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Abstract 

How wrong could policymakers be when using linearized solutions to their macroeconomic 
models instead of nonlinear global solutions? This question became of much practical 
interest during the Great Recession and the recent zero lower bound crisis. We assess the 
importance of nonlinearities in a scaled-down version of the Terms of Trade Economic 
Model (ToTEM), the main projection and policy analysis model of the Bank of Canada. In 
a meticulously calibrated “baby” ToTEM model with 21 state variables, we find that local 
and global solutions have similar qualitative implications in the context of the recent 
episode of the effective lower bound on nominal interest rates in Canada. We conclude that 
the Bank of Canada’s analysis would not improve significantly by using global nonlinear 
methods instead of a simple linearization method augmented to include occasionally 
binding constraints. However, we also find that even minor modifications in the model's 
assumptions, such as a variation in the closing condition, can make nonlinearities 
quantitatively important. 

Bank topics: Business fluctuations and cycles; Econometric and statistical methods; 
Economic models 
JEL codes: C61; C63; C68; E31; E52 
  
 

Résumé 

Dans quelle mesure les décideurs pourraient-ils se tromper en recourant à des solutions 
linéarisées plutôt qu’à des solutions mondiales non linéaires pour leurs modèles 
macroéconomiques? Cette question a suscité un grand intérêt sur le plan pratique pendant 
la Grande Récession et la crise récente liée à la borne du zéro. Nous évaluons l’importance 
des non-linéarités dans une version simplifiée du modèle TOTEM (pour Terms-of-Trade 
Economic Model), principal modèle de projection et d’analyse des politiques à la Banque 
du Canada. À partir d’un modèle que nous appelons « bébé-TOTEM » (calibré avec 
minutie et doté de 21 variables d’état), nous constatons que dans le cas du tout dernier 
épisode où les taux d’intérêt nominaux se situaient à leur valeur plancher au Canada, les 
solutions locales et mondiales ont des implications qualitatives similaires. Nous en 
concluons que l’analyse de la Banque du Canada ne gagnerait pas beaucoup à privilégier 
les méthodes non linéaires mondiales par rapport à une simple méthode de linéarisation, 
enrichie pour tenir compte des effets contraignants occasionnels. Toutefois, nous faisons 
également le constat que même des changements mineurs apportés aux hypothèses du 
modèle, comme une modification de la condition finale, peuvent rendre les non-linéarités 
importantes sur le plan quantitatif. 

Sujets : Cycles et fluctuations économiques ; Méthodes économétriques et statistiques ; 
Modèles économiques 
Codes JEL : C61 ; C63 ; C68 ; E31 ; E52 



Non-technical summary

The Terms of Trade Economic Model (ToTEM) is the main projection and policy analysis model of the
Bank of Canada. This is a large-scale general equilibrium macroeconomic model that includes 356 equations
and unknowns. Estimation, calibration, solution and simulation of such large and complex central banking
models as ToTEM are highly nontrivial tasks.

Currently, the ToTEM model is analyzed by using a computationally inexpensive linear perturbation
method. However, this method might be insufficiently accurate in the presence of strong nonlinearities,
including a zero lower bound (ZLB) on nominal interest rates, and also it neglects the effects of uncertainty.
Our goal is therefore to investigate how large the difference could be between local linear and more accurate
global nonlinear solutions to the ToTEM model and, in particular, to determine whether or not the
limitations of the linearization analysis could distort the policy implications.

Since the full-scale version of ToTEM is too large for the existing global solution methods, we construct
a scaled-down version of the model, which we call the “baby” ToTEM (bToTEM). After showing that
the bToTEM replicates remarkably well the impulse response functions of the full-scale model, we solve
bToTEM globally using a novel cluster grid algorithm of Maliar and Maliar (2015).

We run two policy experiments. In the first one, we study a new plausible mechanism of generating ZLB
episodes in an open-economy model, namely, a large negative foreign demand shock, capturing the fall in
the U.S. demand during the 2008 Great Recession. Both local and global solution methods predict similar
timing and duration of the ZLB episodes. In our second experiment, we assess the impact of a hypothetical
transition from a 2 to 3 percent inflation target on the Canadian economy. We find the transition to be
similar across the solutions as the increase in uncertainty is not substantial for such an increase in the
target.

While the two policy experiments do not reveal the importance of nonlinear effects in the context of
our bToTEM model, we find that a relatively minor change in the model’s assumptions can change this
conclusion. In particular, a minor change to the assumption on the dynamics of foreign risk premium
matters a lot for the inflationary dynamics.

Our analysis suggests that the Bank of Canada and other users of large-scale macroeconomic models
need to develop complementary models like bToTEM to test the robustness of their linear solutions to
potentially important effects of nonlinearities.
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1 Introduction

Nowadays, central banks, as well as leading international organizations and government agencies, use large-
scale macroeconomic models in practical policymaking. Notable examples are the International Monetary
Fund’s Global Economy Model, GEM (Bayoumi et al., 2001), the U.S. Federal Reserve Board’s SIGMA
model (Erceg et al., 2006), the Bank’s of Canada Terms of Trade Economic Model, ToTEM (Dorich
et al., 2013), the European Central Bank’s New Area-Wide Model, NAWM (Coenen et al., 2008), the
Bank of England’s COMPASS Model (Burgess et al., 2013) and the Swedish Riksbank’s Ramses II Model
(Adolfson et al., 2013). These are general equilibrium models that typically include several types of utility-
maximizing consumers, several profit-maximizing production sectors, fiscal and monetary authorities, as
well as a foreign sector.1 Central banks’ models must be rich and flexible enough to realistically describe
the interactions between numerous variables that are of interest to policymakers, including different types
of foreign and domestic inputs, outputs, consumption, investment, capital, labor, prices, exchange rate, as
well as monetary variables and financial assets. Some central banking models contain hundreds of equations
and unknowns! The goal of these models is to mimic as closely as possible the actual economies in every
possible dimension of interest. Using such rich models, policymakers can produce realistic macroeconomic
projections and promptly analyze the consequences of alternative policies.

Estimation, calibration, solution and simulation of these large and complex macroeconomic models are
highly nontrivial tasks. Currently, policymakers analyze their large-scale models by using local perturbation
solution methods, primarily, linearization. Perturbation methods are computationally inexpensive, simple
to use and can be applied to very large problems. Until the Great Recession, policymakers were not
concerned with nonlinearities in their large-scale macroeconomic models. As Bullard (2013) pointed out,
“... the idea that U.S. policymakers should worry about the nonlinearity of the Taylor-type rule and its
implications is sometimes viewed as an amusing bit of theory without real ramifications. Linear models
tell you everything you need to know. And so, from the denial point of view, we can stick with our linear
models...” Also, Leahy (2013) argues: “Prior to the crisis, it was easier to defend the proposition that
non-linearities were unimportant than it was to defend the proposition that non-linearities were essential
for understanding macroeconomic dynamics.”

The question “How wrong could linearized solutions be?” became of interest to policymakers in light
of the Great Recession and the recent zero lower bound (ZLB) crisis. Why could nonlinearities matter
for policy analysis? We distinguish three potential effects of nonlinearities on the properties of the solu-
tion compared with a plain linearization method: First, linearization methods neglect higher-order effects
of price and wage dispersion, as well as the effect of the degree of uncertainty on the solution. Second,
perturbation solutions are local; they are constructed to be accurate in a close proximity to the deter-
ministic steady state and their accuracy can deteriorate rapidly when we deviate from the steady state.
Since economic crises are normally characterized by large deviations from the steady state, perturbation
methods and especially linearization can fail dramatically during these periods.2 Finally, a ZLB crisis is a
potentially important source of nonlinearities by itself: the kink in the Taylor rule can induce kinks and
strong nonlinearities in the other model’s variables. There are a number of papers that emphasize the
importance of nonlinearities associated with the ZLB constraint for the implications of new Keynesian mo-
dels.3 However, conventional perturbation methods are not designed for dealing with occasionally binding
constraints and they do not provide adequate framework for policy analysis during ZLB episodes. Hence,
there is a possibility that economists failed to foresee and prevent the Great Recession and the ZLB crisis

1There are also less structural large-scale microeconometric models of central banking, e.g., FRB of the U.S. Federal Reserve
(Brayton, 1997) and LENS of the Bank of Canada (Gervais and Gosselin, 2014).

2 In particular, Judd et al. (2017), report that approximation errors in linearized solutions can reach hundreds percent
under empirically relevant calibration of new Keynesian models, even in the absence of an active ZLB.

3The literature on the role of ZLB in nonlinear models includes Judd, Maliar and Maliar (2012), Gust, López-Salido and
Smith (2012), Mertens and Ravn (2014), Fernández-Villaverde, Gordon, Guerrón-Quintana and Rubio-Ramı́rez (2015), Maliar
and Maliar (2015), Aruoba, Cuba-Borda and Schorfheide (2017), Eggertsson and Singh (2016), Christiano, Eichenbaum and
Johannsen (2016), and Boneva, Braun and Waki (2016), among others.
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simply because they use unreliable solution methods for the analysis of their nonlinear models.4

The concerns about reliability of the conventional perturbation methods stimulated their further de-
velopment. An important shortcoming of such methods – their inability to deal with the ZLB restriction
– was addressed in recent literature, namely, several papers developed linearization-based solution met-
hods that are capable of dealing with occasionally binding inequality constraints; see Laséen and Svensson
(2011), Beneš (2015), Guerrieri and Iacoviello (2015) and Holden (2016). Such new methods had been
readily adopted by policymakers for the analysis of their large-scale new Keynesian models. For example,
the Bank of Canada recently switched to an IRIS toolbox that makes it possible to deal with the ZLB
constraint; see Beneš et al. (2015) for IRIS documentation. Another toolbox that can deliver linearization-
based solutions with inequality constraints is OccBin toolbox of Guerrieri and Iacoviello (2015). However,
these new perturbation-based methods are limited to linearized models; as of now, there are no second-order
and higher-order perturbation-based methods that can deal with inequality constraints.

Although these new linearization-based methods can deal with the ZLB constraint, they neglect other
potentially important effects of nonlinearities on solutions, including a higher-order effect and uncertainty
effect. Therefore, the following questions remain open: Are these new linearization-based methods suffi-
ciently accurate in the context of large-scale central banking models? Do these methods remain accurate
during the periods of the economic crisis characterized by large deviations from the steady state? Are
the approximation errors in the perturbation solution economically significant, and in particular, can such
errors lead to incorrect policy recommendations, etc? These are the questions we address in the paper.

We assess the role of nonlinearities in a realistically calibrated large-scale central banking model by
comparing local perturbation and global nonlinear solutions. Our analysis is carried out in the context
of the main projection and policy analysis model of the Bank of Canada, called the Terms of Trade
Economic Model (ToTEM). This is a huge model: currently, it includes 356 equations and unknowns; see
a technical report of Dorich et al. (2013). While we would like to construct a global nonlinear solution to
the full-scale ToTEM model, this model is still too large for the existing global solution methods. We focus
on a scaled-down version of ToTEM, which we call a “baby” ToTEM (bToTEM) model. The bToTEM
model includes 49 equations and 21 state variables and it is intractable under conventional value function
iteration or projection methods because of the curse of dimensionality. It is a challenging model even for
the state-of-the-art global solution methods that are designed to deal with large-scale applications!

We calibrate the bToTEM model by following the ToTEM analysis as closely as possible. We find that
our scaled-down bToTEM model replicates remarkably well the impulse response functions of the full-scale
ToTEM model. For the sake of comparison, we also include the impulse response functions produced by
LENS, another model of the Bank of Canada; see Gervais and Gosselin (2014) for a technical report about
the LENS model. In most cases, the impulse responses of the ToTEM and bToTEM models were closer to
one another than those produced by ToTEM and LENS. We conclude that bToTEM provides an adequate
framework for projection and policy analysis of the Canadian economy.

To construct a global nonlinear solution of the bToTEM model, we use a cluster grid algorithm (CGA),
introduced in Maliar et al. (2011) and further developed in Maliar and Maliar (2015). To deal with
high dimensionality, CGA covers a high probability area of the state space with a set of clusters and
uses the centers of the clusters as a grid for constructing a nonlinear solution; also CGA uses other
numerical techniques that are designed to deal with large-scale applications, such as non-product monomial
integration methods and derivative-free fixed-point iteration. Importantly, CGA can adequately impose a
ZLB on nominal interest rates. To the best of our knowledge, our paper is the first one that applies global
nonlinear methods to solve a large-scale macroeconomic model, which is actually used by policymakers.

We subsequently use the bToTEM model to run two empirically relevant policy experiments. In the first
experiment, we demonstrate a new plausible mechanism of generating the ZLB in an open-economy model,
namely, a large negative foreign demand shock. Unlike the U.S. and Europe, the Canadian economy did not
experience a subprime crisis and was not initially hit by the 2008 Great Recession; see a speech of Boivin

4A link between a model’s nonlinearity and economic crisis is advocated, for example, in Leahy (2013): “...we need a
non-linear model in order to capture the possibility of crises and in order to model the forces that trigger crises...”
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(2011). However, Canada experienced a significant reduction in foreign demand (in particular, in the U.S.
demand), and this turned out to be sufficient to produce a prolonged episode of an effective lower bound,
ELB, on nominal interest rates in the bToTEM model.5 Our findings are robust: both local and global
solution methods predict very similar timing and duration of the ELB episodes. Approximation errors can
reach 4 percent in the local solutions, while they are less than 1 percent in the global solution, however,
this difference in accuracy does not translate into economically significant differences in the properties of
solutions even under large deviations from the steady state. Moreover, the ELB dynamics of linearization-
based IRIS (or OccBin) solutions are very similar to those of our global nonlinear solution in the presence
of an active ELB. Thus, our experiment does not reveal the importance of nonlinear effects in the bToTEM
model during the 2009-2010 ELB crisis in Canada; in this respect, we are similar to Christiano et al. (2016)
and Eggertsson and Singh (2016).

In our second experiment, we explore the role of the inflation target in the 2009-2010 ELB crisis in
Canada. Since 1995, the Bank of Canada has aimed at keeping the inflation rate of 2 percent, however,
every five years the inflation-target framework is reassessed; see a speech by Côté (2014). In 2016, the
Bank of Canada considered the possibility of increasing the inflation target but eventually decided to keep
it at a 2 percent level.6 We use simulation of bToTEM to assess the impact of a hypothetical transition
from a 2 to 3 percent inflation target on the Canadian economy. At first glance, we spot economically
significant differences between linear and nonlinear solutions. Namely, the linear solution behaves in a way
that is typical for new Keynesian models: initially, the interest rate is below the new steady states, and the
Taylor rule provides monetary stimulus leading to higher investment, output, capital and consumption. In
contrast, starting from the same state, we obtain nonlinear dynamics that are irregular and puzzling. We
demonstrate that the puzzle is explained by a noticeable difference in steady states across the solutions:
in the absence of realized shocks, the linear solution path converges to the deterministic steady state,
while the nonlinear solution path converges to a stochastic steady state, which depends on the degree
of uncertainty. If the initial condition for simulation is taken to be the deterministic steady state, then
first- and second-order solutions look different. However, if each solution starts the transition from its own
steady state (which we view as a coherent approach), then the solutions look similar. This leads us to the
conclusion that the role of nonlinearities is quite limited.

From our two policy experiments, we conclude that the Bank of Canada is not losing much by focusing
on IRIS linear solutions when using the ToTEM model, but we show that a relatively minor change in the
model’s assumptions can change this conclusion. To induce the stationarity in the bToTEM model, we
use a simple linear closing condition implying that the risk premium on foreign bonds increases with the
quantity of the bonds purchased. We find that to make nonlinearities important, it is sufficient to change
our linear closing condition to a similar condition in an exponential form, used in Schmitt-Grohé and Uribe
(2003). Interestingly, Schmitt-Grohé and Uribe (2003) find that a particular form of the closing condition
does not affect much the quantitative predictions of open-economy models. However, their analysis is
carried out with linearized solutions, and our example shows that their results do not necessarily apply to
nonlinear solutions. In fact, since linearized versions of linear and exponential conditions are exactly the
same, the analysis of Schmitt-Grohé and Uribe (2003) treats them as identical. In contrast, our nonlinear
analysis reveals the quantitative importance of high-order terms, neglected by the linearization method.
Our analysis suggests that the Bank of Canada and other users of large-scale macroeconomic models need
to develop numerical tools that make it possible to test the robustness of their linear solutions to potentially
important effects of nonlinearities. One of such tools is the bToTEM developed in the present paper.

The rest of the paper is organized as follows: In Section 2, we construct the bToTEM model. In
Section 3, we outline the calibration of the bToTEM model and compare its impulse response functions
with the ToTEM and LENS models. In Section 4, we describe the implementation of nonlinear solution

5An ELB is similar to a ZLB on (net) nominal interest rates but it is set at a level other than zero. What important in
both cases is that there is a lower bound that becomes binding.

6For further details about the inflation-control analysis of the Bank of Canada, see Renewal of the Inflation-Control Target.
Background Information (2016).
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methods for the bToTEM model, and we discuss the properties of the nonlinear solutions. In Section 5,
we use the bToTEM model to perform two policy experiments. Finally, in Section 6, we conclude.

2 The bToTEM model

ToTEM is the main projection and policy analysis model of the Bank of Canada.7 This is a large-
scale general equilibrium macroeconomic model that currently contains 356 equations and unknowns. We
construct and calibrate bToTEM – a scaled down version of ToTEM that has 49 equations and unknowns,
including 21 state variables.

2.1 bToTEM versus ToTEM

In the construction of bToTEM, we follow ToTEM as closely as possible. Like the full-scale ToTEM
model, the bToTEM is a small open-economy model that features the new-Keynesian Phillips curves for
consumption, labor and imports. As in ToTEM, we assume the rule-of-thumb price settlers in line with
Gaĺı and Gertler (1999). We use a quadratic adjustment cost of investment and a convex cost of capital
utilization. We maintain the ToTEM’s terms of trade assumption; namely, we allow for bidirectional trade
consisting of exporting domestic consumption goods and commodities, and importing foreign goods for
domestic production.

There are three aspects in which bToTEM is simplified relatively to ToTEM. First, the full-scale
ToTEM model consists of five distinct production sectors, namely, those for producing consumption goods
and services, investment goods, government goods, noncommodity export goods, commodities, and it also
has a separate economic model of the rest of the world (ROW). The first four of ToTEM’s production
sectors have identical production technology and constraints, and only differ in the values of parameters.
In the bToTEM model, in place of the four sectors we assume just one production sector, which is identical
in structure to the consumption goods and services sector of the ToTEM model, and we introduce linear
technologies for transforming the output of this sector into other types of output corresponding to the
remaining ToTEM’s sectors.

Second, there are three types of households in ToTEM that differ in their saving opportunities. In
turn, in bToTEM we assume just one type of household. Like in ToTEM, the bToTEM’s households
supply differentiated labor services in exchange for sticky wages. Under our assumptions, Phillips curves
in bToTEM are identical to those in ToTEM; the difference is that bToTEM has three Phillips curves,
while ToTEM has eight Phillips curves.

Finally, in ToTEM, the ROW sector is represented as a separate new Keynesian model with its own pro-
duction sector, while in bToTEM the ROW sector is modeled by using appropriately calibrated exogenous
processes for foreign variables.

In the main text, we describe the optimization problems of economic agents and the key model’s
equations in bToTEM; the derivation of equilibrium conditions and a list of the model’s equations are
provided in Appendices A and C, respectively.

2.2 Production of final goods

The production sector of the economy consists of two stages. In the first stage, intermediate goods are pro-
duced by identical perfectly competitive firms from labor, capital, commodities, and imports. In the second
stage, a variety of final goods are produced by monopolistically competitive firms from the intermediate
goods. The final goods are then aggregated into the final consumption good.

7See Dorich et al. (2013) for a detailed technical report on the ToTEM model. This model – known also as TOTEM II –
builds on the original ToTEM model developed by Murchison and Renisson (2006); see also Murchison and Renisson (2005)
for a simplified version of the original ToTEM model.
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First stage of production. In the first stage of production, the representative, perfectly competitive
firm produces an intermediate good using the following constant elasticity of substitution (CES) technology:

Zgt =

[
δl (AtLt)

σ−1
σ + δk (utKt)

σ−1
σ + δcom

(
COMd

t

)σ−1
σ

+ δm (Mt)
σ−1
σ

] σ
σ−1

, (1)

where Lt, Kt, and COMd
t are labor, capital and commodity inputs, respectively, Mt is imports, ut is capital

utilization, and At is the level of labor-augmenting technology that follows a stochastic process given by

logAt = ϕa logAt−1 + (1− ϕa) log Ā+ ξat , (2)

with ξat being a normally distributed variable, and ϕa being an autocorrelation coefficient.
Capital depreciates according to the following law of motion:

Kt+1 = (1− dt)Kt + It, (3)

where dt is the depreciation rate, and It is investment. The depreciation rate increases with capital
utilization as follows:

dt = d0 + deρ(ut−1). (4)

The firm incurs a quadratic adjustment cost when adjusting the level of investment. The net output is
given by

Znt = Zgt −
χi
2

(
It
It−1

− 1

)2

It. (5)

The objective of the firm is to choose Lt, Kt+1, It, COMt, Mt, ut in order to maximize profits

E0

∞∑
t=0

R0,t

(
P zt Z

n
t −WtLt − P it It − P comt COMd

t − Pmt Mt

)
subject to (1)–(5). The firm discounts nominal payoffs according to household’s stochastic discount factor
Rt,t+j = βj (λt+j/λt) (Pt/Pt+j), where λt is household’s marginal utility of consumption and Pt is the final
good price.

Second stage of production. In the second stage of production, a continuum of monopolistically
competitive firms indexed by i produce differentiated goods from the intermediate goods and manufactured
inputs. The production technology features perfect complementarity

Zit = min

(
Znit

1− sm
,
Zmiit
sm

)
,

where Znit is an intermediate good and Zmiit is a manufactured input, and sm is a Leontief parameter. The
differentiated goods Zit are aggregated into the final good Zt according to the following CES technology:

Zt =

(∫ 1

0
Z
ε−1
ε

it di

) ε
ε−1

.

Cost minimization implies the following demand function for a differentiated good i:

Zit =

(
Pit
Pt

)−ε
Zt, (6)

where

Pt =

(∫ 1

0
P 1−ε
it di

) 1
1−ε

. (7)
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The final good is used as the manufactured inputs by each of the monopolistically competitive firms.
There are monopolistically competitive firms of two types: rule-of-thumb firms of measure ω and

forward-looking firms of measure 1−ω. Within each type with probability θ the firms index their price to
the inflation target π̄t as follows: Pit = π̄tPi,t−1. With probability 1− θ, the rule-of-thumb firms partially
index their price to lagged inflation and target inflation according to the following rule:

Pit = (πt−1)γ (π̄t)
1−γ Pi,t−1. (8)

The forward-looking firms with probability 1−θ choose their price P ∗t in order to maximize profits generated
when the price remains effective

max
P ∗
t

Et

∞∑
j=0

θjRt,t+j

(
j∏

k=1

π̄t+kP
∗
t Zi,t+j − (1− sm)P zt+jZi,t+j − smPt+jZi,t+j

)
(9)

subject to demand constraints

Zi,t+j =

(∏j
k=1 π̄t+kP

∗
t

Pt+j

)−ε
Zt+j . (10)

Relation between the first and second stages of production. The production in the first and
second stages are related as follows:

Znt =

∫ 1

0
Znitdi = (1− sm)

∫ 1

0
Zitdi = (1− sm)

∫ 1

0

(
Pit
Pt

)−ε
Ztdi = (1− sm) ∆tZt, (11)

where ∆t =
∫ 1

0

(
Pit
Pt

)−ε
di is known as price dispersion.

Finally, in order to maintain the relative prices of the investment goods and noncommodity exports
in accordance to the national accounts, these goods are assumed to be produced from the final goods
according to linear technology that implies P it = ιiPt and Pnct = ιxPt, where P it and Pnct are the price of
investment goods and noncommodity exports goods, respectively.

2.3 Commodities

The representative, perfectly competitive domestic firm produces commodities using final goods according
to the following CES technology:

COMt = (Zcomt )sz (AtF )1−sz − χcom
2

(
Zcomt

Zcomt−1

− 1

)2

Zcomt , (12)

where Zcomt is the final good input, and F is a fixed production factor, which may be considered as land.
Similarly to production of final goods, the commodity producers incur quadratic adjustment costs when
they adjust the level of final good input.

The commodities are sold domestically (COMd
t ) or exported to the rest of the world (Xcom

t )

COMt = COMd
t +Xcom

t .

They are sold at the world price adjusted by the nominal exchange rate as follows:

P comt = etP
comf
t ,

where et is the nominal exchange rate (i.e., domestic price of a unit of foreign currency), and P comft is the
world commodity price. In real terms, the latter price is given by

pcomt = stp
comf
t , (13)

where pcomt ≡ P comt /Pt and pcomft ≡ P comft /P ft are domestic and foreign relative prices of commodities,

respectively, P ft is the foreign consumption price level, and st = etP
f
t /Pt is the real exchange rate.
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2.4 Imports

The final imported good Mt is bonded from intermediate imported goods according to the following techno-
logy:

Mt =

(∫ 1

0
M

εm−1
εm

it di

) εm
εm−1

,

where Mit is an intermediate imported good i. The demand for an intermediate imported good i is given
by

Mit =

(
Pmit
Pmt

)−εm
Mt,

where

Pmt =

(∫ 1

0
(Pmit )1−εm di

) 1
1−εm

.

We assume the prices of the intermediate imported goods to be sticky in a similar way as the prices of
the differentiated final goods. A measure ωm of the importers follows the rule-of-thumb pricing, and the
others are forward looking. The optimizing forward-looking importers choose the price Pm∗t in order to
maximize profits generated when the price remains effective

max
Pm∗
t

Et

∞∑
j=0

(θm)j Rt,t+j

(
j∏

k=1

π̄t+kP
m∗
t Mi,t+j − et+jPmft+jMi,t+j

)

subject to demand constraints

Mi,t+j =

(∏j
k=1 π̄t+kP

m∗
t

Pmt+j

)−εm
Mt+j ,

where Pmft is the price of imports in the foreign currency. All importers face the same marginal cost given
by the foreign price of imports.

2.5 Households

The representative household in the economy has the period utility function over consumption of finished
goods and a variety of differentiated labor service

Ut =
µ

µ− 1

(
Ct − ξC̄t−1

)µ−1
µ exp

(
η (1− µ)

µ (1 + η)

∫ 1

0
(Lht)

η+1
η dh

)
ηct , (14)

where Ct is the household consumption of finished goods; C̄t is the aggregate consumption, which the
representative household takes as given; Lht is labor service of type h; ηct is a consumption demand shock
that follows a process

log ηct = ϕc log ηct−1 + ξct , (15)

with ξct being a normally distributed variable, and ϕc being an autocorrelation coefficient.
The representative household of type h maximizes the lifetime utility

E0

∞∑
t=0

βtUt (16)

subject to the following budget constraints:

PtCt +
Bt
Rt

+
etB

f
t

Rft

(
1 + κft

) = Bt−1 + etB
f
t−1 +

∫ 1

0
WhtLhtdh+ Πt, (17)
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where Bt and Bf
t are holdings of domestic and foreign-currency denominated bonds, respectively; Rt and

Rft are domestic and foreign nominal interest rate, respectively; κft is the risk premium on the foreign
interest rate; Wht is the nominal wage of labor of type h; Πt is profits paid by the firms.

2.6 Wage setting

The representative household supplies a variety of differentiated labor service to the labor market, which
is monopolistically competitive. The differentiated labor service is aggregated according to the following
aggregation function:

Lt =

(∫ 1

0
L
εw−1
εw

ht dh

) εw
εw−1

.

Aggregated labor Lt is demanded by firms in the first stage of production. A cost minimization of the
aggregating firm implies the following demand for individual labor:

Lht =

(
Wht

Wt

)−εw
Lt, (18)

where Wht is wage for labor service of type h, and Wt is defined by the following:

Wt ≡
(∫ 1

0
W 1−εw
ht dh

) 1
1−εw

. (19)

Wages are set by labor unions that are of two types: rule-of-thumb unions of measure ωw and forward-
looking unions of measure 1−ωw. Within each type, with probability θw the labor unions index their wage
to the inflation target π̄t as follows Wit = π̄Wi,t−1. The rule-of-thumb unions that do not index their wage
in the current period follow the rule

Wit =
(
πwt−1

)γw (π̄t)
1−γwWi,t−1. (20)

The forward-looking unions that do not index their wage choose the wage W ∗t optimally in order to
maximize the household utility function when the wage is effective

Et

∞∑
j=0

(βθw)j Ut+j (21)

subject to labor demand (18) written as

Lh,t+j =

(∏j
k=1 π̄t+kW

∗
t

Wt+j

)−εw
Lt+j , (22)

and budget constraints (17) which can be written as

Pt+jCt+j =

j∏
k=1

π̄t+kW
∗
t Lh,t+jdh+ Ψt+j ,

where Ψt+j includes terms other than Ct+j and Lh,t+j .

10



2.7 Monetary policy

The monetary authority sets the short-term nominal interest rate in response to a deviation of the actual
inflation rate from the target and a deviation of the actual output from potential output,

Φt = ρrRt−1 + (1− ρr)
[
R̄+ ρπ (πt − π̄t) + ρY

(
log Yt − log Ȳt

)]
+ ηrt , (23)

where ρr measures the degree of smoothing of the interest rate; R̄ is the long-run nominal interest rate;
ρπ measures a long-run response to the inflation gap; π̄t is the inflation target; ρY measures a long-run
response to the output gap; Ȳt is the potential level of output; ηrt is an interest rate shock that is assumed
to follow the following process:

ηrt = ϕrη
r
t−1 + ξrt ,

where ξrt is a normally distributed variable, and ϕr is an autocorrelation coefficient. Potential output
changes with productivity in the following stylized way:

log Ȳt = ϕz log Ȳt−1 + (1− ϕz) log

(
AtȲ

Ā

)
.

If an effective lower bound Relbt is imposed on the nominal interest rate, the interest rate is determined as
a maximum of (23) and Relbt :

Rt = max
{
Relbt ,Φt

}
.

2.8 Foreign demand for noncommodity exports

We assume that the foreign demand for noncommodity exports is given by the following demand function:

Xnc
t = γf

(
Pnct

etP
f
t

)−φ
Zft , (24)

where Pnct is a domestic price of noncommodity exports. In real terms, we have

Xnc
t = γf

(
st
pnct

)φ
Zft . (25)

2.9 Balance of payments

The balance of payments is

etB
f
t

Rft

(
1 + κft

) − etBf
t−1 = Pnct Xnc

t + P comt Xcom
t − Pmt Mt, (26)

where Bf
t is domestic holdings of foreign-currency denominated bonds, and Rft is the nominal interest rate

on the bonds. In real terms, it becomes

bft

rft

(
1 + κft

) − bft−1

st
st−1

=
1

Ȳ
(pnct X

nc
t + pcomt Xcom

t − pmt Mt) , (27)

where the bond holdings are normalized as bft =
etB

f
t

πft+1PtȲ
, and rft is the real interest rate on the foreign-

currency denominated bonds.
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2.10 Rest-of-the-world economy

The rest of the world is specified by three exogenous processes that describe the evolution of foreign
variables. First, the foreign output Zft is given by

logZft = ϕzf logZft−1 + (1− ϕzf ) log Z̄f + ξzft ; (28)

second, the foreign real interest rate rft follows

log rft = ϕrf log rft−1 + (1− ϕrf ) log r̄ + ξrft ; (29)

finally, a foreign commodity price pcomft is

log pcomft = ϕcomf log pcomft−1 + (1− ϕcomf ) log p̄comf + ξcomft , (30)

where ξzft , ξrft and ξcomft are normally distributed random variables, and ϕZf , ϕrf and ϕcomf are the
autocorrelation coefficients.

2.11 Uncovered interest rate parity

We impose an augmented uncovered interest rate parity condition

et = Et

(et−1)κ

et+1

Rft

(
1 + κft

)
Rt

1−κ , (31)

where the term (et−1)κ under the brackets is added to mimic the relationship assumed in ToTEM; see
Appendix A.4 for some more details. Without the augmented term the difference in interest rates between
two countries would be equal to the expected change in exchange rates between the countries’ currencies.

2.12 Market clearing conditions

We close the model by the following resource feasibility condition:

Zt = Ct + ιiIt + ιxX
nc
t + Zcomt + υzZt. (32)

We define GDP and GDP deflator as follows:

Yt = Ct + It +Xnc
t +Xcom

t −Mt + υyYt, (33)

P yt Yt = PtCt + P it It + Pnct Xnc
t + P comt Xcom

t − Pmt Mt + υyP
y
t Yt;

in real terms, the latter becomes

pyt Yt = Ct + pitIt + pnct X
nc
t + pcomt Xcom

t − pmt Mt + υyp
y
t Yt. (34)

2.13 Stationarity condition for the open-economy model

The budget constraint (17) of the domestic economy contains Rft

(
1 + κft

)
where Rft is the rate of return

to foreign assets and κft is the risk premium. If the rate of return to foreign assets does not depend on
quantity purchased, then the domestic economy can maintain nonvanishing long-run growth by investing
in foreign assets. Schmitt-Grohé and Uribe (2003) explore several alternative assumptions that make it
possible to prevent this undesirable implication and to attain stationarity in open-economy models. We
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adopt one of their assumptions, namely, we assume that the risk premium κft is an increasing function of
foreign assets

κft = ς
(
b̄f − bft

)
, (35)

where b̄f is the steady state level of the normalized bond holdings, and ς < 0 is a parameter. This
assumption ensures a decreasing rate of return to foreign assets. As we will see, a specific functional form
assumed for modeling risk premium can play an important role in the model’s predictions.

3 A comparison of bToTEM to ToTEM and LENS

We describe the calibration procedure for the bToTEM model, and we compare impulse response functions
produced by the bToTEM model to those produced by ToTEM and LENS, the two models of the Bank of
Canada.

3.1 Calibration of bToTEM

The bToTEM model contains 61 parameters that need to be calibrated. Whenever possible, we use the same
values of parameters in bToTEM as those in ToTEM, and we choose the remaining parameters to reproduce
a selected set of observations from the Canadian time series data. In particular, our calibration procedure
targets the ratios of six nominal variables to nominal GDP P yt Yt, namely, consumption PtCt, investment
P it It, noncommodity export Pnct Xnc

t , commodity export P comt Xcom
t , import Pmt Mt, total commodities

P comt COMt, and labor input WtLt. Furthermore, we calibrate the persistence of shocks so that the
standard deviations of the selected bToTEM variables coincide with those of the corresponding ToTEM
variables, namely, those of domestic nominal interest rate Rt, productivity At, foreign demand Zft , foreign

commodity price pcomft , and foreign interest rate rft . The parameters choice is summarized in Tables D1
and D2 provided in Appendix D.

3.2 Impulse response functions of bToTEM, ToTEM and LENS

The ToTEM model is analyzed by the Bank of Canada with the help of a first-order perturbation method
that is implemented by using IRIS software.8 To compare our bToTEM with ToTEM, we construct a
similar first-order perturbation solution to bToTEM by using both IRIS and Dynare software (we verified
that the IRIS and Dynare packages produce indistinguishable numerical solutions to bToTEM).9 In the
comparison analysis, we also include the impulse response functions for the LENS model, which is another
model of the Bank of Canada.
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Figure 1: Impulse response functions: interest rate shock

8This software is available at http://www.iris-toolbox.com; see Beneš, Johnston and Plotnikov (2015) for its description.
9Dynare software is available at http://www.dynare.org; see Adjemian et al. (2011) for the documentation.
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Figure 2: Impulse response functions: consumption demand shock
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Figure 3: Impulse response functions: permanent productivity shock

In Figures 1–3, we plot impulse responses to three shocks in the bToTEM model, namely, an interest rate
shock, a consumption demand shock, and a permanent productivity shock, respectively.10 In Appendix E,
we also plot impulse responses to foreign shocks, namely, ROW commodity price, demand, and interest
rate shocks. In the figures, we report the response functions of four key model’s variables: the nominal
short-term interest rate, the rate of inflation for consumption goods and services, the real effective exchange
rate, and the output gap. The responses are shown in percentage deviations from the steady state, except
for the interest rate and the inflation rate, which are both shown in deviations from the steady state and
expressed in annualized terms.

The responses we observe are typical for new Keynesian models. In Figure 1, a contractionary monetary
policy shock leads to a decline in output through a decline in consumption. The uncovered interest rate
parity results in appreciation of the domestic currency. A reduction in the real marginal costs implies a
lower price of consumption goods, and hence, lower inflation. In Figure 2, a negative shock to the discount
factor increases consumption and decreases output. The interest rate that is determined by the Taylor rule
increases, and the real exchange rate appreciates. In Figure 3, a permanent increase in productivity gives
room for a higher potential output. The actual output gradually increases. Facing a negative output gap,
the central bank lowers the interest rate according to the Taylor rule. As actual output reaches the new
steady state level, the output gap closes, and the interest rate is back to the neutral rate. A lower interest
rate leads to depreciation of the domestic currency because of the interest rate parity. Permanently higher
productivity reduces input prices, leading to lower real marginal costs that are reflected in temporary lower
inflation.

Our main finding is that our bToTEM model replicates the key properties of the full-scale ToTEM model
remarkably well. Since ToTEM allows for multiple interest rates, different good prices, fiscal policies, etc., it
has a richer structure than bToTEM. However, the variables that are the same in both models are described
by essentially the same equations and therefore, have similar dynamics. One noticeable exception is the

10Both, the ToTEM and LENS models, include more sources of uncertainty than the bToTEM model does, namely, 52
shocks in ToTEM and 98 shocks in LENS.
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dynamics of inflation in response to a consumption demand shock; see Figure 2. In bToTEM, inflation
reacts less on the impact, but decreases more slowly than in the other two models. To understand this
difference between the two models, let us consider a linearized version of the Phillips curve, which is the
same in bToTEM and ToTEM,

π̂t = (1− θ) γωφ̃−1π̂t−1 + βθφ̃−1E [π̂t+1] + λ̃ ˆrmct + εpt , (36)

where rmct is the real marginal cost; εpt is a weighted average of the inflation target and the deviation of mar-
kup from the steady state; θ, γ, ω are the price stickiness parameters defined in Section 2.1; and φ̃ and λ̃ are
the parameters determined by equations φ̃ = θ + ω (1− θ) (1 + γβθ) and λ̃ = (1− ω) (1− θ) (1− βθ) φ̃−1

(see equations (1.20)–(1.22) in Dorich et al., 2013). We observe that the difference in inflation dynamics
is entirely attributed to the difference in the real marginal cost. In ToTEM, a consumption demand shock
triggers a reallocation of inputs into the consumption production sector from the other four sectors. In the
presence of adjustment costs, the reallocation raises the real marginal cost. In contrast, in bToTEM, there
is one production sector and there are no input adjustment costs. Therefore, the responses and decays of
the real marginal cost are less pronounced.

We also observe that the impulse responses of the ToTEM and bToTEM models are generally closer to
one another than those produced by the ToTEM and LENS models, the two models of the Bank of Canada.
This result is not surprising given that the bToTEM model is a scaled-down version of the ToTEM model,
while LENS is a macroeconometric model constructed in a different way.11 Consequently, our comparison
results indicate that bToTEM provides an adequate framework for projection and policy analysis of the
Canadian economy and that it can be used as a complement to the two models of the Bank of Canada.

4 Understanding the role of nonlinearities in the solution

We distinguish three potential effects of nonlinearities on the properties of the solution compared with a
plain linearization method:

i). (ELB). The ELB kink in the Taylor rule can induce kinks and nonlinearities in other variables of
the model.

ii). (Higher order terms). Higher order terms, neglected by linearization, can be quantitatively im-
portant for the properties of the solution.

iii). (Solution domain). The quality of local (perturbation) solutions, constructed to be accurate in
the steady state, can deteriorate when deviating from the steady state.

To assess the quantitative importance of the above effects, we construct three numerical solutions to
bToTEM, specifically: i) a first-order perturbation solution with occasionally binding constraints; ii) a
second-order plain perturbation solution; iii) a nonlinear global solution.

4.1 First-order perturbation-based solution with occasionally binding constraint

A plain first-order perturbation method is not suitable for approximating occasionally binding constraints
like ZLB or ELB, however, there are perturbation-based methods that can approximate such constraints.
In particular, IRIS software can handle occasionally binding constraints although it is limited to first-order
approximation. This method allows us to construct policy projections conditional on alternative anticipated

11LENS is not a general-equilibrium model that is derived from microfoundations and that is calibrated to the data, like
ToTEM and bToTEM. It is a large-scale macroeconometric model composed of a set of equations whose coefficients are
estimated from the data and are fixed for some period of time; see Gervais and Gosselin (2014) for a technical report about
the LENS model.
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policy rate paths in linearized DSGE models; see Laséen and Svensson (2011) and Beneš (2015) on how
this method deals with the inequality constraints; see also Holden (2016) for a related method. Dynare
software cannot impose occasionally binding constraints itself, but there is an OccBin toolbox of Guerrieri
and Iacoviello (2015) that allows imposing such constraints for first-order approximation. The method
of Guerrieri and Iacoviello (2015) applies a first-order perturbation approach in a piecewise fashion to
solve dynamic models with occasionally binding constraints. Thus, the first solution we report is a linear
perturbation solution with occasionally binding constraints produced by IRIS (we also checked that the
IRIS and OccBin toolboxes deliver identical results as pointed out in Guerrieri and Iacoviello, 2015).

4.2 Second-order perturbation solution

A generic second-order perturbation solution in a given class of economic models is given by

g (x, σ) ≈ g (x̄, 0) + gx (x̄, 0) (x− x̄)︸ ︷︷ ︸
1st-order perturbation solution

+
1

2
gxx (x̄, 0) (x− x̄)2 +

1

2
gσσ (x̄, 0)σ2︸ ︷︷ ︸

2nd-order terms

, (37)

where g (x, σ) is a decision function to be approximates; x is a vector of endogenous and exogenous state
variables; σ is a perturbation parameter that scales volatility; (x̄, 0) is a deterministic steady state; g (x̄, 0),
gx (x̄, 0) and gxx (x̄, 0) are, respectively, steady state values, Jacobian and Hessian matrices of g; (x− x̄)
is a deviation from a steady state; and (x− x̄)2 ≡ (x− x̄)⊗ (x− x̄) is a tensor product of the deviations.
The first-order perturbation solution does not depend on the degree of volatility σ, i.e., gσ (x̄, 0) = 0; the
term gσx (x̄, 0) is omitted as well because it is equal to zero; see Schmitt-Grohé and Uribe (2004).

Formula (37) shows the following: A second-order perturbation solution differs from a first-order solu-
tion by two terms: a constant term 1

2g
2
σσ (x̄, 0)σ2 (which we call an uncertainty effect), and a second-order

term 1
2gxx (x̄, 0) (x− x̄)2 (which we call the second-order effect). To assess these effects, we report a plain

second-order perturbation solution. We ignore ELB since there is no perturbation software that can impose
occasionally binding constraints for second and higher order approximations.

4.3 Global nonlinear solution

Perturbation solutions are local; they are constructed to be accurate in just one point – a deterministic
steady state – and their quality can deteriorate when we deviate from the steady state. To assess the
importance of the “solution domain” effect, we need to construct a global solution that approximates
decision rules in a larger area of the state space. To make our local and global solutions comparable, we
use the same families of approximating functions, namely, ordinary polynomial functions,

g (x, σ) ≈ b+ bx (x− x̄) +
1

2
bxx (x− x̄)2 + ..., (38)

where b, bx and bxx are the polynomial coefficients on a constant, first, second, and higher order terms.
With this assumption, local perturbation solution (37) are given by the same polynomial functions as

global solutions (38) but they differ in the values of the coefficients (constructed locally in one point versus
constructed globally in a large area of the steady state, including the ELB area). By comparing the local
and global solutions, we can appreciate how the quality of local solutions deteriorates when we deviate
from the steady state.

An important practical question is how to construct a global solution to a model like bToTEM.12 First
of all, the bToTEM model has much larger dimensionality than new Keynesian models studied with global
solution methods in the literature; see Judd et al. (2012), Boneva et al. (2016), Fernández-Villaverde et
al. (2012, 2015), Gust et al. (2012), Maliar and Maliar (2015), Aruoba et al. (2017), Christiano et al.

12See Aruoba et al. (2006), Lim and McNelis (2008), Maliar et al. (2013), Maliar and Maliar (2014) for a comparison
analysis of numerical solution methods.
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(2016), among others. The largest of such models, analyzed in Maliar and Maliar (2015), contains 8 state
variables (6 exogenous and 2 endogenous ones). In turn, bToTEM contains 21 state variables (6 exogenous
and 15 endogenous ones). The difference between 8 and 21 state variables is immense: for example, if
we discretize each state variable into just 10 grid points to construct a tensor product grid, we would
have 108 and 1021 grid points in the former and latter grids, respectively, which implies a huge 1013-times
difference in evaluation costs! Clearly, conventional solution methods based on tensor product grids, such
as conventional value function iteration, would be intractable in the context of the bToTEM model!

But high dimensionality is not the only challenge that bToTEM represents. The new Keynesian models
studied by using global methods lead to relatively simple systems of few equations that can be solved in a
closed form, given future variables; e.g., Maliar and Maliar (2015). In turn, the open-economy bToTEM
model produces a far more complex system of more than 30 equations that include both domestic and
foreign variables. This system must be treated with a numerical solver in all grid points, as well as in all
future states, inside the main iterative loop.

To construct a global nonlinear solution to bToTEM, we use CGA, a numerical solution method designed
for dealing with high-dimensional applications. CGA merges simulation and projection approaches, namely,
it uses simulation techniques to identify a high probability area of the state space and it uses projection
techniques to accurately solve the model in that area; see Maliar et al. (2011), Judd et al. (2011a, 2012)
and Maliar and Maliar (2015) for a discussion of this and other ergodic set methods and their applications.
In the remainder of this section, we outline the key ideas of CGA; a detailed implementation of this method
in the context of the bToTEM model is described in Appendix F.

The CGA analysis can be understood by looking at the following two-dimensional example:
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Figure 4: Construction of a cluster grid from simulated points

In the first panel of Figure 4, we see a cloud of points that is obtained by stochastic simulation of an
economic model: this cloud covers a high probability area of the state space. We typically want the
solution to be accurate in that area; however, the existing solution methods do not necessarily guarantee
that. As argued above, perturbation methods construct numerical solutions in just one central point – a
deterministic steady state – and they do not guarantee sufficient accuracy in an entire high-probability
area. In turn, projection methods operate on the whole rectangular set that encloses the simulated cloud,
and as a result, they construct solutions in a much larger area than we actually need. Finally, stochastic
simulation methods focus on the relevant area of the state space, but the simulated cloud contains many
redundant points that are located close to one another.

The CGA method improves on pure stochastic simulation methods by eliminating the redundant points;
specifically, it uses clustering analysis to replace a large cloud of simulated points with a smaller set of
evenly spaced “representative”points. The remaining panels of Figure 4 show how CGA constructs the
representative points: it first combines simulated points into a set of clusters; it then distinguishes the
centers of the clusters; and it finally uses the clusters’ centers as a grid for constructing nonlinear solution.
CGA complements the efficient grid construction with other computational techniques that are suitable
for high-dimensional problems, namely, low-cost non-product monomial integration rules and a fixed-point
iteration method for finding parameters of equilibrium rules. Taken together, these techniques make CGA
tractable in problems with high dimensionality – dozens of state variables!
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5 Assessing the effects of nonlinearities in the bToTEM model

We assess the effects of nonlinearities on the properties of solutions to the bToTEM model by conducting
two policy experiments related to the ELB episode in Canada during the Great Recession. We choose to
focus on the ELB crisis for three reasons: first, the ELB crisis is characterized by large deviations from
a steady state, which accentuates the effects of nonlinearities on the solution; second, an ELB kink is a
potentially important source of nonlinearities by itself; and finally, a possibility of a new ELB episode
remains an important practical issue for the Bank of Canada.

Our policy experiments are not limited to conventional impulse response functions but represent si-
mulation of more complex and empirically relevant scenarios: In the first experiment, we introduce into
bToTEM a historical sequence of ROW variables estimated from actual time series data using ToTEM;
and in the second experiment, we analyze a change in the inflation target compensated by the real interest
rate adjustment, in accordance with the Bank of Canada practices.

5.1 Experiment 1: The ELB crisis in Canada: imported from abroad?

In the U.S. and European countries, the Great Recession and ZLB episodes were caused by the 2008
financial crisis. In contrast, Canada did not experience any significant financial crisis or economic slowdown
at the beginning of the Great Recession. Nonetheless, Canada also ended up reaching an ELB on nominal
interest rates and remained there during the 2009–2010 period. To be specific, the Bank of Canada targeted
the overnight interest rate at 0.25 percent annually, which at that time was viewed by the Bank to be a
lower bound on the nominal interest rate.

What factors led the Canadian economy to the ELB crisis? In the first experiment, we argue that the
recession spread to Canada via the rest of the world, primarily from the U.S., which is the main Canadian
trade partner (around 75 percent of Canadian exports go to the U.S.). The Canadian economy experienced
a huge (16 percent) drop in exports in the beginning of the Great Recession; see a speech by Boivin (2011),
a former Deputy Governor of the Bank of Canada. Using bToTEM, we find that a negative ROW shock
of such magnitude is sufficient to originate a prolonged ELB episode in the Canadian economy.

5.1.1 Calibrating the ROW dynamics by combining the analysis of bToTEM and ToTEM

An important question is how to realistically calibrate the behavior of the ROW sector in the bToTEM
model since a foreign financial crisis affects not just foreign demand but also foreign prices and foreign
interest rates. Our methodology combines the analysis of bToTEM and ToTEM. Namely, we use ToTEM
to produce impulse responses for three foreign variables: a ROW interest rate, ROW commodity price and
ROW output, and we use these three ToTEM variables as exogenous shocks in the bToTEM model; these
shocks are shown in Figure 5. In ToTEM, a negative shock in the ROW sector has three effects: the world
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Figure 5: Exogenous ROW shocks

demand goes down, output falls, and the ROW commodity price reduces. Since the monetary authority in
the ROW model is assumed to follow a Taylor rule, the ROW nominal interest rate goes down as well. The
size of the considered ROW shock in ToTEM is such that its output declines by 7 percent on the impact
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of shock, and it declines by 12 percent at the peak – these numbers are consistent with the magnitudes of
foreign shocks experienced by the Canadian economy during the Great Recession.

5.1.2 A comparison of three alternative numerical solutions

Figure 6 displays the simulated time series for the key model variables under the given behavior of the ROW
sector that we imported from ToTEM. Here, the ELB on the nominal interest rate is set at 2 percentage
points below the deterministic steady state of the nominal interest rate. All the variables are reported in
percentage deviations from the deterministic steady state, except of inflation and the interest rates that
are shown in annualized deviations from the deterministic steady state. We assume that initially, the
domestic interest rate in bToTEM is slightly below the deterministic steady state, namely, by 1 percent,
which makes it is easier to reach the ELB on the nominal interest rate.13
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Figure 6: Experiment 1. Linear perturbation, quadratic perturbation, and quadratic global solutions

We plot three different solutions, namely, a first-order perturbation solution produced by IRIS (OccBin)
with the ELB imposed; a plain second-order perturbation solution produced by Dynare; and a second-order
global solution produced by CGA with the ELB imposed.14 As we see, the three solutions look very similar
in the figure.

To check the accuracy of numerical solutions, we compute unit-free residuals in the model’s equation
along the simulation path; see Appendix G for details of our accuracy assessment. As expected, the
global solution method is the most accurate. The least accurate first-order perturbation methods can
produce residuals of order 10−1.43 ≈ 3.7 percent, while the CGA method produces residuals lower than
10−2.09 ≈ 0.8 percent. (The accuracy results are similar on a stochastic simulation). Given that all three

13The natural yearly rate of interest in bToTEM is calibrated to 3 percent as in ToTEM. This value is chosen to represent
the long-run historical average of the natural rate of interest in the Canadian economy. However, the current natural rate of
interest in Canada is considerably lower. Setting the initial interest rate below the steady state is a way to account for the
current low interest rate.

14We use pruning to simulate the second-order perturbation solution; see Andreasen et al. (2013).
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numerical solutions look similar, we conclude that numerical errors of these magnitudes do not affect the
qualitative implications of the model in this experiment.

5.1.3 Understanding the ELB episode in Canada

In our experiment in Figure 6, the nominal interest rate reaches the ELB and remains there during eight
quarters, which corresponds to what actually happened in the Canadian economy during the 2009–2010
period. Our analysis suggests that a contamination-style mechanism accounts for this ELB episode in
the Canadian economy. Under the considered scenario of negative ROW shocks, there are three foreign
variables that decline during the crisis, namely, foreign output, the foreign interest rate, and the world
commodity price; see Figure 5. The immediate consequence of these shocks for the domestic economy is a
sharp decline in commodity and noncommodity exports in the Canadian economy. There are significantly
fewer commodities extracted due to a huge decline in commodity prices and as a consequence, domestic
output starts declining. The central bank responds by lowering the interest rate to stimulate the economy
but the magnitude of shocks is so large that the bank reaches the lower bound on the nominal interest rate
by six quarters. Without unconventional monetary tools, the interest rate stays at the lowest value for
more than two years until the foreign economy sufficiently recovers. All three numerical methods considered
deliver the same qualitative predictions about the ELB episode.

Surprisingly, we find that it is fairly easy to generate prolonged ELB episodes in an open-economy
setting, while it is quite difficult to produce such episodes in closed-economy models. In particular, Chung,
Laforte, Reifschneider and Williams (2012) find that standard structural models (FRB/US, EDO, Smets
and Wouter (2007)) deliver very low probability of hitting the ZLB. Maliar and Maliar (2015) generate
the ZLB episodes by assuming large preference shocks affecting the marginal rate of substitution between
consumption and leisure. Aruoba et al. (2017) augment the simulated series from the model to include
historical data from the U.S. economy in order to obtain realistic spells at the ZLB. Fernández-Villaverde,
Gordon, Guerrón-Quintana and Rubio-Ramı́rez (2012, 2015) argue that within a standard new Keynesian
model, it is impossible to generate long ZLB spells with modest drops in consumption, which were observed
during the recent crises; they suggest that the only way to get around this result is to introduce wedges
into the Euler equation. Also, Christiano et al. (2015) emphasize the importance of such shocks as a
consumption wedge (a perturbation governing the accumulation of the risk-free asset), a financial wedge (a
perturbation for optimal capital accumulation), a TFP shock, and a government consumption shock. Thus,
our contamination-style motive for the ELB crisis in the open-economy model of the Canadian economy
differs from those proposed in the literature for closed-economy models.

There is related recent literature on the transmission of liquidity trap from one country to another.15

Fujiwara (2010) considers a small open economy, calibrated to the Japanese economy, and shows analyti-
cally that the multiplier of an export demand shock is small if an economy is not hit by ZLB but increases
by a factor of 100 if such an economy is at the binding ZLB constraint. Jeanne (2010) uses a two-country
model to show that a negative demand shock in one country may push the other country to zero nominal
interest rates. Bodenstein, Erceg and Guerrieri (2016) find that if a domestic economy (U.S.) is not at
ZLB, negative foreign shocks have negligible effects on the U.S., but if the U.S. is previously hit by ZLB,
the effects of such shocks are substantially amplified. Other papers that share similar themes include
Cook and Devereux (2011, 2013, 2016), and Corsetti, Kuester and Müller (2016) among others. Finally,
Devereux (2014), Caballero, Farhi and Gourinchas (2016), and Eggertsson, Mehrotra, Singh and Summers
(2016) analyze how liquidity traps spread across the world by emphasizing the role of capital flows.

15There is also earlier literature that analyzes the effects of foreign shocks on a domestic economy over the business cycle;
see e.g., Backus et al. (1992). Schmitt-Grohé (1998) finds that variations in export demand are more important for explaining
the business cycle behavior of Canadian aggregate variables than variations in financial markets. Lubik and Schorfheide
(2005) build a new Keynesian model with two countries – United States and Euro area – and find asymmetric transmissions of
monetary, supply and demand shocks. See also Fernández, Schmitt-Grohé, Uribe (2017) for recent evidence on the importance
of terms of trade shocks over the business cycle.
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5.1.4 Nonlinearities are not important

The role of nonlinearities is modest in our first experiment: all three solutions predict nearly the same
magnitude and duration of the ELB crisis. This result suggests that all three kinds of nonlinearities
described in Section 4 are quantitatively unimportant: First, the presence of an active ELB does not
significantly affect the behavior of other variables, to put it simply, if the Bank of Canada just used a plain
first-order perturbation method for analyzing ToTEM, either ignoring ELB entirely or chopping interest
rate at ELB in simulation, it would not be terribly wrong. Furthermore, a comparison of the first- and
second-order perturbation solutions suggests that the role of second-order terms is also relatively minor.
Finally, given that our global CGA solution is relatively close to perturbation solutions, we conclude that
the quality of perturbation solutions does not dramatically deteriorate away from the steady state.

The related literature focuses almost exclusively on nonlinearities in the new Keynesian models resulting
from ZLB or ELB.16 The findings of this literature are mixed. Several papers find that ZLB is quantitatively
important in the context of stylized new Keynesian models with Calvo pricing, in particular, Maliar
and Maliar (2015) argue that first- and second-order perturbation solutions understate the severity and
duration of the ZLB crisis; Fernández-Villaverde et al. (2015) show that the nonlinearities start playing an
important role when ZLB is binding, affecting the expected duration of spells, fiscal multipliers, as well as
the trade-off between spells and drops in consumption; and Aruoba et al. (2017) show that nonlinearities
in their new Keynesian model can explain the differential experience of the U.S. and Japan by allowing
for nonfundamental shocks (sunspots). Furthermore, in the model with Rotemberg pricing, Boneva et
al. (2016) find that linearization considerably distorts the interaction between the ZLB and the agents’
decision rules, in particular, those for labor supply.17

The papers that find that ZLB is quantitatively unimportant include Christiano et al. (2016) and
Eggertsson and Singh (2016). Christiano et al. (2016) study a stable-under-learning rational expectation
equilibrium in a simple nonlinear model with Calvo pricing; they find that a linearized model inherits the
key properties of the nonlinear model for fiscal policy at the ZLB, predicting similar government spending
multipliers and output drops. Eggertsson and Singh (2016) derive a closed-form nonlinear solution to
a simple, two-equation new Keynesian model. They report negligible differences between the exact and
linearized solutions when they look at the effects of fiscal policy at the ZLB.

Thus, our findings are closer to the literature that did not find important effects of nonlinearities.
Clearly, a modest role of nonlinearity in our first experiment is not generic but a numerical result that is
valid just for our specific set of assumptions and calibration procedure. It happens because the probability
of ELB is relatively low as well as its cost, so the possibility of hitting ELB does not considerably affect the
decisions of the agents. We can increase the importance of ELB by increasing the volatility of shocks (still
within a reasonable range) or by modifying some model’s assumptions (one such modification is shown in
Section 5.3). However, demonstrating the importance of nonlinearities and ELB was not the goal of our
analysis. We meticulously calibrate the bToTEM model to reproduce the Canadian data, trying to make
it as close as possible to the full-scale ToTEM model; and under our calibration, nonlinearities proved to
be quantitatively unimportant, including ELB.

5.2 Experiment 2: Preventing the ELB crisis

For the last 25 years, the Bank of Canada has adhered to the inflation targeting, but every three to five
years it revises its inflation-control target level. The last revision happened in 2016: the Bank of Canada
considered the possibility of increasing the inflation target, but eventually it reached the decision to keep
it at a 2 percent level for the next five years. A higher inflation target reduces the probability of reaching

16One exception is Judd et al. (2017), who demonstrate that approximation errors in linear and quadratic perturbation
solutions can reach hundreds percent under empirically relevant calibrations of new Keynesian models, even if the economy is
not at the ZLB.

17See also Gust et al. (2012) for related evidence from estimation of a nonlinear new Keynesian model using a maximum-
likelihood approach.
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ELB, but it also has certain costs for the Canadian economy; see Kryvtsov and Mendes (2015) for some
considerations that may have influenced the decision of the Bank of Canada. In our second experiment,
we use a simulation of bToTEM to assess the impact of a hypothetical transition from a 2 to 3 percent
inflation target on the Canadian economy.

5.2.1 A 3 percent inflation target would have prevented the 2009-2010 ELB crisis in the
Canadian economy

In the new Keynesian models like ToTEM and bToTEM, the ELB or ZLB episodes can be prevented by
choosing a sufficiently large inflation target. For example, in Figure 7 we show that if the Bank of Canada
had the inflation target of 3 percent instead of 2 percent, the ELB would never be reached in bToTEM
under any solution method in our first experiment.
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Figure 7: Experiment 1. Linear perturbation, quadratic perturbation, and quadratic global solutions under
the inflation target of 3 percent (in deviations from the deterministic 3%-inflation-target steady state)

The idea of using an inflation target as a policy instrument for dealing with ZLB episodes dates back
at least to Summers (1991) and Fischer (1996), who suggest to use an inflation target in the range of 1
to 3 percent if the economy hits the ZLB. Krugman (1998) proposes to use a 4 percent inflation target
in the Japanese economy to deal with persisting deflation. In light of the Great Recession, Blanchard,
Dell’Arriccia and Mauro (2010) argue that adopting a 4 percent inflation target in the U.S. can help avoid
the ZLB crisis; see also Williams (2009) and Ball (2013) for related proposals. For the Canadian economy,
Dorich, Labelle, Lepetyuk and Mendes (forthcoming) estimate the effects of the increases in the inflation
target to 3 percent (or 4 percent) and they find that it decreases the probability of hitting the ELB from
6 percent to 3 percent (or 1 percent).

However, a higher inflation target has also certain costs, in particular, it tends to decrease average
output, to increase costs of price dispersion, to raise the economy’s volatility and to produce unstable
expectations dynamics; see Ascari and Sbordone (2014) for a discussion. Coibion, Gorodnichenko and
Wieland (2012) perform a careful assessment of the costs and benefits of higher inflation: they find that
for plausible calibrations of the model and realistic frequencies of the ZLB episodes (of eight quarters), the
optimal inflation rate in the U.S. economy must be less than 2 percent: the cost of ZLB in their analysis
is relatively low because the probability of hitting ZLB is relatively low.

5.2.2 Modeling a transition from a 2 percent to a 3 percent inflation target

We use the bToTEM model to study a transition of the Canadian economy after a hypothetical increase
in the inflation target from 2 percent to 3 percent, a possibility that was recently evaluated by the Bank
of Canada. We implement a change in the inflation target by maintaining the real neutral interest at the
same level of 3 percent. We thus simultaneously adjust the nominal interest rate target level from about
5 to 6 percent.

In our baseline experiment, the initial condition corresponds to the deterministic steady state of the
Canadian economy with an old inflation target of 2 percent. We then recompute the solution under the
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new inflation target of 3 percent, and we simulate the transition path from the old to the new steady states.
In all cases, we assume no shocks over the transition path.

5.2.3 Are nonlinearities important?

In Figure 8, we plot the simulation for the first- and second-order perturbation solutions as well as global
quadratic CGA solutions. Here, the level “0” corresponds to the initial deterministic steady state of 2
percent and all the variables are given in deviations from that initial steady state; the level “1” in the
figure for inflation means 3 percent and “1” in the figure for interest rate means a new nominal interest
rate target of 6 percent.
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Figure 8: Experiment 2. Linear, quadratic, and global solutions (in deviations from the deterministic
2%-inflation-target steady state)

In this experiment, the three solutions look very different. The first-order perturbation solution behaves
in a way that is typical for new Keynesian models and that agrees with our intuition and common sense.
The change in the inflation target almost instantaneously translates into an increase in the inflation rate.
Inflation reacts so rapidly because in our sticky-price economy, the non-optimizing firms set their price
according to the inflation target, which is instantaneously changed from 2 percent to 3 percent. Following
the Taylor rule with persistence, the interest rate reaches the new steady state within a couple of years.
During the transition to this new steady state, the interest rate is below the new steady states and therefore
provides a monetary stimulus. The stimulus is reflected in higher investment, output, consumption and
capital under all solutions.

In contrast, the simulation of second-order and global nonlinear solutions looks odd, in particular,
consumption, investment and capital produce wiggles and even go down. These implications of the second-
order perturbation and global solutions are puzzling and seem to point to the importance of some nonlinear
effects, but we will be able to resolve this puzzle below and to show that the role of nonlinearities is still
quite limited.
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5.2.4 Are nonlinearities important? Not really for a second-order perturbation solution

Let us recall the three effects of nonlinearities discussed in Section 4. Since ELB is not binding in this
experiment, the first- and second-order perturbation solutions in (37) can differ either because of the
uncertainty effect represented by a constant term 1

2g
2
σσ (x̄, 0)σ2 or because of the second-order effects

represented by a quadratic term 1
2gxx (x̄, 0) (x− x̄)2. Global solutions can also differ from perturbation

solutions because their coefficients are constructed on a larger solution domain.
The uncertainty effect means that linear and nonlinear models have different steady states: In absence

of shocks, a linear model converges to the deterministic steady state, while a nonlinear model converges to
the so-called stochastic steady state that depends on a degree of volatility σ.

The uncertainty effect is well appreciated from Figure 8: both second-order perturbation and global
CGA solutions converge not to the deterministic steady state but to some other levels. In particular, in
the nonlinear case, the interest rate does not increase by exactly 1 as in the linear case, but somewhat less.
This means that the central bank does not get the same inflation rate as it targets by the Taylor rule in
the nonlinear case (if the initial condition is a deterministic steady state); see Hills et al. (2016) for an
estimation of such deflationary bias in the U.S.

In turn, the term 1
2gxx (x̄, 0) (x− x̄)2 captures second-order effects that are ignored by linear solutions,

in particular, those associated with wage and price dispersions (in linear solutions, such dispersions are
equal to zero). To assess the relative importance of these and other similar second-order effects, in Figure 9
we simulate a second-order perturbation solution by using a stochastic steady state as an initial condition
instead of the deterministic one.
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Figure 9: Modified experiment 2. Linear perturbation and two quadratic solutions, one of which starts
from the deterministic steady state and the other starts from the stochastic steady state (in deviations
from the deterministic 3%-inflation-target steady state)

Once the initial condition is adjusted, the second-order effects disappear! In Figure 9, the first-order
and alternative second-order perturbation solutions are visually indistinguishable, up to a constant term
that shifts the second-order solution relative to the first-order solutions. Now, we realize that the puzzling
behavior of nonlinear solutions in Figure 8 such as wiggly consumption, investment and capital along
the transition happens simply because nonlinear solutions are effectively confronted with two transitions:
one is a transition to a new inflation target and the other is a transition from the deterministic to their
own stochastic steady state. Adjusting the initial condition removes the second transition and makes the
nonlinear solutions meaningful.

Our analysis suggests that a coherent simulation of perturbation solutions would require to start each
solution from its own steady state (or from the same relative distance from the steady state). If we do so,
the first- and second-order solutions are nearly identical for practical effects in our experiment. This means
that second-order effects associated with the wage and price dispersion play a minor role in second-order
solutions. Again, in the context of the ToTEM model, the Bank of Canada will not be too wrong by
focusing on first- instead of second-order perturbation solutions.
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5.2.5 Are nonlinearities important? Somewhat more for a global solution

We next perform a similar experiment with the global CGA solution by constructing an alternative simu-
lation that starts from the stochastic steady state of the CGA global solution; see Figure 10.
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Figure 10: Modified experiment 2. Linear perturbation and two global solutions, one of which starts from
the deterministic steady state and the other starts from the stochastic steady state (variables are shown
in deviations from the 3% deterministic steady state)

For the CGA solution, the adjustment of the initial condition is far less quantitatively important: the
simulations with two different initial conditions are situated fairly close to one another. This is because the
CGA solution that is constructed globally places less weight on what happens near the steady state than
the perturbation solution constructed locally. Making some adjustments in a relatively small area near the
steady state does not have much impact on a global solution. As a result, the transition path for the CGA
solution remains visibly different from the first-order perturbation path even after the adjustment of the
initial conditions.

To understand this result, let us note that the global solution is not the most accurate solution in
this experiment. Here, we are relatively close to the steady state (the output deviation is less than 0.2
percent) and perturbation solutions are the most accurate solutions in a close proximity of the steady
state by construction. In contrast, global solutions are fitted on a large domain and they face a trade-off
between the fit near and away from steady state, including the fit in the ELB area. Given the same
second-order polynomial functions, the only way for a global solution to get higher accuracy away from
steady state is to sacrifice some accuracy near the steady state, which is what we observe in the figure. If
the “solution domain” effect was quantitatively important and the accuracy deterioration away from the
steady state was a critical issue for the perturbation solutions, we would probably observe a large difference
between perturbation and global solutions in the first experiment, in which the output deviation is about 3
percent, (i.e., more than 10 times larger), but this was not the case. Still, we can loosely interpret a visible
inaccuracy of global solutions near the steady state as an indication of the importance of nonlinearities
away from the steady state. Most importantly, the Bank of Canada will not be doing better by focusing
on global solutions instead of perturbation solutions in this experiment.

5.3 Nonlinearities are important, finally! Revisiting the stationarity condition of
Schmitt-Grohé and Uribe (2003)

Our previous analysis seems to suggest that nonlinearities, including ELB, play a very minor role in the
bToTEM model (provided that we account for differing steady states). However, let us show that a
relatively small change in the model’s assumptions can change this conclusion. Specifically, let us replace
the linear closing condition (35) that ensures the model’s stationarity with a similar closing condition in
an exponential form, used in Schmitt-Grohé and Uribe (2003):

κft = ς
[
exp

(
b̄f − bft

)
− 1
]
. (39)
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Let us re-visit our first experiment, in which the Canadian economy experiences three shocks to the
ROW variables. Recall that under our benchmark linear closing condition in Figure 6, all three solutions
looked very similar. However, Figure 11 provided below shows that a second-order perturbation solution
looks very different after we change the closing condition to the exponential one in (39):
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Figure 11: Modified experiment 1. Linear, quadratic, and alternative quadratic solutions

Now, the risk premium has a faster and sharper increase and declines because of the changes in the
foreign bonds. The change in risk premium dynamics affects the exchange rate via the uncovered interest
rate parity condition (it premultiplies the foreign interest rate). In turn, the exchange rate affects the
prices of two out of four inputs in the production function, which eventually affects the real marginal cost
and inflation.

The importance of stationarity condition in our analysis seems to be surprising, given that Schmitt-
Grohé and Uribe (2003) compare several different stationary conditions and they find that the implications
of open-economy models do not significantly depend on the specific condition used. However, we shall
recall that the analysis of Schmitt-Grohé and Uribe (2003) focuses exclusively on first-order solutions. In

a linearized form, the exponential stationarity condition (39) is given by κft ≈ ς
(
b̄f − bft

)
, which exactly

coincides with our linear closing condition (35). Thus, the analysis of Schmitt-Grohé and Uribe (2003)
would treat our two alternative closing conditions as exactly identical.

However, second- and higher-order expansions of linear and exponential closing conditions are different.

A linear closing condition (35) does not have second-order terms and it is equal to itself κft = ς
(
b̄f − bft

)
,

while the exponential closing condition (39) does have such terms and it is given by κft ≈ ς
(
b̄f − bft

)
+

1
2 ς
(
b̄f − bft

)2
. Precisely, the second-order term 1

2 ς
(
b̄f − bft

)2
accounts for a visibly large difference be-

tween the first- and second-order perturbation solutions in our Figure 11. Thus, even those “innocent”
assumptions that we do not expect to play a significant role in the properties of the solution can lead to
important nonlinearities in the central banking models. Central banks must be systematically checking
the robustness of their linear solutions to potentially important effects of nonlinearities.

6 Conclusion

ToTEM is the main macroeconomic model of the Bank of Canada for projection and policy analysis.
The full-scale ToTEM is not yet feasible for global nonlinear methods, so it is currently analyzed by a
linearization-based method. Thus, it is not yet known whether or not neglecting nonlinearity can signifi-
cantly distort the policy implications of the ToTEM model.

We construct, calibrate, solve and simulate the bToTEM model – a scaled down version of the ToTEM
model. We show that the bToTEM model generates impulse response functions that are very close to
those produced by the ToTEM model and thus, it can be used as a complement to the existing models of
the Bank of Canada. Importantly, bToTEM is tractable under global nonlinear solution methods and its
accuracy can be assessed. This allows us to study the quantitative importance of nonlinear effects and to
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gain insights into the limitations of local perturbation methods in the context of large-scale central bank
models. In simple words, the bToTEM model allows us to say how much the ToTEM linear analysis can
go wrong because of insufficiently accurate solutions.

Our overall finding is that the role of nonlinearities including ELB is modest in a realistically calibrated
bToTEM model. We show that in the context of that model, the Bank of Canada will not make a big
mistake if it uses a simple linearization-based solution adapted to ELB instead of more accurate global
nonlinear solutions. Therefore, our findings do not support the idea that inadequate solution methods
could be the reason for the failure of macroeconomists to foresee and prevent the Great Recession.

Our negative result must be taken with caution, and it should not be extrapolated to other models.
We show that apparently innocent changes in the model’s assumptions can make nonlinearity important,
for example, a change in the stationarity closing condition. This means that central banks cannot automa-
tically neglect nonlinearities but need to perform accuracy checks and sensitivity analysis similar to ones
implemented in the present paper.

Neither does our negative result imply that nonlinearities are unimportant in explaining the Great
Recession and the ELB crisis. It simply happened that under a realistic calibration of the bToTEM, the
nonlinear effects are not quantitatively important. The reason why such effects are unimportant is that
the probability of ELB and its cost is relatively small in the bToTEM model; the possibility of hitting the
ELB does not affect the decisions of the agent too much; in this sense, our results are in line with those
in Coibion et al. (2012). Possibly, the ToTEM and the derived bToTEM models are not good models for
explaining the Great Recession, and other models are needed in which nonlinearities are more important.

Finally, our methodology could be useful not only for the Bank of Canada but also for other central
banks and government agencies that use large-scale macroeconomic models for projection and policy ana-
lysis. An important contribution of the present paper is to provide methodology for analyzing, solving,
and testing the accuracy of central banking models, as well as for designing nontrivial policy experiments
within such models. Our results suggest that more powerful hardware and software, in particular, high per-
formance computing tools, will make it possible to produce global nonlinear solutions to full-scale central
banking models in the near future.
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[68] Schmitt-Grohé S., and M. Uribe, (2004). Solving dynamic general equilibrium models using a second-
order approximation to the policy function. Journal of Economic Dynamics and Control 28 (4), 755-
775.
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A Derivation of the optimality conditions

In this appendix, we elaborate the derivation of the optimality conditions.

A.1 Production of final goods

First stage of production The Lagrangian of the problem is
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The optimal quantities satisfy the following conditions, with an augmented discount factor as in ToTEM:
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where Qt is the Lagrange multiplier on the law of motion of capital (3). Introducing real prices by
pzt = P zt /Pt, wt = Wt/Pt, p

i
t = P it /Pt, p
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m
t = Pmt /Pt, and qt = Qt/Pt, where Pt is the

price of final good, the conditions can be written as
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Second stage of production The first-order condition associated with the problem (9)-(10) is
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or using the demand function (10)
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where the real marginal cost is
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The condition (A.13) can be written as
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The equations for F1t and F2t can be written recursively as
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The aggregate price introduced by (7) satisfies the following condition:
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Combining (A.18) with the optimal price setting (A.15), we get
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Relation between the first and second stages of production Introducing the following price index
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the dynamics of the price dispersion is the following:
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A.2 Commodities

The Lagrangian of the problem is the following:
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The resulting partial adjustment equation for the commodity-producing firm is as follows:
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or expressed in real prices
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A.3 Imports

Similarly to (A.13), the first-order optimality condition associated with the problem of optimizing forward-
looking importers is the following:
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The condition (A.23) can be written as
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where Fm1t and Fm2t are given by the following equations:
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and where st and pmft are the real exchange rate and the real foreign price of imports introduced by st =

etP
f
t /Pt and pmft = Pmft /P ft , respectively. The aggregate import price satisfies the following condition:
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Combining (A.27) with (A.24), we get
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A.4 Households

The maximization of the lifetime utility (16) subject to the budget constraint (17) with respect to con-
sumption and bond holdings yields the following first-order condition:
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where λt is the marginal utility of consumption, which is given by
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The no-arbitrage condition on holdings of domestic and foreign bonds would imply the following interest
rate parity:
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which is further augmented as in ToTEM to improve business cycle properties of the model as follows:
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The condition can be expressed in terms of real exchange rate st = etP
f
t /Pt as follows:
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A.5 Wage setting

The first-order optimality condition associated with the problem (21)-(22) is
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where the marginal rate of substitution between consumption and labor is introduced as follows:
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Using the demand (22), we write the optimality condition (A.33) as
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1+η
η

 = 0. (A.34)

Introducing w∗t = W ∗t /Pt, the condition (A.34) can be stated as

(w∗t )
1+ εw

η (wt)
−εw
η =

Fw1t
Fw2t

(A.35)

Fw1t ≡ Et

 ∞∑
j=0

(βθw)j λt+j
εw

εw − 1

(∏j
k=1 π̄t+k∏j
k=1 π

w
t+k

)−εw(1+η)
η

(Ct+j − ξCt+j−1) (Lt+j)
1+η
η


Fw2t ≡ Et

 ∞∑
j=0

(βθw)j λt+j

∏j
k=1 π̄t+k∏j
k=1 πt+k

(∏j
k=1 π̄t+k∏j
k=1 π

w
t+k

)−εw
Lt+j


The equations for Fw1t and Fw2t can be written recursively as

Fw1t = λt
εw

εw − 1
(Ct − ξCt−1) (Lt)

1+η
η + βθwEt

( π̄t+1

πwt+1

)−εw(1+η)
η

Fw1,t+1

 (A.36)

and

Fw2t = λtLt + βθwEt

[
π̄t+1

πt+1

(
π̄t+1

πwt+1

)−εw
Fw2,t+1

]
. (A.37)

The aggregate wage defined by (19) satisfies the following condition:

θw

(
π̄t
πwt

)1−εw
+ (1− θw)ωw

((
πwt−1

)γw (π̄t)
1−γw

πwt

)1−εw

+ (1− θw) (1− ωw)

(
W ∗t
Wt

)1−εw
= 1. (A.38)

Combining (A.38) with price settings of the optimizing labor unions (A.35), we get

θw

(
π̄t
πwt

)1−εw
+ (1− θw)ωw

((
πwt−1

)γw (π̄t)
1−γw

πwt

)1−εw

+ (1− θw) (1− ωw)

(
w∗t
wt

)1−εw
= 1. (A.39)

The marginal utility of consumption (A.30) can be expressed employing (18) as follows:

λt = (Ct − ξCt−1)
−1
µ exp

(
η (1− µ)

µ (1 + η)

∫ 1

0
(Lht)

η+1
η dh

)
ηct =

(Ct − ξCt−1)
−1
µ exp

(
η (1− µ)

µ (1 + η)
∆w
t L

η+1
η

t

)
ηct , (A.40)
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where ∆w
t =

∫ 1
0

(
Wht
Wt

)−εw(η+1)
η

dh is the wage dispersion term. Introducing the following price index

W̄t =

(∫ 1

0
(Wht)

−εw(η+1)
η

dh

) −η
εw(η+1)

,

the dynamics of the wage dispersion term can be derived as follows:

(
W̄t

Wt

)−εw(η+1)
η

= θw

(
π̄W̄t−1

Wt

)−εw(η+1)
η

+ (1− θw)ωw

((
πwt−1

)γw (π̄t)
1−γw W̄t−1

Wt

)−εw(η+1)
η

+ (1− θw) (1− ωw)

(
W ∗t
Wt

)−εw(η+1)
η

or

∆w
t = θw

(
π̄t
πwt

)−εw(η+1)
η

∆w
t−1

+ (1− θw)ωw

((
πwt−1

)γw (π̄t)
1−γw

πwt

)−εw(η+1)
η

∆w
t−1 + (1− θw) (1− ωw)

(
w∗t
wt

)−εw(η+1)
η

. (A.41)
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B List of model variables

In Table B.1, we list 49 endogenous model variables. When solving the models, the variables are taken
either in levels or in logarithms as stated in the table.

Variable Symbol In logarithms

productivity At no
labor input Lt yes
capital input Kt yes
investment It yes
commodities used domestically COMd

t yes
import Mt yes
capital utilization ut no
capital depreciation dt no
gross production of intermediate good Zgt yes
net production of intermediate good Znt yes
total production Zt yes
consumption Ct yes
GDP Yt yes
marginal utility of consumption λt yes
inflation πt yes
real marginal cost rmct yes
consumption Phillips curve term F1t yes
consumption Phillips curve term F1t yes
price dispersion ∆t yes
imported good inflation πmt yes
imports Phillips curve term Fm1t yes
imports Phillips curve term Fm1t yes
inflation target π̄t yes
real price of import pmt yes
real exchange rate st yes
nominal interest rate Rt no
interest rate shock process ηrt no
real price of intermediate good pzt yes
real wage wt yes
real price of commodities pcomt yes
marginal product of capital MPKt yes
interest rate on capital Rkt no
Tobin’s Q qt yes
real price of investment pit yes

foreign-currency price of commodities pcomft no

foreign real interest rate rft no

interest premium on foreign bonds κft no

holdings of foreign bonds in real terms bft no
non-commodity export Xnc

t yes
export of commodities Xcom

t yes

foreign demand Zft no
total commodities produced COMt yes
final goods used in commodity production Zcomt yes
wage inflation πwt yes
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wage Phillips curve term Fw1t yes
wage Phillips curve term Fw2t yes
optimal wage w∗t yes
wage dispersion ∆w

t yes
auxiliary expectation term exit no
auxiliary expectation term excomt no

foreign price of import pmft yes
GDP deflator pyt yes
price of non-commodity export pxzt yes
consumption demand shock process ηct no
potential GDP Ȳt yes

Table B.1: A list of model’s variables
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C List of model equations

The bToTEM model consists of 49 equations and 49 endogenous variables, as well as 6 exogenous autocor-
relative shock processes. Here we summarize all model equations.

• Production of finished goods

– Production technology (1), (5)

Zgt =

(
δl (AtLt)

σ−1
σ + δk (utKt)

σ−1
σ + δcom

(
COMd

t

)σ−1
σ

+ δm (Mt)
σ−1
σ

) σ
σ−1

Znt = Zgt −
χi
2

(
It
It−1

− 1

)2

It

– Optimality conditions (A.1), (A.2), (A.3), (A.4), (A.5), (A.6)

wt = pzt (Zgt )
1
σ δl (At)

σ−1
σ (Lt)

−1
σ

MPKt = (Zgt )
1
σ δk (ut)

−1
σ (Kt)

−1
σ

Rkt = Rt

(
1 + κkt

)
qt =

1

Rkt
Et
[
πt+1

(
pzt+1MPKt+1ut+1 + qt+1 (1− dt+1)

)]
pit = qt − pzt

χi
2

(
It
It−1

− 1

)(
3It
It−1

− 1

)
+

1

Rkt
Et

[
πt+1p

z
t+1χi

(
It+1

It
− 1

)(
It+1

It

)2
]

pcomt = pzt (Zgt )
1
σ δcom

(
COMd

t

)−1
σ

pmt = pzt (Zgt )
1
σ δm (Mt)

−1
σ

qtdρe
ρ(ut−1) = pztMPKt

– Law of motion for capital (3), (4)

Kt = (1− dt−1)Kt−1 + It−1

dt = d0 + deρ(ut−1)

– New-Keynesian Phillips curve for finished goods (A.14), (A.16), (A.17), (A.19)

rmct = pzt (1− sm) + sm

F1t = λtZt
ε

ε− 1
rmct + βθEt

[(
π̄t+1

πt+1

)−ε
F1t+1

]

F2t = λtZt + βθEt

[(
π̄t+1

πt+1

)1−ε
F2t+1

]

θ

(
π̄t
πt

)1−ε
+ (1− θ)ω

(
(πt−1)γ (π̄t)

1−γ

πt

)1−ε

+ (1− θ) (1− ω)

(
F1t

F2t

)1−ε
= 1
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– Price dispersion (11), (A.20)
Znt = (1− sm) ∆tZt

∆t = θ

(
π̄t
πt

)−ε
∆t−1 + (1− θ)ω

(
(πt−1)γ (π̄t)

1−γ

πt

)−ε
∆t−1 + (1− θ) (1− ω)

(
F1t

F2t

)−ε
• Commodities

– Production technology (12)

COMt = (Zcomt )sz (AtF )1−sz − χcom
2

(
Zcomt

Zcomt−1

− 1

)2

Zcomt

– Demand (A.22)

1 = pcomt
szCOMt

Zcomt

− pcomt
χcom

2

(
Zcomt

Zcomt−1

− 1

)(
3Zcomt

Zcomt−1

− 1

)
+

1

Rt
Et

[
πt+1p

com
t+1χcom

(
Zcomt+1

Zcomt

− 1

)(
Zcomt+1

Zcomt

)2
]

– Commodity price (13)

pcomt = stp
comf
t

• Households

– Euler equation (A.29), (A.40)

λt = (Ct − ξCt−1)
−1
µ exp

(
η (1− µ)

µ (1 + η)
∆w
t (Lt)

η+1
η

)
ηct

λt = Et

[
λt+1

βRt
πt+1

]
– Wage dispersion (A.41)

∆w
t = θw

(
π̄t
πwt

)−εw(η+1)
η

∆w
t−1 + (1− θw)ωw

((
πwt−1

)γw (π̄t)
1−γw

πwt

)−εw(η+1)
η

∆w
t−1

+ (1− θw) (1− ωw)

(
w∗t
wt

)−εw(η+1)
η

– Phillips curve for wage (A.39), (A.35) (A.36), (A.37)

πwt =
wt
wt−1

πt

(w∗t )
1+ εw

η (wt)
−εw
η =

Fw1t
Fw2t

Fw1t = λt
εw

εw − 1
(Ct − ξCt−1) (Lt)

1+η
η + βθEt

( π̄t+1

πwt+1

)−εw(1+η)
η

Fw1,t+1


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Fw2t = λtLt + βθEt

[
π̄t+1

πt+1

(
π̄t+1

πwt+1

)−εw
Fw2,t+1

]

θw

(
π̄t
πwt

)1−εw
+ (1− θw)ωw

((
πwt−1

)γw (π̄t)
1−γw

πwt

)1−εw

+ (1− θw) (1− ωw)

(
w∗t
wt

)1−εw
= 1

• Open economy

– New-Keynesian Phillips curve for imported goods (A.25), (A.26), (A.28)

πmt =
pmt
pmt−1

πt

Fm1t = λtMt
εm

εm − 1
stp

mf
t + βθmEt

[(
π̄t+1

πmt+1

)−εm
Fm1t+1

]

Fm2t = λtMt + βθmEt

[
π̄t+1

πt+1

(
π̄t+1

πmt+1

)−εm
Fm2t+1

]

θm

(
π̄t
πmt

)1−εm
+ (1− θm)ωm

((
πmt−1

)γm (π̄t)
1−γm

πmt

)1−εm

+ (1− θm) (1− ωm)

(
Fm1t
pmt F

m
2t

)1−εm
= 1

– Foreign demand for noncommodity exports (24)

Xnc
t = γf

(
st
pnct

)φ
Zft

– Interest rate parity (A.31), (35)

st = Et

(st−1
πft
πt

)κ
st+1

rft

(
1 + κft

)
Rt

πt+1

1−κ
κft = ς

(
b̄f − bft

)
– Balance of payments (27)

bft

rft

(
1 + κft

) − bft−1

st
st−1

=
1

Ȳ
(pnct X

nc
t + pcomt Xcom

t − pmt Mt)

• Monetary policy rule (23)

Rt = ρrRt−1 + (1− ρr)
(
R̄+ ρπ (πt − π̄t) + ρY

(
log Yt − log Ȳt

))
+ ηrt
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• Market clearing conditions (32), (33), (34)

Zt = Ct + ιiIt + ιxX
nc
t + Zcomt + υzZt

Yt = Ct + It +Xnc
t +Xcom

t −Mt + υyYt

pyt Yt = Ct + pitIt + pnct X
nc
t + pcomt Xcom

t − pmt Mt + υyp
y
t Yt

COMt = COMd
t +Xcom

t

• Exogenous processes

– Processes for shocks
ηrt = ϕrη

r
t−1 + ξrt

log (At) = ϕa log (At−1) + (1− ϕa) log
(
Ā
)

+ ξat

log (ηct ) = ϕc log
(
ηct−1

)
+ ξct

log
(
Zft

)
= ϕzf log

(
Zft−1

)
+ (1− ϕzf ) log

(
Z̄f
)

+ ξzft

log
(
pcomft

)
= ϕcomf log

(
pcomft−1

)
+ (1− ϕcomf ) log

(
p̄comf

)
+ ξcomft

log
(
rft

)
= ϕrf log

(
rft−1

)
+ (1− ϕrf ) log (r̄) + ξrft

– Fixed exogenous prices
pit = ιi

pnct = ιx

pmft = p̄mf

– Targets
π̄t = π̄

log Ȳt = ϕz log Ȳt−1 + (1− ϕz) log

(
AtȲ

Ā

)
• Auxiliary expectation terms

exit = Et

[
πt+1p

z
t+1χi

(
It+1

It
− 1

)(
It+1

It

)2
]

excomt = Et

[
πt+1p

com
t+1χcom

(
Zcomt+1

Zcomt

− 1

)(
Zcomt+1

Zcomt

)2
]
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D bToTEM parameters

The calibrated values of the parameters for the bToTEM model are summarized in the following two tables.

Parameter Symbol Value Source

Rates
– real interest rate r̄ 1.0076 ToTEM
– discount factor β 0.9925 ToTEM
– inflation target π̄ 1.005 ToTEM
– nominal interest rate R̄ 1.0126 ToTEM
– ELB on the nominal interest rate Relb 1.0076 fixed
Output production
– CES elasticity of substitution σ 0.5 ToTEM
– CES labor share parameter δl 0.249 calibrated
– CES capital share parameter δk 0.575 calibrated
– CES commodity share parameter δcom 0.0015 calibrated
– CES import share parameter δm 0.0287 calibrated
– investment adjustment cost χi 20 calibrated
– fixed depreciation rate d0 0.0054 ToTEM
– variable depreciation rate d̄ 0.0261 ToTEM
– depreciation semielasticity ρ 4.0931 calibrated
– real investment price ιi 1.2698 ToTEM
– real noncommodity export price ιx 1.143 ToTEM
– labor productivity Ā 100 normalization
Price setting parameters for consumption
– probability of indexation θ 0.75 ToTEM
– RT indexation to past inflation γ 0.0576 ToTEM
– RT share ω 0.4819 ToTEM
– elasticity of substitution of consumption goods ε 11 ToTEM
– Leontieff technology parameter sm 0.6 ToTEM
Price setting parameters for imports
– probability of indexation θm 0.8635 ToTEM
– RT indexation to past inflation γm 0.7358 ToTEM
– RT share ωm 0.3 ToTEM
– elasticity of substitution of imports εm 4.4
Price setting parameters for wages
– probability of indexation θw 0.5901 ToTEM
– RT indexation to past inflation γw 0.1087 ToTEM
– RT share ωw 0.6896 ToTEM
– elasticity of substitution of labor service εw 1.5 ToTEM
Household utility
– consumption habit ξ 0.9396 ToTEM
– consumption elasticity of substitution µ 0.8775 ToTEM
– wage elasticity of labor supply η 0.0704 ToTEM
Monetary policy
– interest rate persistence parameter ρr 0.83 ToTEM
– interest rate response to inflation gap ρπ 4.12 ToTEM
– interest rate response to output gap ρy 0.4 ToTEM
Other
– capital premium κk 0.0674 calibrated
– exchange rate persistence parameter κ 0.1585 ToTEM
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– foreign commodity price p̄comf 1.6591 ToTEM
– foreign import price p̄mf 1.294 ToTEM
– risk premium response to debt ς 0.0083 calibrated
– export scale factor γf 18.3113 calibrated
– foreign demand elasticity φ 0.4 calibrated
– elasticity in commodity production sz 0.8 calibrated
– land F 0.1559 calibrated
– share of other components of output υz 0.7651 calibrated
– share of other components of GDP υy 0.311 calibrated
– adjustment cost in commodity production χcom 16 calibrated
– persistence of potential GDP ϕz 0.75 calibrated

Table D.1: Calibrated parameters in endogenous model’s equations

In Table D.1, we summarize the parameters in the endogenous equations of the model and in Table D.2,
we collect the parameters of the exogenous processes for shocks.

Parameter Symbol Value Source

Shock persistence
– persistence of interest rate shock ϕr 0.25 ToTEM
– persistence of productivity shock ϕa 0.9 fixed
– persistence of consumption demand shock ϕc 0 fixed
– persistence of foreign output shock ϕzf 0.9 fixed
– persistence of foreign commodity price shock ϕcomf 0.87 calibrated
– persistence of foreign interest rate shock ϕrf 0.88 calibrated
Shock volatility
– standard deviation of interest rate shock σr 0.0006 calibrated
– standard deviation of productivity shock σa 0.0067 calibrated
– standard deviation of consumption demand shock σc 0.0001 fixed
– standard deviation of foreign output shock σzf 0.0085 calibrated
– standard deviation of foreign commodity price shock σcomf 0.0796 calibrated
– standard deviation of foreign interest rate shock σrf 0.0020 calibrated

Table D.2: Calibrated parameters in exogenous model’s equations
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E Impulse response functions to foreign shocks
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Figure E.1: Impulse response functions: ROW commodity price shock
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Figure E.2: Impulse response functions: ROW demand shock
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Figure E.3: Impulse response functions: ROW interest rate shock
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F Implementation details of the CGA solution method

For the purpose of constructing nonlinear global solutions, we split the variables in the bToTEM model
into four types:

• exogenous state variables,

Zt ≡
{
At, η

R
t , η

c
t , p

comf
t , rft , Z

f
t

}
, (F.1)

• endogenous state variables,

St ≡
{
Ct−1, Rt−1, st−1, πt−1,∆t−1, wt−1, π

w
t−1,∆

w
t−1, p

m
t−1, π

m
t−1, It−1, Z

com
t−1 , b

f
t−1, Ȳt−1,Kt−1

}
, (F.2)

• endogenous intertemporal choice variables (these are variables that enter the Euler equation at both
t and t+ 1, where a t+ 1 value is a random variable unknown at t),

Yt ≡
{
F1t, F2t, F

w
1t , F

w
2t , F

m
1t , F

m
2t , qt, λt, st, ex

i
t, ex

com
t

}
, (F.3)

• and endogenous intratemporal choice variables (these are variables that are determined within the
current period t, given the intertemporal choice),

Xt ≡
{
Lt,Kt, It, COM

d
t ,Mt, ut, dt, Z

g
t , Z

n
t , Zt, Ct, Yt, πt, rmct,∆t, π

m
t , π̄t, p

m
t , Rt, p

z
t , wt,

MPKt, R
k
t , p

i
t, κ

f
t , b

f
t , X

nc
t , X

com
t , COMt, Z

com
t , πwt , w

∗
t ,∆

w
t , Ȳt, p

com
t , pnct , p

mf
t , pyt

}
. (F.4)

Implementation of CGA for bToTEM The CGA method is implemented in the context of the
bToTEM model as follows:
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(Algorithm CGA): A global nonlinear CGA numerical method

Step 0. Initialization

a. Choose simulation length T and fix initial conditions Z0 ≡
{
A0, η

R
0 , η

c
0, p

comf
0 , rf0 , Z

f
0

}
and S0.

b. Draw
{
ξAt+1, ξ

R
t+1, ξ

c
t+1, ξ

comf
t+1 , ξrft+1, ξ

Zf
t+1

}T−1

t=0
and construct Zt ≡

{
At, η

R
t , η

c
t , p

comf
t , rft , Z

f
t

}T
t=0

.

c. Construct perturbation decision function Ẑ (·;bZ), Ŝ (·; bS), Ŷ (·; bY ) and X̂ (·;bX),
where bZ , bS , bY and bX are the polynomial coefficients.

d. Use the perturbation solution to produce simulation {Yt,Xt,St,Zt}Tt=0 of T + 1 observations.
e. Construct a grid for endogenous and exogenous state variables {Sm,Zm}m=1,...,M

by using agglomerative clustering analysis.
f. Choose approximating functions (polynomials) for parameterizing the intertemporal choice:

Yt ≈ Ŷ (·; vY ), where vY is the parameter vector for the global solution method.

g. Use the perturbation solution Ŷ (·;bY ) to construct an initial guess on vY .

h. Choose integration nodes,
{
ξAj , ξ

R
j , ξ

c
j , ξ

comf
j , ξrfj , ξ

Zf
j

}
j=1,...,J

and weights, {ωj}j=1,...,J .

i. Compute and fix future exogenous states Z′m,j ≡
{
Am,j , η

R
m,j , p

c
m,j , p

comf
m,j , rfm,j , Z

f
m,j

}
m=1,...,M

.

Step 1. Updating the intertemporal decision functions
At iteration i, for m = 1, ...,M , compute:

a. The intertemporal choice variables Y′m ≈ Ŷ (Sm,Zm; vY ) (part of this is S′m).
b. Intratemporal endogenous variables Xm satisfying the intratemporal choice equations.

c. The intertemporal choice variables in J integration nodes Y′m,j ≈ Ŷ
(
S′m,Z

′
m,j ; vY

)
.

d. Intratemporal endogenous variables Xm,j in J satisfying the intratemporal choice equations.

e. Substitute the results in the intertemporal choice equations and compute Ŷm.

f. Find v that minimizes the distance v̂Y ≡ argmin
v

∑M
m=1

∥∥∥Ŷm − Ŷ (Sm,Zm; v)
∥∥∥.

g. Use damping to compute v
(i+1)
Y = (1− λ) v

(i)
Y + λv̂Y , where λ ∈ (0, 1) is a damping parameter.

h. Check for convergence and end iteration if 1
M max

M∑
m=1

∣∣∣Y(i+1)
m −Y(i)

m

Y
(i)
m

∣∣∣< $.

Proceed to the next iteration and iterate on these steps until convergence.

Several comments are in order: To approximate the intertemporal choice functions, we use the family
of ordinary polynomials. To compute conditional expectations in the intertemporal choice conditions,
we use a monomial formula with 2N nodes, where N = 6 is the number of stochastic shocks; see Judd
et al. (2011b) for a description of this formula. In the new Keynesian model studied in Maliar and
Maliar (2015), it was possible to derive closed-form expressions for the intratemporal choice, given the
intertemporal choice. The bToTEM is more complex and closed-form expressions are infeasible. In this
case, we solve for intratemporal choice variables X′m using a numerical solver. As for the intratemporal
choice variables in the integration nodes X′m,j , we find them either with a numerical solver or by using
interpolation of the intratemporal choice decision function X′m constructed for the current period using
a numerical solver. The damping parameter is set at λ = 0.1, and the convergence criterion is set at
$ = 10−7.

Our hardware is Intel R© CoreTM i7-2600 CPU @ 3.400 GHz with RAM 12.0 GB. Our software is written
and executed in MATLAB 2016a. We parallelize the computation across four cores. The running time for
constructing our global CGA solution was about 6 hours; the running time is sensitive to specific choice
of the damping parameter λ.
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G Accuracy evaluation

Maximum residual Average residual
Local Local Global Local Local Global

1st order 2nd order 2nd order 1st order 2nd order 2nd order

Lt -2.17 -2.70 -3.14 -2.46 -3.36 -3.85
Kt -3.61 -4.04 -4.73 -3.88 -4.67 -5.36
It -3.01 -3.39 -3.51 -3.79 -4.01 -4.09
COMd

t -2.17 -2.45 -3.07 -2.42 -3.09 -3.80
Mt -2.17 -2.90 -3.17 -2.41 -3.53 -3.88
ut -2.66 -3.19 -4.04 -2.91 -3.85 -4.69
dt -2.11 -2.57 -3.52 -2.30 -3.20 -4.17
Zgt -2.30 -3.00 -3.39 -2.64 -3.67 -4.09
Znt -2.30 -3.00 -3.39 -2.64 -3.67 -4.09
Zt -2.30 -3.01 -3.39 -2.65 -3.68 -4.08
Ct -3.19 -3.13 -3.94 -3.44 -3.79 -4.74
Yt -2.59 -3.27 -3.42 -2.78 -3.90 -4.16
πt -4.40 -3.81 -4.38 -4.65 -4.49 -5.08
rmct -2.92 -3.16 -3.66 -3.08 -3.81 -4.40
∆t -4.44 -4.91 -5.87 -4.72 -5.23 -6.64
πmt -2.47 -2.79 -3.86 -3.10 -3.45 -4.47
pmt -2.47 -2.83 -4.01 -3.11 -3.49 -4.59
Rt -3.83 -3.84 -5.07 -4.13 -4.53 -5.74
pzt -2.46 -2.71 -3.19 -2.62 -3.37 -3.93
wt -4.10 -4.32 -4.82 -4.44 -5.01 -5.36
pcomt -2.38 -1.96 -2.51 -3.16 -2.62 -3.24
MPKt -2.24 -3.12 -3.04 -2.62 -3.76 -3.75
Rkt -2.88 -3.84 -5.07 -3.56 -4.53 -5.74

κft -3.56 -2.40 -4.09 -4.02 -2.93 -4.83

bft -2.01 -2.31 -2.52 -2.45 -3.16 -3.25
Xnc
t -2.78 -2.36 -2.91 -3.56 -3.01 -3.64

Xcom
t -1.75 -2.32 -2.73 -1.97 -2.88 -3.43

COMt -2.24 -2.59 -3.05 -2.76 -3.13 -3.72
Zcomt -2.56 -2.35 -2.90 -3.21 -3.02 -3.59
πwt -3.92 -3.97 -4.27 -4.53 -4.63 -4.95
w∗t -3.15 -3.12 -3.42 -3.67 -3.77 -4.10
∆w
t -1.43 -2.19 -3.10 -1.92 -2.79 -3.92

F1t -3.44 -1.69 -2.54 -3.70 -2.34 -3.28
F1t -3.52 -1.72 -2.57 -3.84 -2.36 -3.32
Fw1t -1.88 -1.54 -2.09 -2.41 -2.19 -2.75
Fw2t -3.14 -1.94 -2.88 -3.86 -2.58 -3.61
Fm1t -2.67 -1.44 -2.17 -2.99 -2.08 -2.85
Fm1t -2.57 -1.57 -2.33 -3.09 -2.21 -3.02
qt -2.47 -3.92 -2.75 -3.25 -4.61 -3.45
λt -2.33 -1.77 -2.69 -3.12 -2.41 -3.44
st -2.38 -1.96 -2.51 -3.16 -2.62 -3.24

Average -2.76 -2.81 -3.41 -3.20 -3.45 -4.11
Max -1.43 -1.44 -2.09 -1.92 -2.08 -2.75

Table G.1: Experiment 1. Residuals in the model’s equations on the impulse-response path, log10 units
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We assess the accuracy of solution by constructing unit-free residuals in the model’s equations on the
simulated paths obtained in our experiments. Our choice of points for accuracy evaluation differs from the
two conventional choices in the literature, which are a fixed set of points in a multidimensional hypercube
(or hypersphere) and a set of points produced by stochastic simulation; see Kollmann et al. (2011). We
choose to focus on the path in the experiments because it is precisely the goal of central bankers to attain
a high accuracy of solutions in their policy-relevant experiments (rather than on some hypothetical set of
points).

For accuracy evaluation, we use a monomial integration rule with 2N2+1 nodes, which is more accurate
than monomial rule 2N used in the solution procedure, where N = 6 is the number of the stochastic shocks;
see Judd et al. (2011a) for a detailed description of these integration formulas.

The approximation errors reported in the table are computed over 40 quarters of the first experiment
with a negative foreign demand shock. The unit-free residual in each model’s equation is expressed in
terms of the variable reported in the table: such a residual reflects the difference between the value of that
variable produced by the decision function of the corresponding solution method and the value implied
by an accurate evaluation of the corresponding model equation, in which case the residuals are loosely
interpreted as approximation errors in the corresponding variables.

The resulting unit free residuals in the model’s equations are reported in log 10 units. These accuracy
units allow for a simple interpretation, namely, “−2” means the size of approximation errors of 10−2 = 1
percent while “−2.5” means approximation errors between 10−2 and 10−3, more precisely, we have 10−2.5 ≈
0.3 percent. The average residuals for the first- and second-degree plain perturbation methods, and the
second-degree global method are -3.20, -3.45, and -4.11, respectively, and the maximum residuals are -1.43,
-1.44, and -2.09, respectively.
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