracy check. We
specifically generate a set of points within the domain on which we want the solution to
be accurate, and we compute residuals in all equilibrium conditions.

EvALUATION OF AcCURACY ALGORITHM (Residuals in Equilibrium Conditions).

a. Choose a set of points {s;, z:},_,_ 7rs for evaluating the accuracy.

b. Forr=1,..., 7't compute the size of the residuals,
Jtest
R(STa ZT) = Z wE'ESt ° [G(ST’ ZT’ yT’ S;., Z;’j’ y;,])]7
j=1

where y: = Y (s7, z-; b7), S/T = S(s7, 27, b°), Z;’j = Z(zs, E;eSt)) yq/’j = Y(yr, Z;j; bY), E;eSt
and o} are the integration nodes and weights.

c. Find a mean and/or maximum of the residuals R(s;, z,).

If the quality of a candidate solution is economically unacceptable, we modify the
choices made in the EDS algorithm (i.e., simulation length, number of grid points, ap-
proximating functions, integration method) and recompute the solution. In the paper,
we evaluate the accuracy on a set of simulated points. This new set of points is different
from that used in the solution procedure: it is constructed under a different sequence
of shocks (i.e., we test accuracy out of sample). Other possible accuracy checks include
evaluating the residuals in the model’s equations on a given set of points in the state
space Judd (1992), and testing the orthogonality of residuals in the optimality conditions
(Den Haan and Marcet (1994)); see Santos (2000) for a discussion.
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4. NEOCLASSICAL STOCHASTIC GROWTH MODEL

In this section, we use the EDS approach to solve the standard neoclassical stochastic
growth model. We discuss some relevant computational choices and assess the perfor-
mance of the algorithm in one- and multi-agent setups.

4.1 The setup

The representative agent solves

o0
max E "u(cr) 5)
{kis1,¢thi=0,...,00 O;B '
S.t. C[+kt+1=(1_5)kt+at14f(kt)s (6)
Ina; 1 =plna;+e€41, €41 ~./\/(0, 0'2), (7)

where (kg, ag) is given; E; is the expectation operator conditional on information at time
t; ¢;, kt, and a; are consumption, capital, and productivity level, respectively; B8 € (0, 1);
6€(0,11; A>0; pe(—1,1); 0 >0; and u and f are the utility and production functions,
respectively, both of which are strictly increasing, continuously differentiable, and con-
cave. Under our assumptions, this model has a unique solution; see, for example, Stokey;,

Lucas, and Prescott (1989, p. 392). For numerical experiments, we use u(c) = Cll__y;l with
v € {%, 1,5} and f(k) = k* with @ = 0.36, and we set B8 = 0.99, § = 0.025, p = 0.95, and
o =0.01. Aversion of the model under u(c) = In(c), 6 =1, and f(k) = k* admits a closed-

form solution k;,1 = aBa; AkY.

4.2 An EDS algorithm iterating on the Euler equation

We describe an example of the EDS method that iterates on the Euler equation. For the
model (5)-(7), the Euler equation is
1=BE[@(1_5+a/Af/(k/))}, @®)
u'(c)

where primes on the variables denote next-period values, and «’ and f’ denote the
derivatives of u and f, respectively. We must solve for equilibrium rules ¢ = C(k, a) and
k' = K(k, a) that satisfy (6)-(8). To implement fixed-point iteration, we represent (8) in
the form £’ = ¥ (k') by multiplying both sides by &', which yields K = Bk’E[% 1-6+
a Af'(k'))]. In our iterative procedure, we substitute (k’)() obtained in iteration i in the
right side of this equation, compute k' in the left side, and use the solution to improve
our guess (k")(*D foriteration i + 1; see Appendix C for a detailed description of the EDS
solution method.

In Table 1, we provide the results for the Euler equation EDS algorithm under the
target number of grid points M = 25 points.

The accuracy of solutions delivered by the EDS algorithm is comparable to the high-
est accuracy attained in the related literature. The residuals in the optimality conditions
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TABLE 1. Accuracy and speed of the Euler equation EDS algorithm in the one-agent model.

y=1/5 y=1 y=>5

Polynomial M(e)=21 M(e)=27 M(e)=25

Degree Ly Loo CPU Ly Loo CPU Ly Loo CPU
First —4.74 —3.81 25.5 —4.29 -3.31 24.7 -3.29 -2.35 23.6
Second —6.35 —5.26 1.8 —5.94 —4.87 0.8 —4.77 —3.60 0.4
Third —-7.93 —6.50 1.9 —7.26 —6.04 0.9 —-5.97 —4.47 0.4
Fourth -9.37 —7.60 2.0 —8.65 -7.32 0.9 —7.05 —5.26 0.4
Fifth -9.82 —8.60 14.25 -9.47 —-8.24 5.5 —7.89 —6.46 2.8

Note: Ly and L are, respectively, the average and maximum of absolute residuals across optimality condition and test
points (in log 10 units) on a stochastic simulation of 10,000 observations. CPU is the time necessary for computing a solution
(in seconds), and v is the coefficient of risk aversion, and M (e) is the realized number of points in the EDS grid (the target
number of grid points is M = 25).

decrease with each polynomial degree by one or more orders of magnitude. For the fifth-
degree polynomials, the largest unit-free residual corresponding to our least accurate
solution is still less than 10~° (see the experiment with a high degree of risk aversion
v = 5). Computing high-degree polynomial solutions is relatively fast (a few seconds).
Most of the cost of the EDS algorithm comes from the construction of the EDS grid (here,
the EDS grid is constructed just once under the polynomial solution of degree 1, and the
time for the grid construction is included in the total time for computing that solution).
The cost increases gradually with the degree of approximating polynomial because we
have alarger number of terms in the approximating functions. This results in a U-shaped
pattern for the CPU time in the table.

We perform sensitivity experiments in which we vary the target number of grid
points and find that the results are robust to the modifications considered. We also vary
the number of nodes in the Gauss-Hermite quadrature rule, and we find that even the
2-node rule leads to essentially the same accuracy levels as the 10-node rule (except the
fourth- and fifth-degree polynomials under which the accuracy is somewhat lower). This
result is in line with the finding of Judd (1992) that in the context of the standard optimal
growth model, even few quadrature nodes lead to very accurate solutions.

Autocorrection of the EDS grid 1f an initial guess about the solution is poor, the simu-
lated series will not cover the ergodic set. Will the EDS grid be able to autocorrect itself
in the context of the EDS algorithm? A general answer to this question is unknown. How-
ever, we observe autocorrection of the EDS grid in numerical experiments. In one such
experiments, we scale up the time-series solution for capital by a factor of 10, and use
the resulting series for constructing the first EDS grid (thus, the capital values in this grid
are spread around 10 instead of 1). We solve the model on this grid and use the solution
to construct the second EDS grid. We repeat this procedure two more times. Figure 6
shows that the EDS grid converges rapidly.

We tried out various initial guesses away from the essentially ergodic set, and we
observed autocorrection of the EDS grid in all the experiments performed. Furthermore,
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Ficure 6. Convergence of the EDS grid starting from capital series normalized to 10 steady state

levels.

the EDS grid approach had an autocorrection property in our challenging applications
such as a multi-agent neoclassical growth model and a new Keynesian model with a zero

lower bound on nominal interest rates.

EDS grid versus Smolyak grid XKrueger and Kubler (2004) and Malin, Krueger, and
Kubler (2011) develop a projection method that relies on a Smolyak sparse grid. To iso-
late the role of the grid construction in the algorithm’s performance, we implement the
Smolyak method in the same way as the EDS method, namely, we use an ordinary poly-
nomial family for approximating decision functions and we use fixed-point iteration for
finding the polynomial coefficients. This implementation of the Smolyak method is in
line with that studied in Judd et al. (2014), and differs from that in Krueger and Kubler
(2004) and Malin, Krueger, and Kubler (2011) that builds on Smolyak polynomial func-
tion and time iteration (in particular, time iteration is more expensive than fixed-point
iteration, and Smolyak polynomials have four times more basis functions and, thus, are
more flexible than ordinary polynomials). Thus, under our implementation, the EDS
and Smolyak methods differ only in the choice of grid points.

As in Malin, Krueger, and Kubler (2011), we use intervals [0.8, 1.2] and [exp(—%),

exp( % )] for capital and productivity level, respectively. The Smolyak grid has 13 points
(see Figure 5(c)), so we use an EDS grid with the same number of points. With 13 grid
points, we can identify the coefficients in ordinary polynomials up to degree 3. In this
experiment, we evaluate the accuracy of solutions not only on a stochastic simulation,
but also on a set of 100 x 100 points that are uniformly spaced on the same domain as
those used by the Smolyak method for finding a solution. The accuracy results are shown
in Table 2. The running time is similar for the Smolyak and EDS methods except that the
EDS method needs additional time for constructing the grid.

In the test on a stochastic simulation, the EDS grid leads to considerably more accu-
rate solutions than the Smolyak grid. This is because under the EDS grid, we fit a polyno-
mial directly in the essentially ergodic set, while under the Smolyak grid, we fit a poly-
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TABLE 2. Accuracy and speed in the one-agent model: Smolyak grid versus EDS grid.

Smolyak Grid Accuracy on a Hypercube
Polynomial Simulation Rectangular Simulation Rectangular
Degree Ly Lo Ly Lo CPU Ly Lo Ly Lo CPU
First -331 -294 325 -254 039 —423 331 -326 238 9.89
Second —-4.74 —-417 -432 -380 020 589 —4.87 —-441 325 0.19
Third —5.27 -5.13 -5.39 —4.78 0.22 -7.19 —6.16 —5.44 —4.11 0.17

Note: L and L are, respectively, the average and maximum of absolute residuals across optimality condition and test
points (in log 10 units) on a stochastic simulation of 10,000 observations and on a fixed grid of 100 x 100 points covering the

rectangle with the intervals [0.8, 1.2] and [exp(— % ), exp( % )] for capital and productivity, respectively; CPU is the time nec-
essary for computing a solution (in seconds).

nomial in a larger rectangular domain, and face a trade-off between the fit inside and
outside the ergodic set. However, in the test on the rectangular domain, the Smolyak
grid produces significantly smaller maximum residuals than the EDS grid. This is be-
cause the EDS algorithm is designed to be accurate in the essentially ergodic set and its
accuracy decreases more rapidly away from the essentially ergodic set than the accu-
racy of methods operating on larger hypercube domains. We repeated this experiment
by varying the intervals for capital and productivity in the Smolyak grid, and we have
the same regularities. These regularities are also observed in high-dimensional applica-
tions.!0

4.3 EDS algorithm in problems with high dimensionality

We now explore the tractability of the EDS algorithm in problems with high dimension-
ality. We extend the one-agent model (5)-(7) to include multiple agents. This is a simple
way to expand and to control the size of the problem.

The setup There are N agents, interpreted as countries, that differ in initial capital en-
dowment and productivity levels. The countries’ productivity levels are affected by both
country-specific and worldwide shocks. We study the social planner’s problem. A social
planner maximizes a weighted sum of expected lifetime utilities of N agents (countries),

N oo
max  Eoy A" Y pu(cf) |, )
h 1h seees

{Cf’kt+1}t:0 ,,,,, 00 h=1 =0

10Kollmann et al. (2011) compare the accuracy of solutions produced by several solution methods, in-
cluding the cluster grid algorithm (CGA) introduced in the earlier version of the present paper and the
Smolyak algorithm of Krueger and Kubler (2004) (see Maliar, Maliar, and Judd (2011) and Malin, Krueger,
and Kubler (2011) for implementation details of the respective methods in the context of those models).
Their comparison is performed using a collection of 30 real business cycle models with up to 10 hetero-
geneous agents. Their findings are the same as ours: on a stochastic simulation and near the steady state,
the CGA solutions are more accurate than the Smolyak solutions, whereas the situation reverses for large
deviations from the steady state.
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subject to the aggregate resource constraint

th +Zkl+1_2kh(1—8)+2a Af (P, (10)
h=1

where {kh, aé’}h=1""’N is given; E; is the operator of conditional expectation; cth, kﬁ’, aﬁ’,
and A" are, respectively, consumption, capital, productivity level, and welfare weight of
acountry £ € {1,...,N}; B € (0,1) is the discount factor; é € (0, 1] is the depreciation
rate; and A is the normalizing constant in the production function. The utility and pro-
duction functions, u” and f", respectively, are increasing, concave, and continuously
differentiable. The process for the productivity level of country 4 is given by

lnai’Jrl =p1nai’+ef’+l, 1D
where p is the autocorrelation coefficient, e = 9: ‘St where 9: Yy N(0, o) is

specific to each country, and s;.1 ~ N (0, 02) is identical for all countries.

We restrict our attention to the case in which the countries are characterized by iden-
tical preferences, u" = u, and identical production technologies, " = f, for all 4. The
former implies that the planner assigns identical weights, A" = 1, and, consequently,
identical consumption, cth = ¢, to all agents. If an interior solution exists, it satisfies N
Euler equations,

u'(e;) = BEfu' (cry)[1 -8+ at+1Af (k t+1)]} (12)

where v’ and f’ denote the derivatives of u and f, respectively. Thus, the planner’s solu-
tion is determined by the process for productivity (11), the resource constraint (10), and
the set of Euler equations (12). We use the same parameter values for the multicountry
model as in the one-agent model; in particular, we assume y = 1.

Solution procedure Our objective is to approximate the planner’s solution in the form
of N capital equilibrium rules, each of which depends on 2N state variables (N capi-
tal stocks and N productivity levels), that is, kﬁrl = Kh({ki’, af‘}h=1""fN), h=1,...,N
Since the countries are identical in their fundamentals (preferences and technology),
the planner chooses the same level of consumption for all countries. We could have used
this symmetry to simplify the solution procedure; however, we do not do so. Instead, we
compute a decision rule of each country separately, treating them as completely hetero-
geneous. In this manner, we can assess the cost of finding solutions in general multidi-
mensional setups in which countries have heterogeneous preferences and technology.
For each country, we essentially implement the same computational procedure as used
in the representative-agent case; see Appendix D for details of the computational proce-
dure.

The choice of the integration method plays an important role in the accuracy and
speed of our solution algorithm. The Monte Carlo method produces large sampling er-
rors that dominate the overall accuracy of solutions. Quadrature product rules are accu-
rate but their cost is prohibitive if the number of shocks is large. However, nonproduct
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monomial integration methods both produce very accurate solutions and are tractable
in problems with high dimensionality. Moreover, in the studied class of models, an ex-
tremely simple and cheap integration method—a one-node quadrature rule—happens
to produce accurate solutions; see Judd, Maliar, and Maliar (2011a) for a detailed de-
scription of this and other integration methods, and see Judd, Maliar, and Maliar (2011a,
2012) and Maliar, Maliar, and Judd (2011) for accuracy comparisons of different integra-
tion methods in large-scale applications.

Determinants of cost in problems with high dimensionality The cost of finding numeri-
cal solutions increases with the dimensionality of the problem for various reasons. There
are more equations to solve and more decision functions to approximate. The number
of terms in an approximating polynomial function goes up, and we need to increase the
number of grid points to identify the polynomial coefficients. The number of nodes in
integration formulas also increases. Finally, operating with large data sets can lead to
memory congestion. If a solution method relies on product rules in constructing a grid,
integration nodes, and optimization, its cost increases exponentially (curse of dimen-
sionality). However, our design of the EDS method does not rely on product rules and its
cost grows with dimensionality of the problem at a relatively moderate rate.

Accuracy and cost of solutions We solve the model with N ranging from 2 to 200. The
results about the accuracy and cost of solutions are provided in Table 3.

The accuracy of solutions here is similar to what we had for the one-agent model. For
the polynomial approximations of degrees 1 and 2, the residuals are typically smaller
than 0.1% and 0.01%, respectively. These regularities are robust to variations in the
model’s parameters such as the volatility and persistence of shocks and the degrees of
risk aversion; for sensitivity results, see Table 8 in an earlier version of the present paper
(Judd, Maliar, and Maliar (2010)).

The running time ranges from 36 seconds to 24 hours, depending on the number of
countries, polynomial degree, and the integration technique used; see Judd, Maliar, and
Maliar (2012) for sensitivity experiments. In particular, the EDS algorithm is able to com-
pute quadratic solutions to the models with up to 40 countries and linear solutions to the
models with up to 200 countries when using inexpensive a one-node quadrature inte-

TABLE 3. Accuracy and speed of the EDS algorithm in the multi-agent model.

N=2 N=20 N =40 N =200
. M =300,2N Nodes M =1000, 2N Nodes M = 4000, 1-Node M = 1000, 1-Node
Polynomial
Degree L, L. CPU L, Ls CPU L, Lo CPU L, Ls CPU
First —-4.70 -3.17 0.7 —-4.76 -=3.05 21 =479 -3.09 89 —4.66 —-2.90 105
Second —-6.01 —-4.06 19 —-588 —4.14 282 —548 —4.13 1463

Note: Ly and L are, respectively, the average and maximum of absolute residuals across optimality condition and test
points (in log 10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary for computing a solution
(in minutes); M is the target umber of points in the EDS grid, respectively; 2N and 1-node denote the monomial rule with two
nodes and one-node Gauss-Hermite integration rules, respectively.
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gration rule. Thus, the EDS algorithm is tractable in much larger problems than those
studied in related literature. A proper coordination between the choices of approximat-
ing function and integration technique is critical in problems with high dimensionality.
An example of such coordination is a combination of a flexible second-degree polyno-
mial with a cheap one-node Gauss-Hermite quadrature rule (in the given application,
this cheap combination produces a very accurate approximation).

5. NEw KEYNESIAN MODEL WITH THE ZLB

In this section, we use the EDS algorithm to solve a stylized new Keynesian model with
Calvo-type price frictions and a Taylor (1993) rule.!! Our setup builds on the models
considered in Christiano, Eichenbaum, and Evans (2005), Smets and Wouters (2003,
2007), and Del Negro et al. (2007). This literature estimates new Keynesian models using
the data on actual economies, while we use their parameters estimates and compute
solutions numerically. We solve two versions of the model: one in which we allow for
negative nominal interest rates and the other in which we impose a zero lower bound
(ZLB) on nominal interest rates.'? The studied model has eight state variables and is
large scale in the sense that it is expensive or even intractable under conventional global
solution methods that rely on product rules.

The literature that finds numerical solutions to new Keynesian models typically re-
lies on local perturbation solution methods or applies expensive global solution meth-
ods to low-dimensional problems. As for perturbation methods, most papers compute
linear approximations; however, there are papers that compute quadratic approxima-
tions (e.g., Kollmann (2002), Schmitt-Grohé and Uribe (2007), and Ravenna and Walsh
(2011)) and cubic approximations (e.g., Rudebusch and Swanson (2008)). The earlier lit-
erature that used global solution methods includes Adam and Billi (2006), Anderson,
Kim, and Yun (2010), and Adjemian and Juillard (2011). The above studies either have
few state variables or employ simplifying assumptions.'®> However, recent literature,
equipped with novel solution methods, started an exploration of medium- and large-
scale new Keynesian models. In particular, Judd, Maliar, and Maliar (2011b), Ferndndez-
Villaverde et al. (2012), and Braun, Kérber, and Waki (2012) show that conventional per-
turbation methods do not provide accurate approximations in the context of new Keyne-
sian models with the ZLB. Moreover, recent papers by Schmitt-Grohé and Uribe (2012),
Mertens and Ravn (2013), and Aruoba and Schorfheide (2014) find that new Keynesian
models may have multiple equilibria in the presence of ZLB; in particular, the last pa-
per accurately computes such multiple equilibria with a full set of stochastic shocks. In

1n an earlier version of the present paper, Judd, Maliar, and Maliar (2011b) use a cluster grid algorithm
(CGA) to solve a new Keynesian model that is identical to the one studied here using an EDS algorithm
except parameterization.

12For the neoclassical growth model studied in Section 4, it would be also interesting to explore the case
with occasionally binding borrowing constraints. Christiano and Fisher (2000) show how projection meth-
ods could be used to solve such a model.

13In particular, Adam and Billi (2006) linearize all the first-order conditions except for the nonnegativity
constraint for nominal interest rates, and Adjemian and Juillard (2011) assume perfect foresight to imple-
ment an extended path method of Fair and Taylor (1983).
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the present paper, we focus on the conventional equilibrium in which target inflation
coincides with actual inflation in the steady state.

5.1 The setup

The economy is populated by households, final-good firms, intermediate-good firms,
monetary authority, and government; see Gali (2008, Chapter 3) for a detailed descrip-
tion of the baseline new Keynesian model.

Households The representative household solves

- -1 L —1
max E Lex —— —¢X _ 13)
{Ci,Li,Bi}=0....,00 0 g & p(nu,t)[ 1—vy P(ML.0) 149 ] (
B
st. PG ! T,=B, | +W,L,+1I,, (14)

+——
exp(np,¢)R;

where (By, 11,0, 1,0, 1B,0) is given; C;, L;, and B; are consumption, labor, and nomi-
nal bond holdings, respectively; P, W;, and R, are the commodity price, nominal wage,
and (gross) nominal interest rate, respectively; 7, ; and 7, are exogenous preference
shocks to the overall momentary utility and disutility of labor, respectively; np ; is an
exogenous premium in the return to bonds; 7; is lump-sum taxes; 11, is the profit of
intermediate-good firms; B € (0, 1) is the discount factor; and y > 0 and ¢ > 0 are the
utility-function parameters. The processes for shocks are

Nu,t41 = PuNu,t + €ut+1>  €uyr41 NN(O, 0'3), (15)
NL+1=pL0Li+ €L 1, €L, ~N(0, 0'%), (16)
MB,t+1=PBNB,: +€B+1, €811 ~N(0, 0']%), (17)

Where pu, pL’ pB € (_17 1) and Ou, 0L, 0B Z 0

Final-good firms Perfectly competitive final-good firms produce final goods using in-
termediate goods. A final-good firm buys Y; (i) of an intermediate good i € [0, 1] at price
P;(i) and sells Y; of the final good at price P; in a perfectly competitive market. The
profit-maximization problem is

1
maxP,Y, — / P Y (i) di (18)
Y (i) 0
1 g/(e—=1)
s.t. Ytz(/ Yt(i)(s_l)/sdi) , (19)
0

where (19) is a Dixit-Stiglitz aggregator function with ¢ > 1.

Intermediate-good firms Monopolistic intermediate-good firms produce intermediate
goods using labor and are subject to sticky prices. The firm i produces the intermediate
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good i. To choose labor in each period ¢, the firm i minimizes the nominal total cost, TC
(net of government subsidy v),

?1%11) TC(Yt(i)) =1 —-v)WL:(i) (20)

(1
s.t. Yi(i) = exp(na,)Li(), 21)
Na,t+1 = PaNa,t T €a,t+1> €a,t+1 ’\’N(O, 0'5), (22)

where L, (i) is the labor input, exp(n,,;) is the productivity level, p, € (-1, 1), and o, > 0.
The firms are subject to Calvo-type price setting: a fraction 1 — 6 of the firms sets prices
optimally, P;(i) = ﬁ, for i € [0, 1], and the fraction 6 is not allowed to change the price
and maintains the same price as in the previous period, P;(i) = P,_1(i) for i € [0, 1]. Are-
optimizing firm i € [0, 1] maximizes the current value of profit over the time when ﬁ,
remains effective,

Ir}?aXZBJHJEI{A[+][§,YI+J(1) - Pt+jmct+th+j(i)]} (23)
t ]:0
st ()= Yt<Pt(i)> : (24)
Py

where (24) is the demand for an intermediate good i (follows from the first-order condi-
tion of (18)-(19)). A, is the Lagrange multiplier on the household’s budget constraint
(14), and mc,,  is the real marginal cost of output at time ¢ + j (which is identical across
the firms).

Government The government finances a stochastic stream of public consumption by
levying lump-sum taxes and by issuing nominal debt. The government budget con-
straint is

B, GY;
+ = Pz
exp(nB,)R; exp(nG,r)

+Bt_1 +'UI/V[L[, (25)

where G is the steady-state share of government spending in output, vW,L, is the sub-
sidy to the intermediate-good firms, and 7 ; is a government-spending shock,

NG,41=PGNG,1 + €G 141,  €Gr1 ~N(0, 08), (26)
where pg € (—1,1) and oG > 0.

Monetary authority The monetary authority follows a Taylor rule. When the ZLB is im-
posed on the net interest rate, this rule is R, = max{1, ®,} with @, being defined as

R\ M br sy, \ ik
@, =R, 21 T d exp(1R,); (27)
R, Ty YN,t
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where R; and R, are the gross nominal interest rate at 7 and its long-run value, respec-
tively, m, is the target inflation, Yy , is the natural level of output, and ng ; is a monetary
shock,

NR+1=PRIR: + €R+1,  €R 41 ~N(0, o), (28)
where pg € (—1, 1) and og > 0. When the ZLB is not imposed, the Taylor rule is R; = &;.

Natural level of output The natural level of output Yy ; is the level of output in an oth-
erwise identical economy but without distortions. It is a solution to the planner’s prob-
lem

> c -1 Li+? 1
{Ct,LIﬂg ’’’’ NEogﬁ eXP(nu,t)[ﬁ —exp(’f)L,z)W} (29)
s.t. C;=exp(ng,)L:— Gy, (30)
GY;

where G; = SICTR] is given, and 7, /41, ML,i+1, Na,r+1, and ng,, follow the processes
(15), (16), (22), and (26), respectively. The first-order conditions (FOCs) of the problem
(29)-(30) imply that Yy ; depends only on exogenous shocks,

e [[l

:|1/(19+7)

G Y
- X
eXP(nG,z):| piL,0)

5.2 Summary of equilibrium conditions

We summarize the equilibrium conditions as follows (the derivation of the first-order
conditions is provided in Appendix E):

_exp(Mu,t +ML,1)

§ =Tt T I vy OE,{m® .S 32
! exp(na,r) (Yot PO T Sen ) (52)
Fr=exp(nu,)C; Y, + BOE7f | Fii}, (33)
-y
= BGXP(TIB,z)RtEt[CtH exp(nu’t+1):|’ (34)
eXp(nu,t) Ti+1
S 1 _ 0 e—1 1/“*“/‘)
R I , (35)
F, 1—6
1— gme! e/(e—1) € -1
A=|(1-0) —— 6—L 36
t [( )|: -6 i| + At1:| , (36)
Y, =exp(na,:)L:As, (37)
C = <1 - L)E, (38)
exp(nG,t)

R; =max{1, &,}, (39)
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where @, is given by (27); the variables S; and F; are introduced for a compact repre-
sentation of the profit-maximization condition of the intermediate-good firm and are
defined recursively; 7,11 = Pfol is the gross inflation rate between ¢ and ¢ + 1; and 4; is
a measure of price dispersion across firms (also referred to as efficiency distortion). The
conditions (32)—(38) correspond, respectively, to (E.17), (E.18), (E.23), (E.33), and (E.3) in
Appendix E.

An interior equilibrium is described by eight equilibrium conditions (32)-(39) and
six processes for exogenous shocks, (15)-(17), (22), (28), and (26). The system of equa-
tions must be solved with respect to eight unknowns {C;, Y, L¢, 7, A¢, Ry, St, Ft}. There
are two endogenous and six exogenous state variables, {A,_;, R,_i} and {0y ¢, nL.1» 1B,
Na,t> MR,t> MG,1}, T€spectively.

5.3 Numerical analysis

Methodology We use the estimates of Smets and Wouters (2003, 2007) and Del Negro et
al. (2007) to assign values to the parameters. We approximate the equilibrium rules S; =
S(xt), Fr = F(x;), and Ct_y = MU(x;) with x; = {A;_1, Ri—1, Mu,t, ML,1> MB,t> Na,t> MR, 15
n¢,:} using the Euler equations (32), (33), and (34), respectively. We solve for the other
variables analytically using the remaining equilibrium conditions. We compute the poly-
nomial solutions of degrees 2 and 3, referred to as EDS2 and EDS3, respectively. For com-
parison, we also compute first- and second-order perturbation solutions, referred to as
PER1 and PER2, respectively (we use Dynare 4.2.1 software). When solving the model
with the ZLB by the EDS algorithm, we impose the ZLB both in the solution procedure
and in subsequent simulations (accuracy checks). Perturbation methods do not allow
us to impose the ZLB in the solution procedure. The conventional approach in the liter-
ature is to disregard the ZLB when computing perturbation solutions and to impose the
Z1B in simulations when running accuracy checks (that is, whenever R, happens to be
smaller than 1 in simulation, we set it to 1). A detailed description of the methodology
of our numerical analysis is provided in Appendix E. We illustrate the EDS grid for the
model with the ZLB in Figure 7, where we plot the time-series solution and the grids in
two-dimensional spaces, namely, (R;, 4;) and (R;, exp(nq,/)). We see that many points
happen to be on the bound R, = 1 and that the essentially ergodic set in the two figures
is shaped roughly as a circle.

Accuracy and cost of solutions Two parameters that play a special role in our analysis
are the volatility of labor shocks o7, and the target inflation rate 7. Concerning o, Del
Negro et al. (2007) finds that shocks to labor must be as large as 40% to match the data,
namely, they estimate the interval o, € [0.1821, 0.6408] with an average of o7 = 0.4054.
Concerning m,, Del Negro et al. (2007) estimate the interval =, € [1.0461, 1.0738] with
an average of m, = 1.0598, while Smets and Wouters (2003) use the value 7, = 1. The
inflation rate affects the incidence of the ZLB: a negative net nominal interest rate is
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F1GURE 7. Simulated points and the grid for a new Keynesian model: ZLB is imposed.

more likely to occur in a low- than in a high-inflation economy.'* In Table 4, we show
how the parameters o and =, affect the quality of numerical solutions.

In the first experiment, we neglected the ZLB: the goal of this experiment is to show
that net interest rates will be occasionally negative if ZLB is not imposed. We assume
o, = 0.1821 (which is the lower bound of the interval estimated by Smets and Wouters
(2003)), set m, = 1, and allow for a negative net interest rate. Both the perturbation and
EDS methods deliver reasonably accurate solutions. The maximum size of residuals in
the equilibrium conditions is about 6% and 2% for PER1 and PER2, respectively (10~1-21
and 10~ 1% in the table), and it is less than 1% and 0.2% for EDS2 and EDS2, respectively
(10~2:02 and 10~2-73 in the table). We also report the minimum and maximum values of
R, on a stochastic simulation, as well as a percentage number of periods in which R, < 1.
Here, R; falls to 0.9916, and the frequency of R; < 1 is about 2%.

We design the next two experiments to separate the effect of the volatility of la-
bor shocks o7, and the inflation rate 7, = 1 on the quality of numerical solutions. In
the second experiment, we consider a higher volatility of labor o7, = 0.4054, and we
set , = 1.0598, which is sufficient to preclude net nominal interest rates from being
negative. The performance of the perturbation methods becomes significantly worse.
The residuals in the equilibrium conditions for the PER1 solution are as large as 25%
(107959 and they are even larger for the PER2 solution, namely, 38% (107942), Thus,
increasing the order of perturbation does not help us increase the quality of approxi-
mation. The accuracy of the EDS solutions also decreases, but does so less dramatically:
the corresponding residuals for the EDS2 and EDS3 methods are less than 5% (10131
and 1.2% (10~1°1), respectively. For the EDS method, high-degree polynomials do help
us increase the quality of approximation.

In the third experiment, we concentrate on the effect of the ZLB on equilibrium by
setting 7. = 1 and by imposing the restriction R; > 1 under the low-volatility o = 0.1821

14 Chung, Laforte, Reifschneider, and Williams (2011) provide estimates of the incidence of the ZLB in the
U.S. economy. Christiano, Eichenbaum, and Rebelo (2011) study the economic significance of the ZLB in
the context of a similar model. Also, Mertens and Ravn (2011) analyze the incidence of the ZLB in a model
with sunspot equilibria.



TABLE 4. The new Keynesian model: the EDS algorithm versus perturbation algorithm.

e =1 and o7, =0.1821

. =1.0598 and o7, = 0.4054

7 = 1 and o7, =0.1821 with ZLB

PER1 PER2 EDS2 EDS3 PER1 PER2 EDS2 EDS3 PER1 PER2 EDS2 EDS3
M(e) - - 496 496 - - 496 496 - - 494 494
Running time
CPU 0.15 243 4.4 22.1 12.0 0.15 21.4 3.58
Absolute errors across optimality conditions
Ly —3.03 -3.77 -3.99 —4.86 —2.52 —2.90 -3.43 —4.00 —3.02 —3.72 —3.57 —3.65
L -1.21 —1.64 -2.02 -2.73 —0.59 —0.42 -1.31 -1.91 -1.21 -1.34 —1.58 —1.81
Properties of the interest rate
Rmin 0.9916 0.9929 0.9931 0.9927 1.0014 1.0065 1.0060 1.0060 1.0000 1.0000 1.0000 1.0000
Rmax 1.0340 1.0364 1.0356 1.0358 1.0615 1.0694 1.0653 1.0660 1.0340 1.0364 1.0348 1.0374
Freq(R<1), % 2.07 1.43 1.69 1.68 0 0 0 0 1.76 1.19 2.46 2.23
Difference between time series produced by the method in the given column and EDS3
dif(R), % 0.17 0.09 0.05 0 0.63 0.39 0.25 0 0.33 0.34 0.34 0
dif(4), % 1.03 0.16 0.04 0 4.59 0.73 0.49 0 1.07 0.44 0.34 0
dif(S), % 5.45 1.14 0.75 0 17.94 5.83 4.15 0 5.60 9.87 5.04 0
dif(F), % 1.37 0.40 0.15 0 9.51 2.25 1.73 0 3.21 4.05 2.32 0
dif(C), % 1.00 0.19 0.12 0 6.57 1.49 0.72 0 431 3.65 2.26 0
dif(Y), % 1.00 0.19 0.12 0 6.57 1.48 0.72 0 4.33 3.65 2.26 0
dif(L), % 0.65 0.33 0.16 0 3.16 1.30 0.54 0 3.37 3.17 2.45 0
dif(), % 0.30 0.16 0.11 0 1.05 0.79 0.60 0 1.17 1.39 0.79 0

Note: L and Lo are, respectively, the average and maximum absolute percentage residuals (in logl0 units) across all equilibrium conditions on a stochastic simulation of 10,000
observations; CPU is the time necessary for computing a solution (in minutes); M (&) is the realized number of points in the EDS grid (the target number of grid points is M = 500); PER1 and
PER2 are the 1st- and 2nd-order perturbation solutions, respectively; EDS2 and EDS3 are 2nd- and 3rd-degree EDA polynomial solutions, respectively; Ryyi, and Rmax are, respectively, the
minimum and maximum gross nominal interest rates across 10,000 simulated periods; Freq(R < 1) is a percentage number of periods in which R < 1; dif(X), % is the maximum absolute
percentage difference between time series for variable X produced by the method in the given column and EDS3.

(GT102) 9 SOTWIOU02y aAneInUEeN()

suwa[qoid [euorsuawiIp-y31y aa[os 01 sayoeoiddy

LE



38 Maliar and Maliar Quantitative Economics 6 (2015)

of labor shocks assumed in the first experiment.!® Again, we observe that the accuracy
of the perturbation solutions decreases more than the accuracy of the global EDS solu-
tions. In particular, the maximum residual for the PER2 solution is about 5%, while the
corresponding residuals for the EDS2 and EDS3 solutions are less than 2.7% (10~1-8)
and 1.6% (10~181), respectively.

To appreciate how much the equilibrium quantities differ across the methods, we
report the maximum percentage differences between the variables produced by EDS3
and the other methods. The regularities are similar to those we observed for the residu-
als. First, the difference between the series produced by PER1 and EDS3 can be as large
as 17%. Second, the difference between the series produced by PER2 and EDS3 depends
on the model: it is about 1% when the ZLB is not imposed in the model with o7, = 0.1821,
but can reach 10% when the ZLB is imposed. Finally, the difference between the series
produced by EDS2 and EDS3 is smaller in all cases (5.04% at most for the model with
the imposed ZLB). Generally, the supplementary variables S; and F; differ more across
methods than economically relevant variables such as Y, L;, and C;.

Economic importance of the ZLB  Figure 8(a) and (b) plot fragments of a stochastic sim-
ulation when the ZLB is not imposed and imposed, respectively, for the model parame-
terized by o7, = 0.1821 and 7, = 1. When the ZLB is not imposed, both the perturbation

1.14 -

* - PER1 * *

- 1.01 -+ ~PER2 L * * %
e N 1.13 v N

- . EDS3 o —— \

2 1005+ s o2y / \

& N / = / \
3 \ / 2111t / \
o 4l N N / 3 / \*
8 ¥ \aﬁ 117% /

c ¥/
= Y .

0.995 109t

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7T 8 9 10
Periods Periods
(a)
1.14
*

_ 101} L PR
@ . 1.13 * . /*/ _ ~I

@ e > 12l T
2 1.005 | = 7112 b

= / > / —
@ \ / 2111+ /

< B ey =
& 1 ¥ X ¥ ¥ le) 11t , /
=S . */

0.995 - 109

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7
Periods Periods

FIGURE 8. (a) A time-series solution to a new Keynesian model: ZLB is not imposed.
(b) A time-series solution to a new Keynesian model: ZLB is imposed.

15In a model with an active ZLB, we find the convergence to be slow and fragile. This fact is possibly
related to the finding of Benhabib, Schmitt-Grohé, and Uribe (2001a, 2001b) that a deterministic version of
the model has multiple trajectories converging to a liquidity trap, in addition to a locally unique equilibrium
that converges to a target inflation level.
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and the EDS methods predict five periods of negative (net) interest rates (see periods 4
and 6-9 in Figure 8(a)). When the ZLB is imposed, the EDS methods, EDS2 and EDS3,
predict a zero interest rate in those five periods, while the perturbation methods, PER1
and PER2, predict a zero interest rate in just three periods (see periods 4, 6, and 7 in
Figure 8(b)).

The way we deal with the ZLB in the perturbation solution misleads the agents about
the true state of the economy. To be specific, when we chop off the interest rate at zero
in the simulation procedure, agents perceive the drop in the interest rate as being small
and respond by an immediate recovery. In contrast, under the EDS algorithm, agents
accurately perceive the drop in the interest rate as being large and respond by five peri-
ods of a zero net interest rate (which correspond to five periods of negative net interest
rates predicted in the case when the ZLB is not imposed). The output differences be-
tween PER2 and EDS3 are relatively small when the ZLB is not imposed, but they be-
come quantitatively important when the ZLB is imposed and can be as large as 2%.

Piecewise local basis functions and locally-adaptive EDS grids Experiments 1 and 3 in
Table 4 showed that imposing the ZLB on the nominal interest rate reduces the accuracy
of solutions produced by the EDS method. Increasing the degree of an approximating
polynomial function does not increase the accuracy much. In particular, the maximum
residuals of the second- and third-order solutions are 107292 and 10~273 in the model
with an inactive ZLB, while these residuals are, respectively, 10718 and 10~!8! in the
model with an active ZLB. The residuals are large in the model with an active ZLB for
two reasons: first, a global polynomial function is not sufficiently flexible to accurately
approximate the kink in the ZLB area; second, an evenly spaced EDS grid does not pro-
duce sufficiently many grid points in the ZLB area. Below, we perform two additional
experiments in which we analyze how the degree of flexibility of an approximating func-
tion and the specific placement of grid points affect the accuracy of solutions under the
EDS method.

In the first experiment, we replace a global polynomial approximating function with
piecewise local bases as described in Section 2.6. Namely, we first construct an EDS grid
with M grid points, x{, ..., xj,, using a constant value of . We then construct an eight-
dimensional hypercube with a side of 10~3¢ that surrounds each grid point x#, and we
populate it with a 100 low-discrepancy Sobol, points. We then solve the model on each of
the M hypercubes constructed. To simulate the model, we compute a distance from the
current state x; to all grid points, and we adopt a solution from the closest grid point—
the nearest-neighbor approach. In all experiments, we use second-degree ordinary poly-
nomials as local bases. In the first row of Table 5 (see the experiment LB), we show the re-
sults depending on the number of local approximations used. As is seen from the table,
the accuracy of solutions increases with the number of local approximations used, al-
though the improvements become smaller as the number of approximations increases.
In particular, we are able to reduce the maximum residuals to the order of 10723 when
constructing 500 local approximations. The running time for this experiment is about 2
hours.

In our second experiment, we study a variant of the EDS method in which we com-
bine locally-adaptive grid points with local bases. There are many ways to construct an
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TABLE 5. Accuracy and speed of the EDS algorithm with local bases and locally-adaptive grid in
the new Keynesian model.

M=2 M=10 M =100 M =500
L Le CPU L Lo CPU L Lo CPU L Lo CPU
LB 380 —1.66 42 —415 —183 64 —454 -—229 293 —485 -235 131

LB-LA —-4.04 -1.75 47 —-414 -193 6.6 —-453 221 347 —-490 -225 139

Note: Ly and L are, respectively, the average and maximum of absolute residuals across optimality condition and test
points (in log 10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary for computing a solution
(in minutes); M is the target number of points in the EDS grid, respectively; LB and LB-LA denote the EDS method with local
bases and the EDS method with both local bases and locally-adaptive grid, respectively.

inverse relation between the size of the residuals and the value of ¢; the specific con-
struction of this relation may considerably affect the accuracy results. In our example,
we use the following procedure: In each simulated point x;, we compute ¢; = | In R(x;)|¢,
where R(x;) is the maximum residual across all model’s equations and ¢ is a normalizing
parameter. For example, if for some points x” and x”, the residuals are InR(x") = —2 and
InR(x") = —6, then the corresponding value of ¢ differs by a factor of 3, that is, & =2z
and & = 6g. We compute the normalizing parameter ¢ using our bisection procedure to
obtain the target number of grid points, M.

The results about the EDS method with both local bases and locally-adaptive grid
are shown in the second row of Table 5 (see the experiment LB-LA). We observe that
the EDS method with locally-adaptive grid points, LB-LA, has larger accuracy improve-
ments than the EDS method with uniformly spaced grid points, LB, in the first row of
Table 5. In particular, when M = 2, the average residuals for the two methods, LB-LA
and LB, are 10~4%4 and 10380, respectively, and the maximum residuals are 10~175 and
10~1%6 respectively. However, as the number of grid points increases, both methods ar-
rive at similar accuracy levels. In fact, for large values of M, the EDS method with an
evenly spaced grid, LB, slightly overperforms the locally-adaptive EDS method, LB-LA.
Indeed, when we have to select just two areas, the adaptive way of selecting these areas
is relatively more important than if we have to select 500 areas.

We shall finally discuss the relation between our locally-adaptive EDS solution
method and those studied in Aruoba and Schorfheide (2014). To increase the accuracy of
solutions in the ZLB area, Aruoba and Schorfheide (2014) implement two modifications
to the baseline cluster-grid algorithm studied in Judd, Maliar, and Maliar (2010, 2011b):
first, they add grid points near the ZLB area using the actual data on the U.S. economy;
second, they use two piecewise local bases to separately approximate the solution in the
areas with active and nonactive ZLB. For this special case, the locally-adaptive EDS tech-
nique with M = 2 delivers a similar type of analysis if one of the two EDS grid points is
selected in a neighborhood of the ZLB area, namely, we also approximate the solution on
two disjoint sets of 100 Sobol points that represent the areas with an active and inactive
Z1B using two piecewise local bases. The key novelty of the locally-adaptive EDS method
is that it automates the construction of adaptive grid points and local basis functions in
a general case of M piecewise local approximations.
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Lessons The studied new Keynesian model is a challenging application for any numer-
ical method. First, the dimensionality of the state space is large; second, the volatility
of exogenous variables is high; finally, there is a kink in the equilibrium rules due to the
ZLB. We chose this application so as to subject the EDS method to a tight test that makes
it possible to see its limitations.

Our results indicate that the EDS method is able to confront the above challenges.
First, the running time for the EDS method ranges from 4 to 25 minutes. There are ver-
sions of our method that are much cheaper. For example, if we construct a grid from a
randomly chosen subset of simulated points and do not update the grid along iterations,
the running time can be as low as 5 seconds for producing a second-degree nonlinear
solution to the new Keynesian model with eight state variables. However, the accuracy
of such a method will also be somewhat lower (these experiments are not reported). The
EDS method would be tractable in much larger applications, as our results for the mul-
ticountry model suggest. Second, the EDS method produces very accurate solutions if
the volatility of shocks is not excessively high, and its accuracy can be increased using
polynomial functions of higher degrees or local basis functions, unlike the accuracy of
the perturbation methods. Finally, in the presence of the ZLB, the perturbation and EDS
methods may produce qualitatively different results. The accuracy of the EDS projection
algorithm can be increased by adapting the density of grid points to a given application
and by using more flexible functional families that can accommodate kinks and strong
nonlinearities. This increases the computational cost, but the studied EDS methods are
naturally parallelizable, and the cost can be reduced.

6. CONCLUSION

We introduce a projection algorithm that operates on a high-probability area of the er-
godic set of an economic model. The EDS algorithm is tractable in problems with much
higher dimensionality than those studied in the related literature. In particular, we are
able to compute accurate quadratic solutions to a multicountry growth model with up
to 80 state variables. Furthermore, we are able to compute an accurate global solution to
a new Keynesian model. This model is of particular interest to the literature as it is used
by governments and financial institutions all over the world for policy analysis. We find
that perturbation methods are not reliable in the context of new Keynesian models, and
we show examples where perturbation and global solution methods produce qualita-
tively different predictions. We emphasize that all the numerical results in the paper are
obtained using a standard desktop computer and serial MATLAB software. The speed
and accuracy of the EDS algorithm can be further increased by using more powerful
hardware and software as well as parallelization techniques. Relatively low computa-
tional expense makes the EDS algorithm an ideal candidate for applications in which
the equilibrium decision functions must be constructed a large number of times such as
nested fixed point methods for econometric estimation, see, e.g., Ferndndez-Villaverde
and Rubio-Ramirez (2007) and extended function path (EFP) framework proposed in
Maliar, Maliar, Taylor, and Tsener (2014) for analyzing nonstationary and unbalanced
growth models.
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APPENDIX A: PROPERTIES OF EDS GRIDS

In this appendix, we characterize the dispersion of points, the number of points, and the
degree of uniformity of the constructed EDS. Also, we discuss the relation of our results
to recent mathematical literature.

A.1 Dispersion of points in EDS grids

We borrow the notion of dispersion from the literature on quasi-Monte Carlo optimiza-
tion methods; see, for example, Niederreiter (1992, p. 148) for a review. Dispersion mea-
sures are used to characterize how dense a given set of points is in a given area of the
state space.

DErFINITION 8. Let P be a set consisting of points x1,...,x, € X C R4, and let (X, D) be
a bounded metric space. The dispersion of P in X is given by

dy(P; X)=sup inf D(x,x;), (A.1)

xex 1<i<n
where D is a (Euclidean) metric on X.

Let B(x; r) denote a ball with the center x and radius . Then d,,(P; X) is the smallest
possible radius r such that the family of closed balls B(x1; r), ..., B(x; r) covers X.

DEerINITION 9. Let S be a sequence of elementson X, and let xq,...,x, € X C R? be the
first n terms of S. The sequence S is called low dispersion if lim,—, » d,(S; X) = 0.
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In other words, a sequence S is low dispersion if it becomes increasingly dense when
n — oo. Below, we establish bounds on the dispersion of points in an EDS.

PROPOSITION 1. Let P be any set of n points x1,...,x, € X € R? with a dispersion
d(P; X) < &. Let (X, D) be a bounded metric space, and let P® be an EDS x5, ..., x§, con-
structed by Algorithm P¢. Then the dispersion of P? is bounded by ¢ < dy;(P?; X) < 2e.

Proor. The first equality follows because for each x7 € P?, Algorithm P® removes all
points x; € P such that D(x;, xj'? ) < €. To prove the second inequality, let us assume that
dy (P%; X) > 2¢ toward a contradiction.

(i) Then there is a point x € X for which infx];6 pe D(x, x]'? ) > 2¢, that is, all points in
EDS P? are situated at the distance at least 2& from x (because we assumed dy; (P?; X) >
2¢).

(ii) Anopen ball B(x; ¢) contains at least one point x* € P. This is because d,,(P; X) <
¢ implies infy,cp D(x, x;) < ¢ for all x, that is, the distance between any point x € X and
its closest neighbor from P is smaller than e.

(iii) Algorithm P? does not eliminate x*. This algorithm eliminates only those points
around all xf € P? that are situated on the distance smaller than ¢, whereas any point
inside B(x; ¢) is situated on the distance larger than ¢ from any x5 epe.

(iv) For x*, we have infx}‘?e pe D(x*, xf ) > ¢, that is, x* is situated at the distance larger
than ¢ from any x;’ € Pe.

Then x* must belong to EDS P?. Since x* € B(x; ¢), we have D(x,x*) <& <2¢, a
contradiction. O

Proposition 1 states that any x € X has a neighbor X7 epe that is situated at most at
distance 2¢. The dispersion of points in an EDS goes to zero as ¢ — 0.

A.2 Number of points in EDS grids

The number of points in an EDS is unknown a priori. It depends on the value of ¢ and
the order in which the points from P are processed. Temlyakov (2011, Theorem 3.3 and
Corollary 3.4) provides the bounds on the number of points in a specific class of EDSs,
namely, those that cover a unit ball with balls of radius ¢. We also confine our attention
to a set X given by a ball; however, in our case, balls of radius ¢ do not provide a covering
of X. The bounds for our case are established in the following proposition.

PROPOSITION 2. Let P be any set of n points x1, ..., x, € B(0,r) C R? with a dispersion
dn(P; X) < e. Then the number of points in P¢ constructed by Algorithm P?® is bounded
by ()1 <M < (1+ 5%

Proor. To prove the first inequality, notice that, by Proposition 1, the balls B(x7{; 2e),
..., B(x%,;2¢) cover X. Hence, we have MA4(2¢)? > A4r, where A, is the volume of a
d-dimensional unit ball. This gives the first inequality.
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To prove the second inequality, we consider an EDS on B(0; ) that has maximal car-
dinality M™#. Around each point of such a set, we construct a ball with radius ¢. By
definition, the distance between any two points in an EDS is larger than ¢, so the balls
B(x{; &), ..., B(x§;; &) are all disjoint. To obtain an upper bound on M, we must con-
struct a set that encloses all these balls. The ball B(0; r) does not necessarily contain all
the points from these balls, so we add an open ball B(0; ) to each point of B(0; ) to ex-
tend the frontier by . This gives us aset B(0; r+ &) =B(0; r) ®B(0; &) ={y:y=x+b,x €
B(0; r), b € B(0; e)}. Since the ball B(0; r + &) encloses the balls B(x{; ¢), ..., B(x},; &) and
since M < M™% we have M A;(e)? < Ay(r + £)?. This yields the second inequality. O

A.3 Discrepancy measures of EDS grids

We now analyze the degree of uniformity of EDSs. The standard notion of uniformity in
the literature is discrepancy from the uniform distribution; see Niederreiter (1992, p. 14).

DerINITION 10. Let P be a set consisting of points x1,...,x, € X C R4, and let J be a
family of Lebesgue-measurable subsets of X. The discrepancy of P under 7 is given by
Du(P; J) = supyc 7| C(fl‘” — A(J)|, where C(P;J) counts the number of points from P
inJ, and A(J) is a Lebesgue measure of J.

The function D, (P; J) measures the discrepancy between the fraction of points

@ contained in J and the fraction of space A(J) occupied by J. If the discrepancy
is low, D, (P; J) ~ 0, the distribution of points in X is close to uniform. The measure of

discrepancy commonly used in the literature is the star discrepancy.

DEerINITION 11. The star discrepancy D (P; J) is defined as the discrepancy of P
over the family J generated by the intersection of all subintervals of R of the form
]_[flzl[—oo, v;), where v; > 0.

Let S be a sequence of elements on X, and let xy,...,x, € X C R? be the first n
terms of S. Niederreiter (1992, p. 32) suggests calling a sequence S low discrepancy if
Di(S; T) = O(nfl(log n)?), that is, if the star discrepancy converges to zero asymptoti-
cally at a rate at least of order n~!(logn)“.

The star discrepancy of points that are randomly drawn from a uniform distribution
[0, 114 converges to zero asymptotically, lim,_, . D};(S; J) = 0 almost everywhere (a.e.).
The rate of convergence follows directly from the law of iterated logarithms stated in
Kiefer (1961), and it is (loglogn)!'/?(2n)~1/?; see Niederreiter (1992, pp. 166-168) for a
general discussion on how to use Kiefer’s (1961) results for assessing the discrepancy of
random sequences.

If a sequence is low discrepancy, then it is also low dispersion; see Niederreiter (1992,
Theorem 6.6). Indeed, a sequence that covers X uniformly must become increasingly
dense everywhere on X as n — oco. However, the converse is not true. A sequence that
becomes increasingly dense on X as n — oo does not need to become increasingly uni-
form since density may be distributed unevenly. Thus, the result of Proposition 1 that the
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dispersion of an EDS converges to zero in the limit does not mean that its discrepancy
does so.

Nonetheless, we can show that for any density function g, the discrepancy of an EDS
is bounded on a multidimensional sphere.

DeriNITION 12. The spherical discrepancy D), (P?; B) is defined as the discrepancy of
P over the family J generated by the intersection of d-dimensional open balls B(0; r)
centered at 0 with radius r < 1.

ProprosITION 3. Let P be any set of n points x1,...,x, € B(0; 1) C R? with a dispersion
dn(P; X) < e. Then the discrepancy of an EDS constructed by Algorithm P¢ under B is

s €. V241
bounded by D;,(P?; B) < NAR

PROOF. Let A = A(B(0;r)) = A(B(0; 1))r? = r¢ be a Lebesgue measure of B(0;r), and
let w be the fraction of points from P? in the ball B(0; r). Consider the case
when A(B(0; r)) > w and let us compute the maximum discrepancy Dj*(P?; B)
across all possible EDSs using the results of Proposition 2,

B C™in(Pe; B(0; 1))
Cmin(Pe; B(0; ) + Cmax(P2; B(0, 1) \ B(0; 1))

- C™n(P*; B(0, 7))
~ Cmin(Pe; B(0; 1)) + CME(Pe; B(0; 1)) — CMa(P; B(0; )

A\
d (z)
== NG 4 NG
&+
2¢e £ &
()
= > - L =F,

r\¢ 1\¢ N 24 —A[24 —1]
N J’_ —_ — —_
() +(z) ()

where CMn(P¢; X)) and C™*(P¢; X) are, respectively, the minimum and maximum car-

Dy*(P%;B) = A

|
~

dinality of an EDS P? on X. Maximizing F()\) with respect to A yields A* = «/\2%2?1 and
wy _ ~24-1 ; ; ) C(P?;B(0;r))

F(A*) = NTIEL as is claimed. The case when A(B(0;r)) < =7~ leads to the same

bound. O

A.4 Relation to mathematical literature

We now compare our results to mathematical literature that focuses on related prob-
lems.

Existence results for a covering-number problem Temlyakov (2011) studies the prob-
lem of finding a covering number—a minimum number of balls of radius ¢ that cover
a given compact set (such as a d-dimensional hypercube or hypershpere). In particular,
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he shows the following result. There exists an EDS P? on a unit hypercube [0, 114 whose
star discrepancy is bounded by

D3, (P J) < c- d**[max{lnd, In M}]"/*M~1/2, (A.2)

where c is a constant; see Temlyakov (2011, Proposition 6.72). The discrepancy of such
an EDS converges to 0 as M — oo (i.e., ¢ — 0). However, constructing an EDS with the
property (A.2) is operationally difficult and costly. Also, Temlyakov (2011) selects points
from a compact subset of R, and his analysis cannot be directly applied to our problem
of finding an e-distinguishable subset of a given finite set of points.

Probabilistic results for random sequential packing problems Probabilistic analysis of
an EDS is nontrivial because points in such a set are spatially dependent: once we place
a point in an EDS, it affects the placement of all subsequent points.

Some related probabilistic results are obtained in the literature on a random sequen-
tial packing problem.! Consider a bounded set X € R and a sequence of d-dimensional
balls whose centers are independent and identically distributed (i.i.d.) random vectors
X1, ..., X, € X with a given density function g. A ball is packed if and only if it does not
overlap with any ball that has already been packed. If not packed, the ball is discarded.
At saturation, the centers of accepted balls constitute an EDS. A well known unidimen-
sional example of this general problem is the car-parking model of Rényi (1958) dis-
cussed in Section 2.2.5.

For a multidimensional case, Baryshnikov et al. (2008) show that the sequential
packing measure, induced by the accepted balls centers, satisfies the law of iterated log-
arithms (under some additional assumptions). This fact implies that the discrepancy of
EDS converges to 0 asymptotically if the density of points in an EDS is uniform in the
limit ¢ — 0. However, the density of points in an EDS depends on the density function
g of the stochastic process (1) used to produce the data (below, we illustrate this de-
pendence by way of examples). Hence, we have the following negative conclusion: an
EDS need not be uniform in the limit even in the probabilistic sense (unless the density
function is uniform).

Our best- and worst-case scenarios One-dimensional versions of our Propositions 2
and 3 have implications for Rényi’s (1958) car-parking model. Namely, Proposition 2 im-
plies that the cars occupy between 50% and 100% of the roadside (% <limy,_,gMe <1).
These are the best- and worst-case scenarios in which the cars are parked at distances ¢
and 0 from each other, respectively. (In the former case, cars are parked to leave as little
parking space for other drivers as possible, and in the latter case, cars are parked in a
socially optimal way.) The density functions that support the worst and best scenarios
are those that contain the Dirac point masses at distances 2¢ and ¢, respectively.
Proposition 3 yields the worst-case scenario for discrepancy in Rényi’s (1958) model,
Dy, (P?;B) < % ~ 0.17, which is obtained under A* = Y2 This bound is attain-

V2+1’
able. Indeed, consider an EDS on [0, 1] such that on the interval [0, A*], all points are

I This problem arises in spatial birth-growth models, germ-grain models, percolation models, spatial-
graphs models; see, for example, Baryshnikov, Eichelbacker, Schreiber, and Yukich (2008) for a review.
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situated at a distance 2¢, and on [A*, 1], all points are situated on the distance ¢. In

the first interval, we have % <M< 3—: + 1 points and in the second interval, we have

1—\* 1—\* . . e ais s .
—~ <M < =~ +1points. On the first interval, the limiting discrepancy is

A*
o 2-1
lim | A* — ——28 _Y2 ~0.17,
e—0 A 1—A ﬁ+1
_+—
2¢e e

which is the same value as implied by Proposition 3. To support this scenario, we assume
that g has Dirac point masses at distances 2¢ and ¢ in the intervals [0, A*] and [A*, 1],
respectively.

When the dimensionality increases, our bounds become loose. Proposition 2 im-
plies (%)d < lim,_, o Me&“ < 1, which means that M can differ by a factor of 24 under the
worst- and best-case scenarios; for example, when d = 10, M can differ by a factor of

1024. Furthermore, when d = 10, Proposition 3 implies that D}, (P?; B) < %: ~ (.94,
which is almost uninformative since Dj,(P?; B) < 1 by definition. However, we cannot
improve on the general results of Propositions 2 and 3: our examples with Dirac point
masses show that there exist density functions g under which the established bounds

are attained.

APPENDIX B: CLUSTERING ALGORITHMS

In this appendix, we describe two variants of clustering algorithms that we used for con-
structing grids: a hierarchical clustering algorithm and a K-means clustering algorithm.
Clustering algorithms were used to produce all the results in Judd, Maliar, and Maliar
(2010), which is an earlier version of the present paper.

B.1 Hierarchical clustering algorithm

A hierarchical agglomerative clustering algorithm is described in Section 2.4. It begins
from individual objects (observations) and agglomerates them iteratively into larger ob-
jects (clusters).

A numerical example of implementing the agglomerative hierarchical clustering algo-
rithm We provide a numerical example that illustrates the construction of clusters
under the agglomerative hierarchical algorithm described in Section 2.4. The sample
data contain five observations for two variables, x! and x2, see Table B.1. We will con-
sider two alternative measures of distance between clusters: nearest neighbor (or single)
and Ward’s. The nearest-neighbor distance measure is simpler to understand (because
the distance between clusters can be inferred from the distance between observations
without additional computations). However, Ward’s distance measure leads to some-
what more accurate results and, thus, is our preferred choice for numerical analysis.
Both measures lead to an identical set of clusters shown in Figure 9. On iteration 1,
we merge observations 1 and 3 into a cluster {1, 3}; on iteration 2, we merge observations
4 and 5 into a cluster {4,5}; on iteration 3, we merge observations 2 and {4, 5} into a
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TABLE B.1.
Observation Variable x! Variable x2
1 1 0.5
2 3
3 0.5 0.5
4 3 1.6
5 3 1
4 . N T
[ iteration 4
-7 T~ cluster {1,2,3,4,5}

351 - B U B
3 o e //12 > \\\¢ i
- iteration 3 L, N . N
2l ’ cluster {2,4,5} \ J " AN . i
/ /’ \ \

L | iteration 2 ! N
/ l cluster {4,5} \’ \
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L ~ Sl /// .
of NN T 7 b
0.5 | sl ///’/ -
4 ! ! Il Sl ! !
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X1

F1GURE 9. Agglomerative hierarchical clustering algorithm: an example.

cluster {2, 4, 5}; and finally, on iteration 4, we merge clusters {1, 3} and {2, 4, 5} into one
cluster that contains all observations {1, 2, 3, 4, 5}. The computations performed under
two distance measures are described in the subsequent two sections.

Nearest-neighbor measure of distance The nearest-neighbor measure of distance be-
tween the clusters 4 and B is the distance between the closest pair of observations
xi € Aand y; € B, thatis, D(A, B) = minyc 4, y,ep D(xi, yj). Let D(x;, yj) = [(x} — yH? +
(x2 — yJZ)Z]l/ 2 = D;; be the Euclidean distance.

Let us compute a matrix of distances for Table B.1 between singleton clusters in
which each entry ij corresponds to Dj;:

0
27 0
05 29 0

23 1.7 27 0
21 22 25 06 0
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The smallest nonzero distance for the five observations in S; is D3 = 0.5. Thus, we
merge observations (singleton clusters) 1 and 3 into one cluster and call the obtained
cluster {1, 3}. The distances for the four resulting clusters {1, 3}, 2, 4, and 5 are shown in
the matrix

(1,3 / 0

2 (27 o

4 |23 17 o ’
5 \21 22 06 0

Sy =

where D({1, 3},2) = min{D1, D3} = 2.7, D({1, 3}, 4) = min{D14, D34} = 2.3, and D({1, 3},
5) = min{D;5, D35} = 2.1. Given that 5(4, 5) = D45 = 0.6 is the smallest nonzero entry
in S, we merge singleton clusters 4 and 5 into a new cluster {4, 5}. The distances for
three clusters {1, 3}, {4, 5}, and 2 are given in the matrix

{1,3} / O
S3=1{4,5}121 0 ,
2 27 1.7 0

where D({1, 3},2) = min{D12, D32} = 2.7, D({4, 5}, 2) = min{D4,, Ds,} = 1.7, and D({1, 3},
{4,5}) = min{D14, D15, D34, D35} = 2.1. Hence, the smallest nonzero distance in Sj is
5({4, 5}, 2), so we merge clusters 2 and {4, 5} into a cluster {2, 4, 5}. The only two un-
merged clusters left are {1, 3} and {2, 4, 5}, so that the last step is to merge those two to
obtain the cluster {1, 2, 3, 4, 5}. The procedure of constructing clusters is summarized in
Table B.2.

The algorithm starts from five singleton clusters, and after four iterations, it merges
all observations into a single cluster (thus, the number of clusters existing, for example,
on iteration2is 5 —2=3).

Ward's measure of distance We now construct clusters using Ward’s measure of dis-
tance (B.1).2 Such a measure shows how much the dispersion of observations changes
when clusters A ={x1,...,x;}and B={y1, ..., ys} are merged together compared to the
case when A and B are separate clusters.

TABLE B.2.
Cluster Clusters Shortest
Iteration Created Merged Distance
1 1,3} 1 3 0.5
2 4,5) 4 5 0.6
3 2,4, 5} 2 4,5} 1.7
4 {1,2,3,4,5) 1,3} {2,4,5) 2.1

2If a measure of distance between groups of observations does not fulfill the triangular inequality, it is
not a distance in the conventional sense and is referred to in the literature as dissimilarity.
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Formally, we proceed as follows:

Step 1. Consider the cluster 4. Compute the cluster’s center x = &, ..., fﬁ) as a sim-
ple average of the observations, ¥* = 1 °7_ x¢.

Step 2. For each x; € A, compute distance D(x;, X) to its own cluster’s center.

Step 3. Compute the dispersion of observations in cluster A as a squared sum of dis-
tances (SSD) to its own center, that is, SSD(A4) = Z{:l [D(x;, %))

Repeat Steps 1-3 for cluster B and for the cluster obtained by merging clusters 4 and
B into a single cluster 4 U B.
Ward’s measure of distance between 4 and B is defined as

D(A, B)=SSD(AU B) — [SSD(A) + SSD(B)]. (B.1)

This measure is known to lead to spherical clusters of a similar size; see, for example,
Everitt, Landau, Leese, and Stahl (2011, p. 79), which is in line with our goal of construct-
ing a uniformly spaced grid that covers the essentially ergodic set. In our experiments,
Ward’s measure yielded somewhat more accurate solutions than the other measures of
distance considered, such as the nearest neighbor, furthest neighbor, and group average;
see, for example, Romesburg (1984) and Everitt et al. (2011) for reviews.

As an example, consider the distance between the singleton clusters 1 and 2 in
Table B.1, that is, 5(1,2). The center of the cluster {1,2} is X2 = (5%1,2},5{21,2}) =
(1.5,1.75), and SSD(1) = SSD(2) = 0. Thus, we have

D(1,2) = SSD({1, 2})
=(1=15)24+2-152%+(0.5-1.75)%+ (3 —1.75)% = 3.625.

In this manner, we obtain the following matrix of distances between singleton clusters
on iteration 1:

0
3625 0
0125 425 0

2605 148 373 0
2125 25 325 18 0

S
I
DN AW N =

Given that 5(1, 3) = 0.125 is the smallest nonzero distance in W}, we merge singleton
clusters 1 and 3 into cluster {1, 3}.

In the beginning of iteration 2, we have clusters (1,3}, 2, 4, and 5. To illustrate
the computation of distances between clusters that are not singletons, let us compute
5({1, 3}, 2). The center of cluster {1, 3} is

X3 = (¥1 3> 1.3 = (0.75,0.5),
and that of cluster {1, 2, 3} is

X(1,2,3) = (f{11,2,3}’ f%1,2,3}) = (7/6,4/3).
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We have

SSD({1,3}) = (1 = 0.75)* + (0.5 — 0.75)* + (0.5 — 0.5)* + (0.5 — 0.5)* = 0.125,

SSD({1,2,3}) = (1 —7/6)* + (2 —7/6)> + (0.5 — 7/6)*

+(0.5—4/3)2 4+ (3—4/3)% + (0.5 — 4/3)?
=16/3,

and SSD(2) = 0. Thus, we obtain

5({1, 3},2) =SSD({1,2,3}) — [SSD({1, 3}) + SSD(2)] = 16/3 — 0.125 = 5.2083.
The distances obtained on iteration 2 are summarized in the matrix of distances

{1, 3} 0
2 5.2083 0
4 41817 148 0
5 35417 25 018 0

W, =

Given that 5({4, 5} = 0.18 is the smallest nonzero distance in W,, we merge singleton
clusters 4 and 5 into cluster {4, 5}.
On iteration 3, the matrix of distances is

{1, 3} 0
Wy = (4,5} | 57025 0 ,
2 \5.2083 25933 0

which implies that clusters {4, 5} and 2 must be merged into {2, 4, 5}.

On the last iteration, {1, 3} and {2, 4, 5} are merged into {1, 2, 3, 4, 5}. As we see, Ward’s
measure of distance leads to the same clusters as the nearest-neighbor measure of dis-
tance. Finally, in practice, it might be easier to use an equivalent representation of Ward'’s
measure of distance in terms of the clusters’ centers,

L
~ I1-J BV EN)
D(A,B) = —— t_yt
(4,B) = 7= x =y,
=1
_ _ —_ 11 e —t_ 15 ¢
where A= {x1,...,x1}, B={y1,..., 1}, X =7 i_1x;,andy =72j:]yj.Forexample,
5(1, 2) on iteration 1 can be computed as

D(,2) = 1 (1=2)2+(0.5—3)2] =3.625,
2

where the centers of singleton clusters 1 and 2 are the observations themselves.

An illustration of the clustering techniques In Figure 10(a), (b), and (c), we draw, re-
spectively, 4, 10, and 100 clusters on the normalized PCs shown in Figure 2(b). The con-
structed cluster grid is less uniform than the EDS grids: the density of points in the clus-
ter grid tends to mimic the density of simulated points.
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FiGure 10. (a) 4 clusters; (b) 10 clusters; (c) 100 clusters.

B.2 K-means clustering algorithm

A K-means clustering algorithm obtains a single partition of data instead of a cluster
tree generated by a hierarchical algorithm. The algorithm starts with M random clus-
ters, and then moves objects between those clusters with the goal to minimize variability
within clusters and to maximize variability between clusters. The basic K-means algo-
rithm proceeds as follows.

ALGORITHM K-MEANSs (K-Means Clustering Algorithm).
Initialization. Choose M, the number of clusters to be created.
Randomly generate M clusters to obtain initial partition P,

Step 1. On iteration i, for each cluster 4 € P), determine the cluster’s center X =
&, ..., Yﬁ) as a simple average of the observations, Tt = % le-zl xf.
Step 2. For each x;, compute the distance D(x;, ¥) to all clusters’ centers.
Step 3. Assign each x; to the nearest cluster center. Recompute the centers of the new

M clusters. The resulting partition is P¢+D),

Iterate on Steps 1 and 2. Stop when the number of clusters in the partition is M. Repre-
sent each cluster with a simulated point that is closest to the cluster’s center.

Unlike the hierarchical clustering algorithm, the K-means algorithm can give differ-
ent results with each run. This is because the K-means algorithm is sensitive to initial
random assignments of observations into clusters. In this respect, the K-means algo-
rithm is similar to Algorithm P¢ that can produce different EDSs depending on the order
in which points are processed. In the context of solution methods, the hierarchical and
K-means clustering algorithms perform very similarly.

APPENDIX C: ONE-AGENT MODEL

In this section, we elaborate a description of the algorithms based on the EDS grid for
solving the neoclassical growth model considered in Section 4.1.
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An EDS algorithm iterating on the Euler equation

We parameterize K with a flexible functional form K (-; b) that depends on a coefficients
vector b. Our goal is to find b that finds K ~ K on the EDS grid given the functional
form K (-; b). We compute b using fixed-point iteration (FPI). To implement fixed-point
iteration on K, we rewrite (8) in the form

ui(c’)

ui(c)

In the true solution, k¥’ on both sides of (C.1) takes the same value and, thus, cancels
out. However, in the FPI iterative process, k" on two sides of (C.1) takes different values,
namely, we substitute k' = K (- b) in the right side of (C.1) and we compute the left side
of (C.1); fixed-point iterations on b are performed until the two sides coincide.

:Bk/E[ (1-5+d Afi(k ))} 1)

ALGORITHM EE (An Algorithm Iterating on the Euler Equation).

Step 0. Initialization.

a. Choose (kg, ap) and T.

b. Draw {€;;1},=0,..,7—1- Compute and fix {a,;1},,..,7—1 using (7).
c. Choose an approximating function K ~ K(-, b).

d. Make an initial guess on b.

e. Choose integration nodes €; and weights w;, j=1,...,J.

Step 1. Construction of an EDS grid.

a. Use I?(~, b) to simulate {k;11};—0,...T7
b. Construct an EDS grid I' = {kyn, am}m=1,.. .M

Step 2. Computation of a solution for K.

a. Atiteration i, form=1,..., M, compute

— k= K(km, am; b®) and a, = ay, exp(e;) for all j;
- k;’w. =Kk, a;n’j; b)) for all j;

cm=0—-208)k,+ amAf(km) -

- = (1-8)k}, +ah, exp(e])Af(k’ ) — k” for all j;

_ % —BZ, Lo [ g 54 b exp(e)) Afy (K)TKD 1

uy(Cm)

b. Find b that solve the system in Step 2a.

Run a regression to get b= argming Z%:l ||7’€§11 - I?(km, am; b)|.
— Use damping to compute b(+D = (1 — £)bD + ¢b.

Z . | (k;n)(i-#l)_(k/m)(i)
m=

— Check for convergence: end Step 2 if - "D

| < @.

Iterate on Steps 1 and 2 until convergence of the EDS grid.
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Computational choices We parameterize the model (5)—(7) by assuming u(c) = "1:;1

with y € {%, 1,5} and f(k) = k¢ with a = 0.36. We set 8 =0.99, § = 0.025, p = 0.95, and
o = 0.01. We normalize the steady state of capital to 1 by assuming 4 = W. The
simulation length is 7' = 100,000, and we pick each tenth point so that » = 10,000. The
damping parameter is ¢ = 0.1 and the convergence parameter is @ = 10!, In Algo-
rithm EE, we parameterize the capital equilibrium rule using complete ordinary polyno-
mials of degrees up to 5. For example, for degree 2, we have K (k, a; b) = by + b1k + bya +
b3k? + bska + bsa?, where b = (by, ..., bs). We approximate conditional expectations
with a 10-node Gauss-Hermite quadrature rule (QR). We compute the vector of coeffi-
cients b using a least-squares method based on QR factorization. To construct an initial
EDS grid, we simulate the model under an (arbitrary) initial guess k" = 0.95k +0.05a (this
guess matches the steady-state level of capital equal to 1).

After the solution is computed, we evaluate the quality of the obtained approxima-
tions on a stochastic simulation. We generate a new random draw of 10,200 points and
discard the first 200 points. At each point (k;, a;), we compute an Euler-equation resid-
ual in a unit-free form by using a 10-node Gauss—-Hermite quadrature rule,

JteSI Ltl(c/- )
— test L] test
Rloa = Lol [B 1 -+ at o™ an k)]] -1

where ¢; and ¢} jare defined similarly to ¢,, and ¢}, j in Step 2a of Algorithm EE, respec-
tively, and e}esr and w}esr are integration nodes and weights, respectively. We report the
mean and maximum of the absolute value of R(k;, a;).

Our code is written in MATLAB, version 7.6.0.324 (R2008a), and we run experiments
using a desktop computer ASUS with Intel® Core™ 2 Quad CPU Q9400 (2.66 GHz), 4 GB

RAM.

APPENDIX D: MULTI-AGENT MODEL

In this section, we provide additional details about the solution procedure for the multi-
agent model studied in Section 4.3. We parameterize the capital equilibrium rule of each
country with a flexible functional form

Kh({kﬁl’ aiz}h=l ..... N) %k\h({k?, afl}h=1,...,N; bh), (D]_)

where b” is a vector of coefficients. We rewrite the Euler equation (12) as

h u'(¢41) h h h
kiy1 = Ef{B () [1=8+a  Af (ki) ki - (D.2)
For each country & € {1,..., N}, we need to compute a vector b” such that, given the

functional form of K”, the resulting function K ({kh, alyh=1->N . ph

approximation oth({kf, ai’}h=1""’N) on the relevant domain.
The steps of the EDS algorithm here are similar to those of Algorithm EE described
in Appendix C for the one-agent model. However, we now iterate on N equilibrium rules

) is the best possible
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of the heterogeneous countries instead of just one equilibrium rule of the representa-
tive agent. That is, we make an initial guess on N coefficient vectors {b"}=1:--N ap-
proximate N conditional expectations in Step 2a, and run N regressions in Step 2b. The
damping parameter in (b")(+D) = (1 — £)(b")® + £bh is £ = 0.1, and the convergence
parameter is @ = 1078. In the accuracy check, we evaluate the size of Euler equation
residuals on a stochastic simulation of length 7't = 10,200 (we discard the first 200 ob-
servations to eliminate the effect of initial conditions). To test the accuracy of solutions,
we use the Gauss-Hermite quadrature product rule with two nodes for each shock for
N < 12, we use the monomial rule with N2 + 1 points for N from 12 < N < 20, and we
use the monomial rule 2N points for N > 20; see Judd, Maliar, and Maliar (2011) for a
detailed description of these integration methods.

APPENDIX E: NEw KEYNESIAN MODEL WITH THE ZLB

In this section, we derive the first-order conditions (FOCs) and describe the details of
our numerical analysis for the new Keynesian economy studied in Section 5.

Households
The FOCs of the household problem (13)-(17) with respect to C;, L, and B, are

_ exp(Mu,)C; 7

Ay P , (E.D
t
exp(nu,c + )L = AW, (E.2)
_ exp(14,141)C,.,
exp(1u.)C; ¥ = Bexp(w,»&E:[%} (E.3)
t+

where A; is the Lagrange multiplier associated with the household’s budget constraint
(14). After combining (E.1) and (E.2), we get

W,
exp(np, LY CY = Ft‘ (E.4)
t

Final-good producers

The FOC of the final-good producer’s problem (18)-(19) with respect to Y;(i) yields the
demand for the ith intermediate good:

Pt(i)>_8
Py '

Yi(i) = Y,( (E.5)

Substituting the condition (E.5) into (19), we obtain

1 1/(1—¢)
P — ( / Pi(i)—* di) . (E.6)
0
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Intermediate-good producers

The FOC of the cost-minimization problem (20)-(22) with respect to L, (i) is

1 -v)W;

il E7
"7 exp(Ma.r) E7)

where 0, is the Lagrange multiplier associated with (21). The derivative of the total cost
in (20) is the nominal marginal cost, MC,(i),

dTC(Y, (i)

MG, (i) =
Conditions (E.7) and (E.8) taken together imply that the real marginal cost is the same
for all firms:

1-v) W

— =mg¢;. (E.9)

mc,(i) = ———— -
() exp(nf) P

The FOC of the reoptimizing intermediate-good firm with respect to P; is

oo ~
. P e
1 t
E; ng(Be)jAt—i_]Y[_i—]Pf: [Pt+j — ;mct_i_]} =0. (E.10)
From the household’s FOC (E.1), we have
exp(Mu,i+/)C,.
4= ———— (E.11)
Pt+]'
Substituting (E.11) into (E.10), we get
> P &
1 - t
Et ;(,80)1 exp(nu7t+j)ct+7}yt+j f+]|:a — :mct+ji| =0. (E.12)
Let us define y,,; such that
1 if j=0,
Xt,j = 1 > 1. (E.13)

Tptj s Tppj—1 " T4l

Then x; ;= x1+41,j-1- ﬁ for j > 0. Therefore, (E.12) becomes

x
. _ = &
E; Z(,B@)] eXp(”flu,t+j)Ct+)}Yt+thj|:P1Xt,j - :mctﬂ'] =0, (E.14)
=0
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where Ft = %. We express T)t from (E.14) as

&
E, Z(BO)] exp(nu, t+])Ct+]Yt+]Xt j 5 MCr
~ =0 S
A — = Ftt (E.15)
E; Yy (BOY exp(nu, 4 )C Yerjx, ;¢

j=0

Let us find recursive representations for S; and F;. For S;, we have

Si=E Z(Be)f exp(Mu, 1) C Vi Xy
j=0

e
—1NCy
—1

& _
= eXp(nu,t)Ct yY[mCt
e—1

oo —&
i1 —y Xt+1,j—1 e
+30Ez{]§(/30)’ exp(nu,,ﬂ-)ctﬂ-nﬂ( — ) — 1mc:+j}

e _
= exp(nu,)C; YY,mc,
e—1

£
+ BeEz{ Z(Be)] exp(ny, t+1+])ct+1+JYt+1+]X[+1 iz 1mCt+1+]}

T =0

£ _
= e 1 exp(Mu,)C; ’Y,mc,

1 > -
+ BOEz{ FEtH <Z(30)] exXp(Ny,r+1+45)

t+1 j=0

&
X Ct+l+j Yt+1+JXt+1j 1mct+1+1)}

& _
= e 1 CXp(T]u,t)Ct thmCt + BOE;{W?_,'_ISZJ'_]}.

Substituting mc; from (E.9) into the above recursive formula for S;, we have

d-v) W
YYp———— . — E7we . E.1
exp(nu 0C CXP(’f]a 3P + BOE {7’ St} (E.16)

St =

Substltutlng from (E.4) into (E.16), we get

& 1—-v
S, = p— eXp(nu,,)Y,g ~exp(nL,t)L}9 + BGE;{WfHS,H}. (E.17)

eXp(na,t)

For F;, the corresponding recursive formula is

Fr=exp(nu,)C; Y, + BOE |7l Fii ). (E.18)
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Aggregate price relationship

Condition (E.6) can be rewritten as

1 1/(1—¢)
P = (f Pt(i)l‘sdi>
0

1/(1-¢)
= U P2 di +/ P,(i)l_sdi} ,
reopt. nonreopt.

where “reopt.” and “nonreopt.” denote, respectively, the firms that reoptimize and do
not reoptimize their prices at ¢.

Note that [, eopt. Pl edi= fol P()H'"?w,_1,,(j) dj, where w,_1 ,(j) is the measure
of nonreoptimizers at ¢ that had price P(j) at ¢t — 1. Furthermore, w,_1 (j) = 6w;—1(j),
where w,_1(j) is the measure of firms with price P(j) in ¢ — 1, which implies

(E.19)

1
/ Pt(i)l‘sdizf OP(j)' ~*w,_1(j)dj = 0P F. (E.20)
nonreopt. 0

Substituting (E.20) into (E.19) and using the fact that all reoptimizers set Pﬁtlfg, we get
P =[(1— )P =%+ P! =£]" 7 (E.21)

We divide both sides of (E.21) by P;,

- 1\ 1-eql/d—e)
1:[(1—9)ﬁ,‘8+0<—> } )
Tt
and express

1— 977_;:—1 1/(1—¢)
=|—— . E.22
! [ 1-6 } (522)

<=

Combining (E.22) and (E.15), we obtain

1— e—171/(1—¢)
Se _ Om; _ (E.23)
F, 1-06
Aggregate output
Let us define aggregate output
. 1 1
Y, E/(; Y;: (i) di:/o exp(na, )L (i) di =exp(na, )L, (E.24)

where L, = fol L.(i) di follows by the labor-market clearing condition. We substitute de-
mand for Y;(i) from (E.5) into (E.24) to get

1 A\ ¢ 1
7t=/ yt(P’(‘)) di:Y,Pf/ P~ di. (E.25)
0 Py 0




18 Maliar and Maliar Supplementary Material

Let us introduce a new variable P,:
_ 1
o= [ Pared
0
Substituting (E.24) and (E.26) into (E.25) gives us
P,

YtE?t(P

t

&
) = eXP("]a,t)LtAt,

where A; is a measure of price dispersion across firms, defined by

J— Ft 8
A= (E) '

(E.26)

(E.27)

(E.28)

Note that if P;(i) = P;(i') for all i and ' € [0, 1], then A; = 1, that is, there is no price

dispersion across firms.

Law of motion for price dispersion A;
By analogy with (E.21), the variable P;, defined in (E.26), satisfies

Pr=[1—- 0P+ 0P, "

Using (E.29) in (E.28), we get

A = ([(1 — 0P+ 6<F,_1>8]1/8)8
t= P, .

This implies

DN\ —€ ) —eq—1/¢
s foen(f) )]
t t

In terms of 7, = %, condition (E.31) can be written as

- F_s P—S -1
A= 1—0~8+0f4.ii}.
t [( )P; pe Pt__81

By substituting 7, from (E.22) into (E.32), we obtain the law of motion for A,:

1_ 077_67] —&/(1-¢) P -1
A=|(1-0)| ——— 6—~ .
oo 5T vedt

(E.29)

(E.30)

(E.31)

(E.32)

(E.33)
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Aggregate resource constraint

Combining the household’s budget constraint (14) with the government’s budget con-
straint (25), we have the aggregate resource constraint

GY,
PtCt-l-Ptit:(l—U)I’VtLt-i-Ht- (E.34)
exp(ngG,¢)

Note that the ith intermediate-good firm’s profit at ¢ is I1;(i) = P; (i) Y (i) — (1 —v) W, L.(i).
Consequently,
1 1 1
Ht=/ Ht(i)dizf P,(i)Yt(i)di—(l—v)Wt/ L, di
0 0 0
=PY, —(1-vWL,,

where P;Y; = fol P:(i)Y;(i) di follows by a zero-profit condition of the final-good firms.
Hence, (E.34) can be rewritten as

G
PCi+P———Y; =P,Y;. (E.35)
exp(ng,r)

In real terms, the aggregate resource constraint (E.35) becomes

C = (1 — L)Y;. (E.36)
exp(nag,r)

Equilibrium conditions

Condition (32) in the main text follows from (E.17) under the additional assumption
ﬁ(l —v) = 1, which ensures that the model admits a deterministic steady state (this
assumption is commonly used in the related literature; see, for example, Christiano,
Eichenbaum, and Rebelo (2011)). Conditions (33)—(38) in the main text correspond to
conditions (E.18), (E.23), (E.33), (E.3), (E.27), and (E.36) in the present appendix.

Steady state

The steady state is determined by the following system of equations (written in the order
we use to solve for the steady-state values):

Y, = [exp(@)] v/ (9+7y) ’

Y*ZYN*7
1— oﬂ_s—l e/(e—1)q-1
A,=(1-075)| (1 -6 ——— ,
( ”*)[( )( 1—0> ]
Ci=(1-G)Y,,

F,=C."Y, + Boms'F,,
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1-G)~lc,
S, = % + oS,
R, = /B,

where 7, (the target inflation) and G (the steady-state share of government spending in
output) are given.

Calibration procedure

Most of the parameters are calibrated using the estimates of Del Negro, Schorfheide,
Smets, and Wouters (2007, Table 1, column “DSGE posterior”); namely, we assume y = 1
and 9 = 2.09 in the utility function (13); ¢, = 0.07, ¢ =2.21, and p = 0.82 in the Tay-
lor rule (39); ¢ = 4.45 in the production function of the final-good firm (19); 6 = 0.83
(the fraction of the intermediate-good firms affected by price stickiness); G =0.23in
the government budget constraint (25); and p, = 0.92, pg = 0.95, p;. =0.25, 03, = 0.54%,
oc = 0.38%, o7, = 18.21% (the latter is a lower estimate of Del Negro et al. (2007, Ta-
ble 1, column “DSGE posterior”)), and oy = 40.54% (an average estimate of Del Negro
et al. (2007)) in the processes for shocks (15), (26), and (16). From Smets and Wouters
(2007), we take the values of p, = 0.95, pp = 0.22, pg = 0.15, 0, = 0.45%, op = 0.23%,
and og = 0.28% in the processes for shocks (22), (17), and (28). We set the discount fac-
tor at B = 0.99. To parameterize the Taylor rule (39), we use the steady-state interest rate
R, = %, and we consider two alternative values of the target inflation, 7, = 1 (a zero net
inflation target) and m, = 1.0598 (this estimate comes from Del Negro et al. (2007)).

Solution procedure

The EDS method for the new Keynesian model is similar to that described in Section 4.2
for the neoclassical growth model. We describe the algorithm below.

To approximate the equilibrium rules, we use the family of ordinary polynomials. To
compute the conditional expectations in the Euler equations (32), (33), and (38), we use
monomial formula M1 with 2N nodes.

We use the first-order perturbation solution delivered by Dynare as an initial guess
(both for the coefficients of the equilibrium rules and for constructing an initial EDS
grid). After the solution on the initial EDS is computed, we reconstruct the EDS grid and
repeat the solution procedure (we checked that the subsequent reconstructions of the
EDS grid do not improve the accuracy of solutions).

The simulation length is 7 = 100,000, and we pick each tenth point so that » = 10,000.
The target number of grid points is M = 1000. In Step 2b, the damping parameter is set
at £ = 0.1, and the convergence parameter is set at @ = 10~’. We compute residuals
on a stochastic simulation of 10,200 observations (we eliminate the first 200 observa-
tions). In the test, we use monomial rule M2 with 2- 6> 4 1 nodes, which is more accurate
than monomial rule M1 used in the solution procedure; see Judd et al. (2011) for a de-
tailed description of these integration formulas. Dynare does not evaluate the accuracy
of perturbation solutions itself. We wrote a MATLAB routine that simulates the pertur-
bation solutions and evaluates their accuracy using the Dynare’s representation of the
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state space that includes the current endogenous state variables {4,_1, R;_1}, the past
exogenous state variables {9, 1, ML i—1, MB,1—1> Ma,i—1> MR,i—1> NG,1—1}, and the current
disturbances {€, , €1, €B,1> €a,1, €R 1> €G,1}-

ArgoriTHM EE-NK (An Algorithm Iterating on the Euler Equation).
Step 0. Initialization.

a. Choose (A_1, R_1, Mu,0, ML,0> MB,0> Na,05 MR,0- MG,0) and T

b. Draw {€y /11, €L 141, €B,1+1> €a,141> €R,1+15 €G,1+1}1=0,..,T—1. Compute and fix
{Mu,t41> ML, 141> MB, 141> Na,t+1> MR, 1+15 NG, 1+1}1=0,..., T—1-

c. Choose approximating functions § ~ S(-; b%), F & F(-; bF), MU ~ MU(-; bMY),

d. Make initial guesses on b%, b¥, and MY,

e. Choose integration nodes, {€,,j,€L,j,€B,j, €a,j> €R,j> €G,j}j=1,..,; and weights,
{wjti=1,..,7-

Step 1. Construction of an EDS grid.

a. Use S(-; b%), F(-; bF), and MU(-; bMY) to simulate {S;, F;, C, ?},—0

.....

b. Construct

I' ={An, Ry, Mu,m» NL,m> MB,m> Na,ms MR,m> NG,mIm=1,...M = {XmIm=1,.. .M.

Step 2. Computation of a solution for S, F, and MU.

a. Atiteration i, form=1,..., M, compute

— Sm= §(xm; bS), Fon = F(x; b¥), Cpy = [MU (3 BMY) 71/

— 7 from 2 = 1200 0”'" /(-2 and A, =[(1 — 0)[%]8/@*1) +05m]7Y;

- Yu=>0- “Cp,and L, = Ym[eXp(na,m)A/m]_l;

) 1
eXp("'”lG,m)

_ exp(a,m)+? @+,
1= Hexp(mG,m) 1= exp(nL,m) ’

— R}, = max(1, @), @ = Re(FEIH(Z2) b7 (g2 ) O [ exp(mr,m);

_YN

- x;n,j = (A/m’ R/m> m,,m,j, 77L ,m,j? 773 m,j? na m,j? nR,m,j’ nG,m,j) forall j;
- S;n]:ﬁ(x’ b5, F) =F(x, b, C),  =[MU(x, ;; bMU)71/7;

m,j’
s 1-6 -
— from Fr/" z[(ﬂ—fe]l/(l 8)
m,j
< exp(Mu,m+n ,m) J .
- m=WU&Ym+BOZ;_1w1‘-{(W’ DS, ks
~ Fon = exp(u,m)C" Yo + BO Yy ) - (), )* 7, b
okt 2 3eXP(TIB m)Rm (Cm,’) yexp(nu,m,’)
~ Cn' = T exp(Mum) Z/ 1@ — =1

m,j
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b. Find b3, b, and bMV that solve the system in Step 2a.
~ Get: b5 = argmings 2%21 ||§m — §(xm; b)Y Similarly, get bF and bMU.
— Use damping to compute b(+D) = (1 — £)b® + ¢b, where b = (b5, bF, PMY).

. (1) _ (5, ()
— Check for convergence: end Step 2 if %max{Z%:“Wi(s'”)L

Sm)®
M EFE) D —(F)® M (MUY —MU,) D
Zm:l | (Fp)@ |7 Zm:l | (MU,,)® |}

<w.

Iterate on Steps 1 and 2 until convergence of the EDS grid.
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