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1 Introduction

The Canadian economy did not experience a 2007 subprime crisis and was not initially hit by the Great
Recession, unlike the U.S. and Europe; see a speech of the governor Boivin (2011). Nonetheless, after few
months, Canada entered a prolonged episode of the e¤ective lower bound (ELB) on nominal interest rates.1

In the paper, we investigate a hypothesis that the ELB crisis was contaminated to Canada from abroad,
in particular, from the US.

Bank of Canada has a well-developed macroeconomic model of the Canadian economy called the Terms
of Trade Economic Model (ToTEM); see a technical report of Dorich et al. (2013). The model is huge �356
equations and unknowns and 215 state variables �and is analyzed exclusively by �rst-order perturbation
methods. In the paper, we construct a scaled-down version of ToTEM, which we call a �baby�ToTEM
(bToTEM). Our model is still very large: it includes 49 equations and 21 state variables. We introduce a
deep learning (DL) projection algorithm �a combination of unsupervised and supervised machine learning
techniques �capable of constructing fully nonlinear solutions.

We calibrate the bToTEM model by following the ToTEM analysis as closely as possible. We �nd that
our scaled-down model replicates remarkably well the impulse response functions of the full-scale ToTEM
model. We then conduct two empirically relevant policy experiments related to a recent episode of ELB
on nominal interest rates during the Great Recession.

In the �rst experiment, we introduce into bToTEM a plausible sequence of ROW variables estimated
from actual data using ToTEM. In the second experiment, we analyze a change in the in�ation target from
2 to 3 percent by holding the real interest rate �xed according to the practice of the Bank of Canada. We
compare our DL nonlinear solutions to �rst- and second-order perturbation solutions; we obtained these
solutions from Dynare and from an IRIS toolbox; the latter is a �rst-order toolbox capable of dealing with
occasionally binding inequality constraints.

Our analysis delivers several interesting �ndings: First, we show that international transmission of ELB
is an empirically plausible mechanism for explaining the Canadian ELB experience. Speci�cally, in the
beginning of the Great Recession, Canada faced a dramatic reduction in foreign demand (in particular, in
the U.S. demand), and it proved su¢ cient to produce a prolonged ELB episode in the bToTEM model.
Thus, our analysis contributes to the literature on the international transmission of a liquidity trap by
o¤ering a new mechanism of the ELB contamination. A distinctive feature of our analysis is that it is
carried out in a realistic and meticulously calibrated model of the Canadian economy under plausible
foreign demand shocks.2

Second, our analysis reveals that it is surprisingly easy to generate prolonged ELB (or ZLB) episodes in
an open-economy setting via international shocks, while it is virtually impossible to produce such episodes
in closed-economy models under meaningful calibrations; see Fernández-Villaverde et al. (2012, 2015) and
Christiano et al. (2015) for a discussion. For example, in order to obtain realistic spells at the ZLB,
Aruoba et al. (2018) augment the simulated series from the model to include historical data from the U.S.
economy because the model cannot generate such data otherwise.

Third, we �nd that the Canadian economy would entirely avoid the ELB episode if the target in�ation
rate were 3 instead of 2 percent. This �nding is important because the possibility of a new ELB episode
remains an important practical issue for the Bank of Canada; see Dorich et al. (2018).

Fourth, we �nd that the ELB restriction plays virtually no role in bToTEM�s performance. In particular,
both local and global solution methods predict very similar timing and duration of the ELB episodes. In
simple words, the presence of active ZLB does not visibly a¤ect the model�s variables other than the interest

1ELB is similar to ZLB on (net) nominal interest rates but it is set at a level other than zero. What is important in both
cases is that there is a lower bound that becomes binding.

2The literature documenting the importance of foreign shocks for the business cycle propagation includes Backus et al.
(1992), Schmitt-Grohé (1998), Lubik and Schorfheide (2005); see also Fernández et al. (2017) for recent evidence. The
literature analyzing the transmission of liquidity trap from one country to another includes Fujiwara (2010), Jeanne (2010),
Bodenstein et al.(2016), Cook and Devereux (2011, 2013, 2016), Corsetti et al. (2016), Devereux (2014), Caballero et al.
(2016), and Eggertsson et al. (2016), among others.
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rate. Our �ndings support the ZLB irrelevance hypothesis documented in the recent empirical literature;
see Debortoli et al. (2019) for a review.

Fifth, we discover that other nonlinearities �those not associated with ELB �play an important role in
the model�s predictions. In particular, when assessing the impact of a hypothetical transition from a 2 to
3 percent in�ation target on the Canadian economy, we spot economically signi�cant di¤erences between
linear and nonlinear solutions. We show that such di¤erences are attributed mostly to the uncertainty
e¤ect which leads to a large di¤erence in steady states between linearized and nonlinear solutions. We
show how to control for the uncertainty e¤ect: if each solution starts the transition from its own steady
state (which we view as a coherent approach), the linear and nonlinear solutions look like vertical shifts of
one another.

Finally and most strikingly, we �nd that the closing condition, which is used to induce stationarity
in open-economy models, plays a critical role in the bToTEM dynamics. To close the model, we assume
that the risk premium on foreign bonds decreases with the quantity of bonds purchased, which is one of
the approaches introduced in Schmitt-Grohé and Uribe (2003). When we used a closing condition in the
linear form, the predictions of linearized and nonlinear models were similar. However, when we switch
to a similar condition in an exponential form, as in Schmitt-Grohé and Uribe (2003), the predictions of
the linearized and nonlinear models were dramatically di¤erent. To the best of our knowledge, we are the
�rst to document such a di¤erence. Schmitt-Grohé and Uribe (2003) and the following papers �nd that a
particular closing condition does not practically a¤ect quantitative implications of open-economy models.

To gain intuition into this �nding, we revisit the analysis of Schmitt-Grohé and Uribe (2003). Our
initial guess was that the closing condition also matters in their model but their linearization analysis
simply was not able to detect it (because the linearized versions of the linear and exponential closing
conditions are identical). To check on this guess, we construct high-order perturbation and global DL
solutions for the model of Schmitt-Grohé and Uribe (2003) as well. Our numerical �ndings did not support
our initial guess. Speci�cally, the predictions of the model of Schmitt-Grohé and Uribe (2003) were very
similar under the linear and exponentiated closing conditions, except for the foreign debt accumulation,
which was dampened under some parameterizations �this was true for both perturbation and nonlinear
DL solutions. That is, in the model of Schmitt-Grohé and Uribe (2003), we do not observe the quantitative
importance of high-order terms, which we encounter in bToTEM.

DL was critical for telling the tale of the Canadian ELB episode. The bToTEM model is intractable
under conventional value function iteration or nonlinear projection methods because of the curse of di-
mensionality. In the earlier version of the paper, namely, Lepetyuk et al. (2017), we used unsupervised
machine learning (clustering) for constructing the solution domain but we approximated the decision func-
tions with polynomial functions, identical to those used by a second-order perturbation method. We found
that polynomial functions are not �exible enough to accurately approximate highly nonlinear solutions,
and we opted to scale down the volatility of shocks to achieve the convergence. As a result, the e¤ects of
nonlinearity were modest. In the present paper, we introduce a projection DL algorithm in which unsuper-
vised learning is complemented with supervised learning, namely, we parameterize decision functions with
neural networks which we train by using a stochastic gradient descent method.3 The introduction of DL
both increases the accuracy and enhances the convergence which enable us to solve the bToTEM model
under the empirically relevant volatility.4 This is precisely what magni�es the e¤ects of nonlinearity on
the solution in the present paper.

The rest of the paper is organized as follows: In Section 2, we construct the bToTEM model. In
Section 3, we outline the calibration procedure of the bToTEM model and compare its impulse response

3 In the present paper, we use neural networks for approximating decision functions. Maliar et al. (2018, 2019) introduce
a di¤erent DL method in which the entire economic model is reformulated as an objective function for training (in the form
of lifetime reward and residuals in the Bellman and Euler equations). The machine is then trained to optimize the objective
function with the tools from the Google�s TensorFlow library.

4While working on the paper, we learned that several other recent papers successfully used neural networks for constructing
their numerical solutions including Duarte (2018), Villa and Valaitis (2019), Fernández-Villaverde et al. (2019), Azinovíc et
al. (2019).
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functions with the ToTEM and LENS models. In Section 4, we describe the implementation of nonlinear
solution methods for the bToTEM model, and we compare the properties of linear and nonlinear solutions.
In Section 5, we use the bToTEM model to analyze the response of the Canadian economy to foreign
demand shocks. In Section 6, we simulate an increase of the in�ation target from 2 to 3 percent. In
Section 7, we analyze the role of the closing condition. Finally, in Section 8, we conclude.

2 The bToTEM model

Nowadays, central banks, as well as leading international organizations and government agencies, use large-
scale macroeconomic models in practical policymaking. Notable examples are the International Monetary
Fund�s Global Economy Model, GEM (Bayoumi et al., 2001), the U.S. Federal Reserve Board�s SIGMA
model (Erceg et al., 2006), the Bank�s of Canada Terms of Trade Economic Model, ToTEM (Dorich
et al., 2013), the European Central Bank�s New Area-Wide Model, NAWM (Coenen et al., 2008), the
Bank of England�s COMPASS Model (Burgess et al., 2013) and the Swedish Riksbank�s Ramses II Model
(Adolfson et al., 2013). These are general equilibrium models that typically include several types of utility-
maximizing consumers, several pro�t-maximizing production sectors, �scal and monetary authorities, as
well as a foreign sector.5 Central banks�models must be rich and �exible enough to realistically describe
the interactions between numerous variables that are of interest to policymakers, including di¤erent types
of foreign and domestic inputs, outputs, consumption, investment, capital, labor, prices, exchange rate, as
well as monetary variables and �nancial assets. Some central banking models contain hundreds of equations
and unknowns! The goal of these models is to mimic as closely as possible the actual economies in every
possible dimension of interest. Using such rich models, policymakers can produce realistic macroeconomic
projections and promptly analyze the consequences of alternative policies.

2.1 bToTEM versus ToTEM

ToTEM is the main projection and policy analysis model of the Bank of Canada.6 This is a large-
scale general equilibrium macroeconomic model that currently contains 356 equations and unknowns. We
construct and calibrate bToTEM �a scaled down version of ToTEM that has 49 equations and unknowns,
including 21 state variables. In the construction of bToTEM, we follow ToTEM as closely as possible.
Like the full-scale ToTEM model, the bToTEM is a small open-economy model that features the new-
Keynesian Phillips curves for consumption, labor and imports. As in ToTEM, we assume the rule-of-thumb
price settlers in line with Galí and Gertler (1999). We use a quadratic adjustment cost of investment and
a convex cost of capital utilization. We maintain the ToTEM�s terms of trade assumption; namely, we
allow for bidirectional trade consisting of exporting domestic consumption goods and commodities, and
importing foreign goods for domestic production.

There are three aspects in which bToTEM is simpli�ed relatively to ToTEM. First, the full-scale
ToTEM model consists of �ve distinct production sectors, namely, those for producing consumption goods
and services, investment goods, government goods, noncommodity export goods, commodities, and it also
has a separate economic model of the rest of the world (ROW). The �rst four of ToTEM�s production
sectors have identical production technology and constraints, and only di¤er in the values of parameters.
In the bToTEM model, in place of the four sectors we assume just one production sector, which is identical
in structure to the consumption goods and services sector of the ToTEM model, and we introduce linear
technologies for transforming the output of this sector into other types of output corresponding to the
remaining ToTEM�s sectors.

5There are also less structural large-scale microeconometric models of central banking, e.g., FRB of the U.S. Federal Reserve
(Brayton, 1997) and LENS of the Bank of Canada (Gervais and Gosselin, 2014).

6 See Dorich et al. (2013) for a detailed technical report on the ToTEM model. This model �known also as TOTEM II �
builds on the original ToTEM model in Murchison and Renisson (2006); see also Binette et al. (2004) for an earlier simpli�ed
version of the original ToTEM model.
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Second, there are three types of households in ToTEM that di¤er in their saving opportunities. In
turn, in bToTEM we assume just one type of household. Like in ToTEM, the bToTEM�s households
supply di¤erentiated labor services in exchange for sticky wages. Under our assumptions, Phillips curves
in bToTEM are identical to those in ToTEM; the di¤erence is that bToTEM has three Phillips curves,
while ToTEM has eight Phillips curves.

Finally, in ToTEM, the ROW sector is represented as a separate new Keynesian model with its own pro-
duction sector, while in bToTEM the ROW sector is modeled by using appropriately calibrated exogenous
processes for foreign variables.

In the main text, we describe the optimization problems of economic agents and the key model�s
equations in bToTEM; the derivation of equilibrium conditions and a list of the model�s equations are
provided in Appendices A and C, respectively.

2.2 Production of �nal goods

The production sector of the economy consists of two stages. In the �rst stage, intermediate goods are pro-
duced by identical perfectly competitive �rms from labor, capital, commodities, and imports. In the second
stage, a variety of �nal goods are produced by monopolistically competitive �rms from the intermediate
goods. The �nal goods are then aggregated into the �nal consumption good.

First stage of production. In the �rst stage of production, the representative, perfectly competitive
�rm produces an intermediate good using the following constant elasticity of substitution (CES) technology:

Zgt =

�
�l (AtLt)

��1
� + �k (utKt)

��1
� + �com

�
COMd

t

���1
�
+ �m (Mt)

��1
�

� �
��1

; (1)

where Lt, Kt, and COMd
t are labor, capital and commodity inputs, respectively,Mt is imports, ut is capital

utilization, and At is the level of labor-augmenting technology that follows a stochastic process given by

logAt = 'a logAt�1 + (1� 'a) log �A+ �at ; (2)

with �at being a normally distributed variable, and 'a being an autocorrelation coe¢ cient.
Capital depreciates according to the following law of motion:

Kt+1 = (1� dt)Kt + It; (3)

where dt is the depreciation rate, and It is investment. The depreciation rate increases with capital
utilization as follows:

dt = d0 + de
�(ut�1): (4)

The �rm incurs a quadratic adjustment cost when adjusting the level of investment. The net output is
given by

Znt = Z
g
t �

�i
2

�
It
It�1

� 1
�2
It: (5)

The objective of the �rm is to choose Lt, Kt+1, It, COMt, Mt, ut in order to maximize pro�ts

E0

1X
t=0

R0;t
�
P zt Z

n
t �WtLt � P it It � P comt COMd

t � Pmt Mt

�
subject to (1)�(5). The �rm discounts nominal payo¤s according to household�s stochastic discount factor
Rt;t+j = �j (�t+j=�t) (Pt=Pt+j), where �t is household�s marginal utility of consumption and Pt is the �nal
good price.
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Second stage of production. In the second stage of production, a continuum of monopolistically
competitive �rms indexed by i produce di¤erentiated goods from the intermediate goods and manufactured
inputs. The production technology features perfect complementarity

Zit = min

�
Znit

1� sm
;
Zmiit
sm

�
;

where Znit is an intermediate good and Z
mi
it is a manufactured input, and sm is a Leontief parameter. The

di¤erentiated goods Zit are aggregated into the �nal good Zt according to the following CES technology:

Zt =

�Z 1

0
Z

"�1
"

it di

� "
"�1

:

Cost minimization implies the following demand function for a di¤erentiated good i:

Zit =

�
Pit
Pt

��"
Zt; (6)

where

Pt =

�Z 1

0
P 1�"it di

� 1
1�"

: (7)

The �nal good is used as the manufactured inputs by each of the monopolistically competitive �rms.
There are monopolistically competitive �rms of two types: rule-of-thumb �rms of measure ! and

forward-looking �rms of measure 1�!. Within each type with probability � the �rms index their price to
the in�ation target ��t as follows: Pit = ��tPi;t�1. With probability 1� �, the rule-of-thumb �rms partially
index their price to lagged in�ation and target in�ation according to the following rule:

Pit = (�t�1)

 (��t)

1�
 Pi;t�1: (8)

The forward-looking �rms with probability 1�� choose their price P �t in order to maximize pro�ts generated
when the price remains e¤ective

max
P �t

Et

1X
j=0

�jRt;t+j

 
jY
k=1

��t+kP
�
t Zi;t+j � (1� sm)P zt+jZi;t+j � smPt+jZi;t+j

!
(9)

subject to demand constraints

Zi;t+j =

 Qj
k=1 ��t+kP

�
t

Pt+j

!�"
Zt+j : (10)

Relation between the �rst and second stages of production. The production in the �rst and
second stages are related as follows:

Znt =

Z 1

0
Znitdi = (1� sm)

Z 1

0
Zitdi = (1� sm)

Z 1

0

�
Pit
Pt

��"
Ztdi = (1� sm)�tZt; (11)

where �t =
R 1
0

�
Pit
Pt

��"
di is known as price dispersion.

Finally, in order to maintain the relative prices of the investment goods and noncommodity exports
in accordance to the national accounts, these goods are assumed to be produced from the �nal goods
according to linear technology that implies P it = �iPt and P

nc
t = �xPt, where P it and P

nc
t are the price of

investment goods and noncommodity exports goods, respectively.
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2.3 Commodities

The representative, perfectly competitive domestic �rm produces commodities using �nal goods according
to the following CES technology:

COMt = (Z
com
t )sz (AtF )

1�sz � �com
2

�
Zcomt
Zcomt�1

� 1
�2
Zcomt ; (12)

where Zcomt is the �nal good input, and F is a �xed production factor, which may be considered as land.
Similarly to production of �nal goods, the commodity producers incur quadratic adjustment costs when
they adjust the level of �nal good input.

The commodities are sold domestically (COMd
t ) or exported to the rest of the world (X

com
t )

COMt = COM
d
t +X

com
t :

They are sold at the world price adjusted by the nominal exchange rate as follows:

P comt = etP
comf
t ;

where et is the nominal exchange rate (i.e., domestic price of a unit of foreign currency), and P
comf
t is the

world commodity price. In real terms, the latter price is given by

pcomt = stp
comf
t ; (13)

where pcomt � P comt =Pt and p
comf
t � P comft =P ft are domestic and foreign relative prices of commodities,

respectively, P ft is the foreign consumption price level, and st = etP
f
t =Pt is the real exchange rate.

2.4 Imports

The �nal imported good Mt is bonded from intermediate imported goods according to the following tech-
nology:

Mt =

�Z 1

0
M

"m�1
"m

it di

� "m
"m�1

;

where Mit is an intermediate imported good i: The demand for an intermediate imported good i is given
by

Mit =

�
Pmit
Pmt

��"m
Mt;

where

Pmt =

�Z 1

0
(Pmit )

1�"m di

� 1
1�"m

:

We assume the prices of the intermediate imported goods to be sticky in a similar way as the prices of
the di¤erentiated �nal goods. A measure !m of the importers follows the rule-of-thumb pricing, and the
others are forward looking. The optimizing forward-looking importers choose the price Pm�t in order to
maximize pro�ts generated when the price remains e¤ective

max
Pm�t

Et

1X
j=0

(�m)
jRt;t+j

 
jY
k=1

��t+kP
m�
t Mi;t+j � et+jPmft+jMi;t+j

!
subject to demand constraints

Mi;t+j =

 Qj
k=1 ��t+kP

m�
t

Pmt+j

!�"m
Mt+j ;

where Pmft is the price of imports in the foreign currency. All importers face the same marginal cost given
by the foreign price of imports.
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2.5 Households

The representative household in the economy has the period utility function over consumption of �nished
goods and a variety of di¤erentiated labor service

Ut =
�

�� 1
�
Ct � � �Ct�1

���1
� exp

�
� (1� �)
� (1 + �)

Z 1

0
(Lht)

�+1
� dh

�
�ct ; (14)

where Ct is the household consumption of �nished goods; �Ct is the aggregate consumption, which the
representative household takes as given; Lht is labor service of type h; �ct is a consumption demand shock
that follows a process

log �ct = 'c log �
c
t�1 + �

c
t ; (15)

with �ct being a normally distributed variable, and 'c being an autocorrelation coe¢ cient.
The representative household of type h maximizes the lifetime utility

E0

1X
t=0

�tUt (16)

subject to the following budget constraints:

PtCt +
Bt
Rt
+

etB
f
t

Rft

�
1 + �ft

� = Bt�1 + etBft�1 + Z 1

0
WhtLhtdh+�t; (17)

where Bt and B
f
t are holdings of domestic and foreign-currency denominated bonds, respectively; Rt and

Rft are domestic and foreign nominal interest rate, respectively; �
f
t is the risk premium on the foreign

interest rate; Wht is the nominal wage of labor of type h; �t is pro�ts paid by the �rms.

2.6 Wage setting

The representative household supplies a variety of di¤erentiated labor service to the labor market, which
is monopolistically competitive. The di¤erentiated labor service is aggregated according to the following
aggregation function:

Lt =

�Z 1

0
L
"w�1
"w
ht dh

� "w
"w�1

:

Aggregated labor Lt is demanded by �rms in the �rst stage of production. A cost minimization of the
aggregating �rm implies the following demand for individual labor:

Lht =

�
Wht

Wt

��"w
Lt; (18)

where Wht is wage for labor service of type h, and Wt is de�ned by the following:

Wt �
�Z 1

0
W 1�"w
ht dh

� 1
1�"w

: (19)

Wages are set by labor unions that are of two types: rule-of-thumb unions of measure !w and forward-
looking unions of measure 1�!w. Within each type, with probability �w the labor unions index their wage
to the in�ation target ��t as follows Wit = ��Wi;t�1. The rule-of-thumb unions that do not index their wage
in the current period follow the rule

Wit =
�
�wt�1

�
w (��t)1�
wWi;t�1: (20)
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The forward-looking unions that do not index their wage choose the wage W �
t optimally in order to

maximize the household utility function when the wage is e¤ective

Et

1X
j=0

(��w)
j Ut+j (21)

subject to labor demand (18) written as

Lh;t+j =

 Qj
k=1 ��t+kW

�
t

Wt+j

!�"w
Lt+j ; (22)

and budget constraints (17) which can be written as

Pt+jCt+j =

jY
k=1

��t+kW
�
t Lh;t+jdh+	t+j ;

where 	t+j includes terms other than Ct+j and Lh;t+j .

2.7 Monetary policy

The monetary authority sets the short-term nominal interest rate in response to a deviation of the actual
in�ation rate from the target and a deviation of the actual output from potential output,

�t = �rRt�1 + (1� �r)
�
�R+ �� (�t � ��t) + �Y

�
log Yt � log �Yt

��
+ �rt ; (23)

where �r measures the degree of smoothing of the interest rate; �R is the long-run nominal interest rate;
�� measures a long-run response to the in�ation gap; ��t is the in�ation target; �Y measures a long-run
response to the output gap; �Yt is the potential level of output; �rt is an interest rate shock that is assumed
to follow the following process:

�rt = 'r�
r
t�1 + �

r
t ;

where �rt is a normally distributed variable, and 'r is an autocorrelation coe¢ cient. Potential output
changes with productivity in the following stylized way:

log �Yt = 'z log �Yt�1 + (1� 'z) log
�
At �Y
�A

�
:

If an e¤ective lower bound Relbt is imposed on the nominal interest rate, the interest rate is determined as
a maximum of (23) and Relbt :

Rt = max
n
Relbt ;�t

o
:

2.8 Foreign demand for noncommodity exports

We assume that the foreign demand for noncommodity exports is given by the following demand function:

Xnc
t = 
f

 
Pnct

etP
f
t

!��
Zft ; (24)

where Pnct is a domestic price of noncommodity exports. In real terms, we have

Xnc
t = 
f

�
st
pnct

��
Zft : (25)
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2.9 Balance of payments

The balance of payments is

etB
f
t

Rft

�
1 + �ft

� � etBft�1 = Pnct Xnc
t + P comt Xcom

t � Pmt Mt; (26)

where Bft is domestic holdings of foreign-currency denominated bonds, and R
f
t is the nominal interest rate

on the bonds. In real terms, it becomes

bft

rft

�
1 + �ft

� � bft�1 stst�1 = 1
�Y
(pnct X

nc
t + pcomt Xcom

t � pmt Mt) ; (27)

where the bond holdings are normalized as bft =
etB

f
t

�ft+1Pt
�Y
, and rft is the real interest rate on the foreign-

currency denominated bonds.

2.10 Rest-of-the-world economy

The rest of the world is speci�ed by three exogenous processes that describe the evolution of foreign
variables. First, the foreign output Zft is given by

logZft = 'zf logZ
f
t�1 +

�
1� 'zf

�
log �Zf + �zft ; (28)

second, the foreign real interest rate rft follows

log rft = 'rf log r
f
t�1 +

�
1� 'rf

�
log �r + �rft ; (29)

�nally, a foreign commodity price pcomft is

log pcomft = 'comf log p
comf
t�1 +

�
1� 'comf

�
log �pcomf + �comft ; (30)

where �zft , �
rf
t and �comft are normally distributed random variables, and 'Zf , 'rf and 'comf are the

autocorrelation coe¢ cients.

2.11 Uncovered interest rate parity

We impose an augmented uncovered interest rate parity condition

et = Et

264(et�1){
0@et+1Rft

�
1 + �ft

�
Rt

1A1�{
375 ; (31)

where the term (et�1)
{ under the brackets is added to mimic the relationship assumed in ToTEM; see

Appendix A.4 for some more details. Without the augmented term the di¤erence in interest rates between
two countries would be equal to the expected change in exchange rates between the countries�currencies.

2.12 Market clearing conditions

We close the model by the following resource feasibility condition:

Zt = Ct + �iIt + �xX
nc
t + Zcomt + �zZt: (32)
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We de�ne GDP and GDP de�ator as follows:

Yt = Ct + It +X
nc
t +Xcom

t �Mt + �yYt; (33)

P yt Yt = PtCt + P
i
t It + P

nc
t X

nc
t + P comt Xcom

t � Pmt Mt + �yP
y
t Yt;

in real terms, the latter becomes

pyt Yt = Ct + p
i
tIt + p

nc
t X

nc
t + pcomt Xcom

t � pmt Mt + �yp
y
t Yt: (34)

2.13 Stationarity condition for the open-economy model

The budget constraint (17) of the domestic economy contains Rft
�
1 + �ft

�
where Rft is the rate of return

to foreign assets and �ft is the risk premium. If the rate of return to foreign assets does not depend on
quantity purchased, then the domestic economy can maintain nonvanishing long-run growth by investing
in foreign assets. Schmitt-Grohé and Uribe (2003) explore several alternative assumptions that make it
possible to prevent this undesirable implication and to attain stationarity in open-economy models. We
adopt one of their assumptions, namely, we assume that the risk premium �ft is a decreasing function of
foreign assets

�ft = &
�
�bf � bft

�
; (35)

where �bf is the steady state level of the normalized bond holdings. This assumption ensures a decreasing
rate of return to foreign assets. As we will see, a speci�c functional form assumed for modeling risk
premium plays an important role in the model�s predictions.

3 A comparison of bToTEM to ToTEM and LENS

We describe the calibration procedure for the bToTEM model, and we compare impulse response functions
produced by the bToTEM model to those produced by ToTEM and LENS, the two models of the Bank of
Canada.

3.1 Calibration of bToTEM

The bToTEMmodel contains 61 parameters that need to be calibrated. Whenever possible, we use the same
values of parameters in bToTEM as those in ToTEM, and we choose the remaining parameters to reproduce
a selected set of observations from the Canadian time series data. In particular, our calibration procedure
targets the ratios of six nominal variables to nominal GDP P yt Yt, namely, consumption PtCt, investment
P it It, noncommodity export P

nc
t X

nc
t , commodity export P

com
t Xcom

t , import Pmt Mt, total commodities
P comt COMt, and labor input WtLt. Furthermore, we calibrate the persistence of shocks so that the
standard deviations of the selected bToTEM variables coincide with those of the corresponding ToTEM
variables, namely, those of domestic nominal interest rate Rt, productivity At, foreign demand Z

f
t , foreign

commodity price pcomft , and foreign interest rate rft . The parameters choice is summarized in Tables D1
and D2 provided in Appendix D.

3.2 Impulse response functions of bToTEM, ToTEM and LENS

The ToTEM model is analyzed by the Bank of Canada with the help of a �rst-order perturbation method
that is implemented by using IRIS software.7 To compare our bToTEM with ToTEM, we construct
a similar �rst-order perturbation solution to bToTEM by using both IRIS and Dynare software.8 We
veri�ed that the IRIS and Dynare packages produce indistinguishable numerical solutions to bToTEM).9

7This software is available at http://www.iris-toolbox.com; see Bene�, Johnston and Plotnikov (2015) for its description.
8The IRIS toolbox is also used by the Bank of Canada; see Bene�et al. (2015) for IRIS documentation; and see also Laséen

and Svensson (2011), Guerrieri and Iacoviello (2015) and Holden (2016) for related methods.
9Dynare software is available at http://www.dynare.org; see Adjemian et al. (2011) for the documentation.
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In the comparison analysis, we also include the impulse response functions for the LENS model, which is
another model of the Bank of Canada.
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Figure 1: Impulse response functions: interest rate shock
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Figure 2: Impulse response functions: consumption demand shock
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Figure 3: Impulse response functions: permanent productivity shock

In Figures 1�3, we plot impulse responses to three shocks in the bToTEMmodel, namely, an interest rate
shock, a consumption demand shock, and a permanent productivity shock, respectively.10 In Appendix E,
we also plot impulse responses to foreign shocks, namely, ROW commodity price, demand, and interest
rate shocks. In the �gures, we report the response functions of four key model�s variables: the nominal
short-term interest rate, the rate of in�ation for consumption goods and services, the real e¤ective exchange
rate, and the output gap. The responses are shown in percentage deviations from the steady state, except
for the interest rate and the in�ation rate, which are both shown in deviations from the steady state and
expressed in annualized terms.

The responses we observe are typical for new Keynesian models. In Figure 1, a contractionary monetary
policy shock leads to a decline in output through a decline in consumption. The uncovered interest rate
10Both, the ToTEM and LENS models, include more sources of uncertainty than the bToTEM model does, namely, 52

shocks in ToTEM and 98 shocks in LENS.
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parity results in appreciation of the domestic currency. A reduction in the real marginal costs implies a
lower price of consumption goods, and hence, lower in�ation. In Figure 2, a negative shock to the discount
factor increases consumption and decreases output. The interest rate that is determined by the Taylor rule
increases, and the real exchange rate appreciates. In Figure 3, a permanent increase in productivity gives
room for a higher potential output. The actual output gradually increases. Facing a negative output gap,
the central bank lowers the interest rate according to the Taylor rule. As actual output reaches the new
steady state level, the output gap closes, and the interest rate is back to the neutral rate. A lower interest
rate leads to depreciation of the domestic currency because of the interest rate parity. Permanently higher
productivity reduces input prices, leading to lower real marginal costs that are re�ected in temporary lower
in�ation.

Our main �nding is that our bToTEMmodel replicates the key properties of the full-scale ToTEMmodel
remarkably well. Since ToTEM allows for multiple interest rates, di¤erent good prices, �scal policies, etc., it
has a richer structure than bToTEM. However, the variables that are the same in both models are described
by essentially the same equations and therefore, have similar dynamics. One noticeable exception is the
dynamics of in�ation in response to a consumption demand shock; see Figure 2. In bToTEM, in�ation
reacts less on the impact, but decreases more slowly than in the other two models. To understand this
di¤erence between the two models, let us consider a linearized version of the Phillips curve, which is the
same in bToTEM and ToTEM,

�̂t = (1� �) 
!~�
�1
�̂t�1 + ��~�

�1
E [�̂t+1] + ~� ^rmct + "

p
t ; (36)

where rmct is the real marginal cost; "
p
t is a weighted average of the in�ation target and the devi-

ation of markup from the steady state; �, 
, ! are the price stickiness parameters de�ned in Sec-
tion 2.1; and ~� and ~� are the parameters determined by equations ~� = � + ! (1� �) (1 + 
��) and
~� = (1� !) (1� �) (1� ��) ~��1 (see equations (1.20)�(1.22) in Dorich et al., 2013). We observe that
the di¤erence in in�ation dynamics is entirely attributed to the di¤erence in the real marginal cost. In
ToTEM, a consumption demand shock triggers a reallocation of inputs into the consumption production
sector from the other four sectors. In the presence of adjustment costs, the reallocation raises the real
marginal cost. In contrast, in bToTEM, there is one production sector and there are no input adjustment
costs. Therefore, the responses and decays of the real marginal cost are less pronounced.

We also observe that the impulse responses of the ToTEM and bToTEM models are generally closer to
one another than those produced by the ToTEM and LENS models, the two models of the Bank of Canada.
This result is not surprising given that the bToTEM model is a scaled-down version of the ToTEM model,
while LENS is a macroeconometric model constructed in a di¤erent way.11 Consequently, our comparison
results indicate that bToTEM provides an adequate framework for projection and policy analysis of the
Canadian economy and that it can be used as a complement to the two models of the Bank of Canada.

4 Addressing the role of nonlinearities in the solution

Until the Great Recession, policymakers were not concerned with nonlinearities in their large-scale macro-
economic models. As Bullard (2013) pointed out, �... the idea that U.S. policymakers should worry about
the nonlinearity of the Taylor-type rule and its implications is sometimes viewed as an amusing bit of theory
without real rami�cations. Linear models tell you everything you need to know. And so, from the denial
point of view, we can stick with our linear models...�Also, Leahy (2013) argues: �Prior to the crisis, it was
easier to defend the proposition that nonlinearities were unimportant than it was to defend the proposition
that nonlinearities were essential for understanding macroeconomic dynamics.�The question �How wrong

11 LENS is not a general-equilibrium model that is derived from microfoundations and that is calibrated to the data, like
ToTEM and bToTEM. It is a large-scale macroeconometric model composed of a set of equations whose coe¢ cients are
estimated from the data and are �xed for some period of time; see Gervais and Gosselin (2014) for a technical report about
the LENS model.
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could linearized solutions be?�became of interest to policymakers in light of the Great Recession and the
recent zero lower bound (ZLB) crisis, and considerable e¤orts were dedicated to understand the role of
nonlinearities in the implications of new Keynesian models. Why could nonlinearities matter for policy
analysis? We distinguish three potential e¤ects of nonlinearities on the properties of the solution compared
with a plain linearization method:

i). (ELB). The ELB kink in the Taylor rule can induce kinks and nonlinearities in other variables of
the model.

ii). (Higher order terms). Higher order terms, neglected by linearization, can be quantitatively im-
portant for the properties of the solution.

iii). (Solution domain). The quality of local (perturbation) solutions, constructed to be accurate in
the steady state, can deteriorate when deviating from the steady state.

To assess the quantitative importance of the above e¤ects, we construct three numerical solutions to
bToTEM, speci�cally: i) a �rst-order perturbation solution with occasionally binding constraints; ii) a
second-order plain perturbation solution; iii) a nonlinear global solution.

4.1 A �rst-order perturbation-based solution with occasionally binding constraint

A plain �rst-order perturbation method is not suitable for approximating occasionally binding constraints
like ZLB or ELB, however, there are perturbation-based methods that can approximate such constraints.
In particular, IRIS software can handle occasionally binding constraints although it is limited to �rst-order
approximation. This method allows us to construct policy projections conditional on alternative anticipated
policy rate paths in linearized DSGE models; see Laséen and Svensson (2011) and Bene� (2015) on how
this method deals with the inequality constraints; see also Holden (2016) for a related method. Dynare
software cannot impose occasionally binding constraints itself, but there is an OccBin toolbox of Guerrieri
and Iacoviello (2015) that allows imposing such constraints for �rst-order approximation. The method
of Guerrieri and Iacoviello (2015) applies a �rst-order perturbation approach in a piecewise fashion to
solve dynamic models with occasionally binding constraints. Thus, the �rst solution we report is a linear
perturbation solution with occasionally binding constraints produced by IRIS (we also checked that the
IRIS and OccBin toolboxes deliver identical results as pointed out in Guerrieri and Iacoviello, 2015).

4.2 A plain second-order perturbation solution

A plain second-order perturbation solution in a given class of economic models is given by

g (x; �) � g (�x; 0) + gx (�x; 0) (x� �x)| {z }
1st-order perturbation solution

+
1

2
gxx (�x; 0) (x� �x)2 +

1

2
g�� (�x; 0)�

2| {z }
2nd-order terms

; (37)

where g (x; �) is a decision function to be approximates; x is a vector of endogenous and exogenous state
variables; � is a perturbation parameter that scales volatility; (�x; 0) is a deterministic steady state; g (�x; 0),
gx (�x; 0) and gxx (�x; 0) are, respectively, steady state values, Jacobian and Hessian matrices of g; (x� �x)
is a deviation from a steady state; and (x� �x)2 � (x� �x)
 (x� �x) is a tensor product of the deviations.
The �rst-order perturbation solution does not depend on the degree of volatility �, i.e., g� (�x; 0) = 0; the
term g�x (�x; 0) is omitted as well because it is equal to zero; see Schmitt-Grohé and Uribe (2004).

Formula (37) shows the following: A second-order perturbation solution di¤ers from a �rst-order solu-
tion by two terms: a constant term 1

2g
2
�� (�x; 0)�

2 (which we call an uncertainty e¤ect), and a second-order
term 1

2gxx (�x; 0) (x� �x)
2 (which we call the second-order e¤ect). To assess these e¤ects, we report a plain

second-order perturbation solution. We ignore ELB for second order perturbation solution.
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4.3 A projection deep-learning global solution method

Perturbation solutions are local. They are constructed to be accurate in just one point �a deterministic
steady state � and their quality can deteriorate when we deviate from the steady state. To assess the
importance of the �solution domain� e¤ect, we need to construct a global solution that approximates
decision rules in a larger area of the state space.

But how can we construct a global solution to a model like bToTEM? First of all, the bToTEM model
has much larger dimensionality than new Keynesian models studied with global methods in the literature,
e.g., Judd et al. (2012), Gust et al. (2012), Fernández-Villaverde et al. (2012, 2015), Maliar and Maliar
(2015), Boneva et al. (2016), Christiano et al. (2016), Aruoba et al. (2018), Coleman et al. (2018). For
example, the model in Maliar and Maliar (2015), contains 8 state variables (6 exogenous and 2 endogenous
ones) but bToTEM contains 21 state variables (6 exogenous and 15 endogenous ones). The di¤erence
between 8 and 21 state variables is immense: for example, if we discretize each state variable into just 10
grid points to construct a tensor product grid, we would have 108 and 1021 grid points, respectively, which
implies a huge 1013-times di¤erence in evaluation costs. Clearly, conventional solution methods based on
tensor product grids, such as conventional value function iteration, would be intractable in bToTEM!

High dimensionality is not the only challenge that bToTEM represents. The new Keynesian models
that were studied in the literature by using global methods led to relatively simple systems of few equations
that can typically be solved in a closed form, given future variables; e.g., Maliar and Maliar (2015). In
turn, the open-economy bToTEM model produces a far more complex system of more than 30 equations
that include both domestic and foreign variables. This system must be treated with a numerical solver in
all grid points, as well as in all future states, inside the main iterative loop.

To solve bToTEM, we introduce a projection solution method that uses a combination of unsuper-
vised and supervised (deep) learning techniques, speci�cally, we use clustering analysis for constructing
the solution domain, and we use multilayer neural networks for approximating the decision functions. We
complement our DL algorithm by numerical techniques that are designed to deal with large-scale applica-
tions, such as non-product monomial integration methods and derivative-free �xed-point iteration. Taken
together, these techniques make our DL method tractable in problems with high dimensionality �dozens of
state variables! Importantly, our solution method imposes ELB on nominal interest rates. In the remainder
of this section, we outline the key ideas of these techniques; a detailed implementation of the DL method
in the context of the bToTEM model is described in Appendix F.

4.3.1 Unsupervised machine learning: clustering analysis

To form a grid for constructing a global nonlinear solution to bToTEM, we use cluster grid analysis (CGA).
Our solution method merges simulation and projection approaches, namely, it uses simulation techniques
to identify a high probability area of the state space and it uses projection techniques to accurately solve
the model in that area; see Maliar et al. (2011), Judd et al. (2011a, 2012) and Maliar and Maliar (2015)
for a discussion of the related ergodic set methods and their applications.12

The CGA analysis can be understood by looking at a two-dimensional example in Figure 4.
In the �rst panel of the �gure, we see a cloud of points that is obtained by stochastic simulation of an
economic model: this cloud covers a high-probability area of the state space. The simulated cloud contains
many redundant points that are located close to one another. The CGAmethod improves on pure stochastic
simulation methods by eliminating the redundant points; speci�cally, it uses clustering analysis to replace
a large cloud of simulated points with a smaller set of evenly spaced �representative�points. The remaining
panels of the �gure show how CGA constructs the representative points: it �rst combines simulated points
into a set of clusters; it then distinguishes the centers of the clusters; and it �nally uses the clusters�centers
as a grid for constructing nonlinear solution.

12Maliar et al. (2011) and Judd et al. (2011a, 2012) introduced several numerical techniques in the context of solution
methods for dynamic economic models that are extensively used in the recent machine learning literature (see, e.g., Goodfellow
et al. (2016) for a review), including various regularized regressions, clustering analysis, epsilon-distinguishable sets, etc.
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Figure 4: Construction of a cluster grid from simulated points

4.3.2 Supervised (deep) machine learning: multilayer neural network

The earlier version of our paper, Lepetyuk et al. (2017), approximated decision functions by second-
degree polynomial functions. Those function were not �exible enough, and we ran into the problem of
non-convergence. To achieve convergence, we scaled down the volatility of shocks but it also scaled down
the e¤ects of nonlinearities on the solutions. In the current version, we approximate decision functions
by using neural networks, which we train by using the DL techniques; see Goodfellow et al. (2016) for a
review of related computer science literature. The introduction of DL both increases accuracy and enhances
convergence. As a result, our projection DL algorithm is capable of constructing fully nonlinear solutions
under the empirically relevant volatility of shocks �this increases the role of nonlinearities in the solution.

The use of neural network in economic dynamics is dated back to Du¤y and McNelis (2001) and McNelis
(2005). While we were working on the paper, there appear several other papers that use neural networks
for constructing their solutions, including Duarte (2018), Maliar et al. (2018, 2019), Villa and Valaitis
(2019), Fernandez-Villaverde et al. (2019) and Azinovíc et al. (2019). There are important di¤erences
between this literature and our analysis. To be speci�c, Duarte (2018) and Fernandez-Villaverde et al.
(2019) use supervised learning (neural networks) for approximating functions in continuous time models;
in particular, the latter paper shows how neural network can be used to solve a challenging Krusell and
Smith model. In turn, Maliar et al. (2018, 2019) show an approach that reformulates the entire economic
model as an objective function of the deep-learning method (such as lifetime reward and residuals in the
Euler and Bellman equations) and that trains the machine to optimize these objectives using the Google
TensorFlow library. Azinovíc et al. (2019) use a similar method that minimizes Euler-equation residuals to
solve a challenging high-dimensional life-cycle model. The paper that is closest to ours is a parameterized
expectations algorithm with neural networks of Villa and Valaitis (2019) but our method is a projection and
not a stochastic-simulation method: �rst, we use unsupervised learning (clustering) to construct a �xed
grid for computing the solution instead of simulation; and second, we use accurate deterministic integration
for evaluating expectation functions instead of less accurate Monte Carlo integration; see Maliar and Maliar
(2014) for a comparison of projection and simulation methods. As a result, our DL method produces highly
accurate solutions for the challenging bToTEM model.

In Figure 5, we show the neural network with two layers that we use: a hidden layer and an output
layer. The hidden layer takes as inputs normalized input variables xi. An activated neuron of this layer is
a result of applying an activation function to the neuron-speci�c weighted sum of the inputs plus a bias.
The output layer takes as inputs the activated neurons of the hidden layer and delivers the normalized
output variables of the network. In the �gure, �1 and �2 stand for activation functions of the hidden and
output layers, respectively.

A straightforward use of neutral networks for constructing decision functions would take as an input
the vector of state variables. We choose instead as an input to our neural network a quadratic base of
the state variables. For 21 state variables of the model, the quadratic base consists of 252 variables plus
a constant term. This approach allows us to reduce the degree of nonlinearity explicitly attributed to the
neural network and to limit the network to one hidden layer. The reduction of nonlinearity of the network
is useful for convergence of an iterative solution algorithm.
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Figure 5: Three layer neural network

All inputs and outputs of the neural network are normalized by a linear transformation to lie within
an interval [�1; 1]. In the hidden layer of the network, a normalized input vector x is transformed to an
activated neuron vector a(1) by a symmetric sigmoid activation function. For a neuron i, the transformation
is as follows:

a
(1)
i = tansig

�
z
(1)
i

�
= tansig(b

(1)
i +W

(1)
i x);

where z(1)i is a nonactivated neuron i of the hidden layer, b(1)i is a scalar that captures a bias, W (1)
i is a

vector of weights, and tansig(x) = 2= [1 + exp(�2x)]� 1 is an activation function �1. In the output layer
of the network, the neurons are transformed to normalized output variables by a linear function, i.e., �2 is
linear. For output, the transformation is given by

yi = z
(2)
i = b

(2)
i +W

(2)
i a(1);

where z(2)i is output (both activated and nonactivated as the activation function is linear), a(1) is a vector

of activated neurons of the hidden layer, b(2)i is a scalar capturing a bias, and W (2)
i is a vector of weights.

In our implementation, we use 11 neurons in both network layers to match the number of intertemporal
choice variables. For this number of neurons, the neutral network includes 2,915 coe¢ cients. There are
2,783 coe¢ cients in the hidden layer, and there are 132 coe¢ cients in the output layer.

5 Is the Canadian ELB crisis imported from abroad?

In the U.S. and European countries, the Great Recession and ZLB episodes were caused by the 2008
�nancial crisis. In contrast, Canada did not experience any signi�cant �nancial crisis or economic slowdown
at the beginning of the Great Recession. Nonetheless, Canada also ended up reaching an ELB on nominal
interest rates and remained there during the 2009�2010 period. To be speci�c, the Bank of Canada targeted
the overnight interest rate at 0.25 percent annually, which at that time was viewed by the Bank to be a
lower bound on the nominal interest rate.

What factors led the Canadian economy to the ELB crisis? In the �rst experiment, we argue that the
recession spread to Canada via the rest of the world, primarily from the U.S., which is the main Canadian
trade partner (around 75 percent of Canadian exports go to the U.S.). The Canadian economy experienced
a huge (16 percent) drop in exports in the beginning of the Great Recession; see a speech by Boivin (2011),
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a former Deputy Governor of the Bank of Canada. Using bToTEM, we �nd that a negative ROW shock
of such magnitude is su¢ cient to originate a prolonged ELB episode in the Canadian economy.

5.1 Calibrating exogenous ROW shocks from ToTEM

An important question is how to realistically calibrate the behavior of the ROW sector in the bToTEM
model since a foreign �nancial crisis a¤ects not just foreign demand but also foreign prices and foreign
interest rates. Our methodology combines the analysis of bToTEM and ToTEM. Namely, we use ToTEM
to produce impulse responses for three foreign variables: a ROW interest rate, ROW commodity price and
ROW output, and we use these three ToTEM variables as exogenous shocks in the bToTEM model; these
shocks are shown in Figure 6. In ToTEM, a negative shock in the ROW sector has three e¤ects: the world
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Figure 6: Exogenous ROW shocks

demand goes down, output falls, and the ROW commodity price reduces. Since the monetary authority in
the ROW model is assumed to follow a Taylor rule, the ROW nominal interest rate goes down as well. The
size of the considered ROW shock in ToTEM is such that its output declines by 7 percent on the impact
of shock, and it declines by 12 percent at the peak �these numbers are consistent with the magnitudes of
foreign shocks experienced by the Canadian economy during the Great Recession.

5.2 Generating the ELB episode

Figure 7 displays the simulated time series for the key model variables under the given behavior of the
ROW sector imported from ToTEM. Here, the ELB on the nominal interest rate is set at 2 percentage
points below the deterministic steady state of the nominal interest rate. All the variables are reported in
percentage deviations from the deterministic steady state, except of in�ation and the interest rates that
are shown in annualized deviations from the deterministic steady state. We assume that initially, the
domestic interest rate in bToTEM is slightly below the deterministic steady state, namely, by 1 percent,
which makes it is easier to reach the ELB on the nominal interest rate.13

We plot three di¤erent solutions, namely, a �rst-order perturbation solution produced by IRIS (or
OccBin) with the ELB imposed; a plain second-order perturbation solution produced by Dynare without
imposing ELB; and a DL solution with the ELB imposed.14 As we see, the three solutions look very similar
in the �gure.

To check the accuracy of numerical solutions, we compute unit-free residuals in the model�s equation
along the simulation path; see Appendix G for details of our accuracy assessment. As expected, the global
solution method is the most accurate. The least accurate �rst-order perturbation methods can produce
residuals of order 10�1:43 � 3:7 percent, while the DL method produces residuals which are a half order of
magnitude lower, namely, equal to 10�2:09 � 0:8 percent. (The accuracy results are similar on a stochastic
13The natural yearly rate of interest in bToTEM is calibrated to 3 percent as in ToTEM. This value is chosen to represent

the long-run historical average of the natural rate of interest in the Canadian economy. However, the current natural rate of
interest in Canada is considerably lower. Setting the initial interest rate below the steady state is a way to account for the
current low interest rate.
14We use pruning to simulate the second-order perturbation solution; see Andreasen et al. (2013).
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Figure 7: Responses of linear perturbation, quadratic perturbation, and global ML solutions to ROW
shocks

simulation). Given that all three numerical solutions look similar, we conclude that numerical errors of
these magnitudes do not a¤ect the qualitative implications of the model in this experiment.

5.3 Understanding the ELB episode in Canada: a contagion mechanism

In our experiment in Figure 7, the nominal interest rate reaches the ELB and remains there during eight
quarters, which corresponds to what actually happened in the Canadian economy during the 2009�2010
period. Our analysis suggests that a contamination-style mechanism accounts for this ELB episode in
the Canadian economy. Under the considered scenario of negative ROW shocks, there are three foreign
variables that decline during the crisis, namely, foreign output, the foreign interest rate, and the world
commodity price; see Figure 6. The immediate consequence of these shocks for the domestic economy is a
sharp decline in commodity and noncommodity exports in the Canadian economy. There are signi�cantly
fewer commodities extracted due to a huge decline in commodity prices and as a consequence, domestic
output starts declining. The central bank responds by lowering the interest rate to stimulate the economy
but the magnitude of shocks is so large that the bank reaches the lower bound on the nominal interest rate
by six quarters. Without unconventional monetary tools, the interest rate stays at the lowest value for
more than two years until the foreign economy su¢ ciently recovers. All three numerical methods considered
deliver the same qualitative predictions about the ELB episode.

There is related recent literature on the transmission of liquidity trap from one country to another.15

15There is also earlier literature that analyzes the e¤ects of foreign shocks on a domestic economy over the business cycle; see
e.g., Backus et al. (1992). Schmitt-Grohé (1998) �nds that variations in export demand are more important for explaining the
business cycle behavior of Canadian aggregate variables than variations in �nancial markets. Lubik and Schorfheide (2005)
build a new Keynesian model with two countries � United States and Euro area � and �nd asymmetric transmissions of
monetary, supply and demand shocks. See also Fernández, Schmitt-Grohé, Uribe (2017) for recent evidence on the importance
of terms of trade shocks over the business cycle.
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Fujiwara (2010) considers a small open economy, calibrated to the Japanese economy, and shows analyti-
cally that the multiplier of an export demand shock is small if an economy is not hit by ZLB but increases
by a factor of 100 if such an economy is at the binding ZLB constraint. Jeanne (2010) uses a two-country
model to show that a negative demand shock in one country may push the other country to zero nominal
interest rates. Bodenstein et al. (2016) �nd that if a domestic economy (U.S.) is not at ZLB, negative
foreign shocks have negligible e¤ects on the U.S., but if the U.S. is previously hit by ZLB, the e¤ects of such
shocks are substantially ampli�ed. Other papers that share similar themes include Cook and Devereux
(2011, 2013, 2016), and Corsetti et al.(2016) among others. Finally, Devereux (2014), Caballero et al.
(2016), and Eggertsson et al. (2016) analyze how liquidity traps spread across the world by emphasizing
the role of capital �ows.

5.4 ELB is easy to generate in open-economy models unlike in closed-economy models

Surprisingly, we �nd that it is fairly easy to generate prolonged ELB episodes in an open-economy setting,
while it is quite di¢ cult to produce such episodes in closed-economy models. In particular, Chung, Laforte,
Reifschneider andWilliams (2012) �nd that standard structural models (FRB/US, EDO, Smets andWouter
(2007)) deliver very low probability of hitting the ZLB. Maliar and Maliar (2015) generate the ZLB episodes
by assuming large preference shocks a¤ecting the marginal rate of substitution between consumption and
leisure. Aruoba et al. (2018) augment the simulated series from the model to include historical data
from the U.S. economy in order to obtain realistic spells at the ZLB. Fernández-Villaverde et al. (2012,
2015) argue that within a standard new Keynesian model, it is impossible to generate long ZLB spells
with modest drops in consumption, which were observed during the recent crises; they suggest that the
only way to get around this result is to introduce wedges into the Euler equation. Also, Christiano et al.
(2015) emphasize the importance of such shocks as a consumption wedge (a perturbation governing the
accumulation of the risk-free asset), a �nancial wedge (a perturbation for optimal capital accumulation),
a TFP shock, and a government consumption shock. Thus, our contamination-style motive for the ELB
crisis in the open-economy model of the Canadian economy di¤ers from those proposed in the literature
for closed-economy models.

5.5 The irrelevance of the ZLB hypothesis

The role of ELB is modest in our �rst experiment: all three solutions predict nearly the same magnitude
and duration of the ELB crisis. This result suggests that all three kinds of nonlinearities described in
Section 4 are quantitatively unimportant: First, the presence of an active ELB does not signi�cantly
a¤ect the behavior of other variables; to put it simply, if the Bank of Canada just used a plain �rst-order
perturbation method for analyzing ToTEM, either ignoring ELB entirely or chopping the interest rate at
ELB in simulation, it would not be terribly wrong. Furthermore, a comparison of the �rst- and second-
order perturbation solutions suggests that the role of second-order terms is also relatively minor. Finally,
given that our global DL solution is relatively close to perturbation solutions, we conclude that the quality
of perturbation solutions does not dramatically deteriorate away from the steady state.

The related literature focuses almost exclusively on nonlinearities in the new Keynesian models resulting
from ZLB or ELB.16 The �ndings of this literature are mixed. Several papers �nd that ZLB is quantitatively
important in the context of stylized new Keynesian models with Calvo pricing, in particular, Maliar
and Maliar (2015) argue that �rst- and second-order perturbation solutions understate the severity and
duration of the ZLB crisis; Fernández-Villaverde et al. (2015) show that the nonlinearities start playing an
important role when ZLB is binding, a¤ecting the expected duration of spells, �scal multipliers, as well as
the trade-o¤ between spells and drops in consumption; and Aruoba et al. (2018) show that nonlinearities
in their new Keynesian model can explain the di¤erential experience of the U.S. and Japan by allowing

16One exception is Judd et al. (2017), who demonstrate that approximation errors in linear and quadratic perturbation
solutions can reach hundreds percent under empirically relevant calibrations of new Keynesian models, even if the economy is
not at the ZLB.
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for nonfundamental shocks (sunspots). Furthermore, in the model with Rotemberg pricing, Boneva et
al. (2016) �nd that linearization considerably distorts the interaction between the ZLB and the agents�
decision rules, in particular, those for labor supply.17

There is a growing stream of the literature advocating the ZLB irrelevance hypothesis which argues
that the impact of binding ZLB on the economy�s performance is insigni�cant. First, it includes empirical
literature that estimated impulse response functions from the data and �nd that macroeconomic variables
were hardly a¤ected by active ZLB; see Debortoli et al. (2019) for a review of the literature. Furthermore,
it includes literature that solves new Keynesian models and �nds that ZLB is quantitatively unimportant.
In particular, Christiano et al. (2016) study a stable-under-learning rational expectation equilibrium in a
simple nonlinear model with Calvo pricing; they �nd that a linearized model inherits the key properties
of the nonlinear model for �scal policy at ZLB, predicting similar government spending multipliers and
output drops. Furthermore, Eggertsson and Singh (2016) derive a closed-form nonlinear solution to a
simple, two-equation new Keynesian model. They report negligible di¤erences between the exact and
linearized solutions when they look at the e¤ects of �scal policy at ZLB.

Thus, our �ndings from the bToTEM model are in line with the literature that did not �nd important
e¤ects of nonlinearities. Clearly, a modest role of nonlinearity in our �rst experiment is not generic but a
numerical result that is valid just for our speci�c set of assumptions and calibration procedure. It happens
because the probability of ELB is relatively low, as well as its cost, so the possibility of hitting ELB does not
considerably a¤ect the decisions of the agents. We can increase the importance of ELB by increasing the
volatility of shocks (still within a reasonable range) or by modifying some model�s assumptions (one such
modi�cation is shown in Section 7). However, demonstrating the importance of nonlinearities and ELB
was not the goal of our analysis. We meticulously calibrate the bToTEM model to reproduce the Canadian
data, trying to make it as close as possible to the full-scale ToTEM model; and under our calibration,
nonlinearities proved to be quantitatively unimportant, including ELB. Our negative result does not mean
that the Great Recession was unimportant but that the main mechanism of the recession was something
else rather than a binding ELB constraint.

6 Preventing the recurrence of the ELB crisis

For the last 25 years, the Bank of Canada has adhered to the in�ation targeting, but every three to �ve
years it revises its in�ation-control target level. The last revision happened in 2016: the Bank of Canada
considered the possibility of increasing the in�ation target, but eventually it reached the decision to keep
it at a 2 percent level for the next �ve years. A higher in�ation target reduces the probability of reaching
ELB, but it also has certain costs for the Canadian economy; see Kryvtsov and Mendes (2015) for some
considerations that may have in�uenced the decision of the Bank of Canada. In our second experiment,
we use a simulation of bToTEM to assess the impact of a hypothetical transition from a 2 to 3 percent
in�ation target on the Canadian economy.

6.1 A 3 percent in�ation target would have prevented the 2009-2010 ELB episode

In the new Keynesian models like ToTEM and bToTEM, the ELB or ZLB episodes can be prevented by
choosing a su¢ ciently large in�ation target. For example, in Figure 8 we show that if the Bank of Canada
had the in�ation target of 3 percent instead of 2 percent, the ELB would never be reached in bToTEM
under any solution method in our �rst experiment.

The idea of using an in�ation target as a policy instrument for dealing with ZLB episodes dates back
at least to Summers (1991) and Fischer (1996), who suggest to use an in�ation target in the range of
1 to 3 percent if the economy hits ZLB. Krugman (1998) proposes to use a 4 percent in�ation target
in the Japanese economy to deal with persisting de�ation. In light of the Great Recession, Blanchard,

17 See also Gust et al. (2012) for related evidence from estimation of a nonlinear new Keynesian model using a maximum-
likelihood approach.
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Figure 8: Linear perturbation, quadratic perturbation, and global ML solutions under the in�ation target
of 3 percent (in deviations from the deterministic 3%-in�ation-target steady state)

Dell�Arriccia and Mauro (2010) argue that adopting a 4 percent in�ation target in the U.S. can help avoid
the ZLB crisis; see also Williams (2009) and Ball (2013) for related proposals. For the Canadian economy,
Dorich et al. (2018) estimate the e¤ects of the increases in the in�ation target to 3 percent (or 4 percent)
and they �nd that it decreases the probability of hitting the ELB from 8 percent to 4 percent (or 2 percent).

However, a higher in�ation target has also certain costs, in particular, it tends to decrease average
output, to increase costs of price dispersion, to raise the economy�s volatility and to produce unstable
expectations dynamics; see Ascari and Sbordone (2014) for a discussion. Coibion et al. (2012) perform a
careful assessment of the costs and bene�ts of higher in�ation: they �nd that for plausible calibrations of
the model and realistic frequencies of the ZLB episodes (of eight quarters), the optimal in�ation rate in
the U.S. economy must be less than 2 percent: the cost of ZLB in their analysis is relatively low because
the probability of hitting ZLB is relatively low.

6.2 Modeling a transition from a 2 percent to 3 percent in�ation target

We use the bToTEM model to study a transition of the Canadian economy after a hypothetical increase
in the in�ation target from 2 percent to 3 percent, a possibility that was recently evaluated by the Bank
of Canada. We implement a change in the in�ation target by maintaining the real neutral interest at the
same level of 3 percent. We thus simultaneously adjust the nominal interest rate target level from about
5 to 6 percent.

In our baseline experiment, the initial condition corresponds to the deterministic steady state of the
Canadian economy with an old in�ation target of 2 percent. We then recompute the solution under the
new in�ation target of 3 percent, and we simulate the transition path from the old to the new steady states.
In all cases, we assume no shocks over the transition path.

6.3 Dramatic di¤erences between local and global solutions

In Figure 9, we plot a simulation for the �rst- and second-order perturbation solutions, as well as global DL
solutions. Here, the level �0�corresponds to the initial deterministic steady state of 2 percent and all the
variables are given in deviations from that initial steady state; the level �1�in the �gure for in�ation means
3 percent and �1�in the �gure for interest rate means a new nominal interest rate target of 6 percent.

In this experiment, the three solutions look dramatically di¤erent. The �rst-order perturbation solution
behaves in a way that is typical for new Keynesian models and that agrees with our intuition and common
sense. The change in the in�ation target almost instantaneously translates into an increase in the in�ation
rate. In�ation reacts so rapidly because in our sticky-price economy, the non-optimizing �rms set their price
according to the in�ation target, which is instantaneously changed from 2 percent to 3 percent. Following
the Taylor rule with persistence, the interest rate reaches the new steady state within a couple of years.
During the transition to this new steady state, the interest rate is below the new steady states and therefore
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Figure 9: A transition from a 2 percent to 3 percent in�ation target under linear, quadratic, and global
ML solutions (in deviations from the deterministic 2%-in�ation-target steady state)

provides a monetary stimulus. The stimulus is re�ected in higher investment, output, consumption and
capital under all solutions.

In contrast, the simulation of second-order and global nonlinear solutions looks odd, in particular,
consumption and investment produce wiggles and even go down. However, these implications of the
second-order perturbation and global solutions are puzzling and seem to point to the importance of some
nonlinear e¤ects, but we will be able to resolve this puzzle below.

6.4 Understanding the impact of uncertainty on the steady state

Let us recall the three e¤ects of nonlinearities discussed in Section 4. Since ELB is not binding in this
experiment, the �rst- and second-order perturbation solutions in (37) can di¤er either because of the
uncertainty e¤ect represented by a constant term 1

2g
2
�� (�x; 0)�

2 or because of the second-order e¤ects
represented by a quadratic term 1

2gxx (�x; 0) (x� �x)
2. Global solutions can also di¤er from perturbation

solutions because their coe¢ cients are constructed on a larger solution domain.
The uncertainty e¤ect means that linear and nonlinear models have di¤erent steady states: In absence

of shocks, a linear model converges to the deterministic steady state, while a nonlinear model converges to
the so-called stochastic steady state that depends on a degree of volatility �.

The uncertainty e¤ect is well appreciated from Figure 9: both second-order perturbation and global
DL solutions converge not to the deterministic steady state but to some other levels. In particular, in the
nonlinear case, the interest rate does not increase by exactly 1 as in the linear case, but somewhat less.
This means that the central bank does not get the same in�ation rate as it targets by the Taylor rule in
the nonlinear case (if the initial condition is a deterministic steady state); see Hills et al. (2016) for an
estimation of such de�ationary bias in the U.S.

In turn, the term 1
2gxx (�x; 0) (x� �x)

2 captures second-order e¤ects that are ignored by linear solutions,
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in particular, those associated with wage and price dispersions (in linear solutions, such dispersions are
equal to zero). To assess the relative importance of these and other similar second-order e¤ects, in Figure 10
we simulate a second-order perturbation solution by using a stochastic steady state as an initial condition
instead of the deterministic one.
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Figure 10: A transition from a 2 percent to 3 percent in�ation target under linear and two quadratic
solutions one of which starts from the deterministic steady state and the other starts from the stochastic
steady state (in deviations from the deterministic 3%-in�ation-target steady state).

Surprisingly, once the initial condition is adjusted, the second-order e¤ects disappear! In Figure 10,
the �rst-order and alternative second-order perturbation solutions are visually indistinguishable, up to a
constant term that shifts the second-order solution relative to the �rst-order solutions. Now, we realize
that the puzzling behavior of nonlinear solutions in Figure 9 such as wiggly consumption, investment and
capital along the transition happens simply because nonlinear solutions are e¤ectively confronted with two
transitions: one is a transition to a new in�ation target and the other is a transition from the deterministic
to their own stochastic steady state. Adjusting the initial condition removes the second transition and
makes the nonlinear solutions meaningful. This means that second-order e¤ects associated with the wage
and price dispersion play a relatively minor role in second-order perturbation solutions.

We next perform a similar experiment with the global DL solution by constructing an alternative
simulation that starts from the stochastic steady state of the DL global solution; see Figure 11.
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Figure 11: A transition from a 2 percent to 3 percent in�ation target under linear and two global ML
solutions one of which starts from the deterministic steady state and the other starts from the stochastic
steady state (in deviations from the deterministic 3%-in�ation-target steady state).

The results for the global DL solution are similar to those of the second-order perturbation solution.
Here, we also observe an important uncertainty e¤ects on the steady state but once we make an adjustment
for di¤ering steady states, the local and global solutions become qualitatively similar. However, we also
observe a visible �solution domain� e¤ect that ampli�es the role of higher order nonlinearity terms. In
particular, the long-term changes of the interest and in�ation rates are visibly larger for the global DL
solution than for the second-order perturbation solution. The consequence of a larger stimulus is that the

24



e¤ect of the in�ation-target change on output is positive for the global DL solution, while it was negative
for the second-order perturbation solution.

An important lesson from our analysis is that a coherent simulation of numerical solutions requires us
to start each solution from its own steady state (or from the same relative distance from the steady state).

7 The role of the closing condition

Our previous analysis seems to suggest that nonlinearities, including ELB, play a relatively minor role in
the bToTEM performance (provided that we account for di¤ering steady states). In this section, we show
that a relatively small change in the model�s assumptions can change this conclusion, such as a variation
in the closing condition used to induce stationarity in open-economy models.

7.1 Closing condition matters in the bToTEM model

Let us replace the linear closing condition (35) that ensures stationarity in the bToTEM model with a
similar closing condition in an exponential form, as is used in Schmitt-Grohé and Uribe (2003):

�ft = &
h
exp

�
�bf � bft

�
� 1
i
: (38)

Let us re-visit our �rst experiment, in which the Canadian economy experiences three shocks to the
ROW variables. Recall that under our benchmark linear closing condition in Figure 7, all three solutions
looked very similar. However, Figure 12 provided below shows that a second-order perturbation solution
looks very di¤erent after we change the closing condition to the exponential one in (38).
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Figure 12: Responses of linear perturbation, quadratic perturbation and alternative quadratic solutions to
ROW shocks.

Now, the risk premium has a faster and sharper increase and decline because of the changes in the
foreign bonds. The change in risk premium dynamics a¤ects the exchange rate via the uncovered interest
rate parity condition (31) (it pre-multiplies the foreign interest rate). In turn, the exchange rate a¤ects
the prices of two out of four inputs in the production function, which eventually a¤ects the real marginal
cost and in�ation.

Why are closing-condition nonlinearities manifested in bToTEM? The linear closing condition (35) does

not have second-order terms and is equal to itself �ft = &
�
�bf � bft

�
, while the exponential closing condition

(38) does have such terms and is given by �ft � &
�
�bf � bft

�
+ 1

2 &
�
�bf � bft

�2
. Precisely, the second-order

term 1
2 &
�
�bf � bft

�2
accounts for a visibly large di¤erence between the �rst- and second-order perturbation

solutions in Figure 12.
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7.2 But closing condition does not matter in Schmitt-Grohé and Uribe (2003)

The importance of stationarity condition in the bToTEM model is surprising, given a well-known �nding of
Schmitt-Grohé and Uribe (2003) that closing conditions does not matter for implications of open-economy
models. However, we shall recall that their analysis focuses exclusively on �rst-order solutions. For such

solutions, the exponential stationarity condition (38) is given by �ft � &
�
�bf � bft

�
, which exactly coincides

with the linear closing condition (35). Thus, the analysis of Schmitt-Grohé and Uribe (2003) would treat
the two alternative closing conditions as exactly identical and it would not discover the importance of
nonlinearity e¤ects associated with the closing condition, even if such e¤ects were present.

Schmitt-Grohé and Uribe (2003) consider a small open economy model with incomplete asset markets,
which is parameterized and calibrated as in Mendoza (1991). We ask whether the conclusions of the
analysis in Schmitt-Grohé and Uribe (2003) will change if instead of linearization, we solve their model by
using high-order perturbation and global nonlinear solution methods? We �nd that the answer is �No�,
namely, we �nd that nonlinearity e¤ects associated with the closing condition play a very minor role in the
predictions of Schmitt-Grohé and Uribe�s (2003) model. To illustrate our �nding, in Figure 13, we show
responses of selected variables to a 10-percent productivity shock in their model. To make the nonlinearity
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Figure 13: Responses to a productivity shock in the model of Schmitt-Grohé and Uribe (2003).

e¤ects most visible, we report more nonlinear third-order perturbation solution instead of the second-order
one. Still, under their benchmark parameterization, the nonlinearity e¤ects are practically absent, so that
the linear and nonlinear solutions are essentially identical. We �nally perform a sensitivity experiment
in which we increase the value of the parameter & by 100; this parameter controls the importance of
higher order terms in the model of Schmitt-Grohé and Uribe (2003). In that extreme case, we observe
that the responses of variables are dampened in the third-order solution relatively to �rst-order solutions,
especially, the response of the foreign debt. But even in that case, the dynamics of the model do not change
qualitatively and the di¤erence between �rst- and third-order solutions is relatively small.

Thus, our �ndings do not invalidate the insights from the analysis of Schmitt-Grohé and Uribe (2003).
However, they suggest that the regularities observed in one model do not necessarily carry over to other
models, in particular, to more complex central banking models. �Innocent� assumptions that we do
not expect to play a role in the properties of the solution can lead to important nonlinearity e¤ects. Our
analysis suggests that central banks must be systematically checking the robustness of their linear solutions
to potentially important e¤ects of nonlinearities.

8 Conclusion

This paper tells a tale of the Canadian ELB experience during the Great Recession: We demonstrate that
a direct impact on the foreign trade was a quantitatively important transmission channel through which
the contagion of the Great Recession spread to Canada from the rest of the world. There is a popular
saying �When the U.S. sneezes, Canada catches a cold�. But this time it went the other way around: it
was that the U.S. which caught the (subprime crisis) cold, and it was Canada which sneezed.
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Our tale builds around a carefully designed ToTEM model, which is meticulously calibrated to repro-
duce the key observations on the Canadian economy, as well as the impulse responses of ToTEM. The
bToTEM model is capable of generating the ELB episode under the rest-of-the-world shocks that are
backed up from the actual data by using the full-scale ToTEM model.

Large-scale central banking models like ToTEM and bToTEM are routinely used for similar policy
experiments but their analysis is limited to linear approximations. Our novel DL algorithm combines
supervised and unsupervised learning in a way that enables us to construct accurate global fully nonlinear
solutions to a central banking model with the degrees of nonlinearities and the size of the state space that
has never been studied before.

What is the value added of DL for telling the Canadian ELB tale? It is fair to say that we could
have discovered and simulated the ELB contagion mechanism by using exclusively linearization methods.
But we would not know how reliable our linear solution is, and we would miss some dramatic e¤ects of
nonlinearities on the predictions of the bToTEM model. In particular, the uncertainty e¤ect makes the
steady states of linearized and nonlinear versions of the model to di¤er, so that the linearized and nonlinear
models with the same initial condition lead to very di¤erent transitional dynamics. Another important type
of nonlinearity in the bToTEM model is a speci�c form of the closing condition. The existing literature
found that this condition plays little role in open-economy models but it plays a dramatic role in the
bToTEM dynamics. The e¤ects associated with this condition would be impossible to detect with the
linearization analysis since both of the closing conditions we consider have the same linearized form. Thus,
having a nonlinear solution is critical. On the other hand, the nonlinearity associated with the ELB turned
out to be of a lesser importance than we expected. Central banks pay particular attention to this type
of nonlinearity after the Great Recession but our result indicates that this nonlinearity is not necessarily
overwhelming. We do not intend to say that the Great Recession was unimportant but that the mechanism
that produced that recession in Canada was not dodged by the ELB.

The bToTEM model constructed in the paper provides a useful alternative model to the Bank of
Canada. While the full-scale ToTEM is not yet feasible for global nonlinear methods, bToTEM can be
solved nonlinearly, and its accuracy can be assessed. But our analysis can be useful to all users of large-scale
models, namely, researchers, central banks and government agencies who can bene�t from our methodology
of calibrating, solving, and simulating large-scale macroeconomic models, as well as for designing nontrivial
policy experiments within such models.
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A Derivation of the optimality conditions

In this appendix, we elaborate the derivation of the optimality conditions.

A.1 Production of �nal goods

First stage of production The Lagrangian of the problem is
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where Qt is the Lagrange multiplier on the law of motion of capital (3). Introducing real prices by
pzt = P zt =Pt, wt = Wt=Pt, pit = P it =Pt, p
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Second stage of production The �rst-order condition associated with the problem (9)-(10) is
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where the real marginal cost is
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The aggregate price introduced by (7) satis�es the following condition:
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Combining (A.18) with the optimal price setting (A.15), we get
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Relation between the �rst and second stages of production Introducing the following price index
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A.2 Commodities

The Lagrangian of the problem is the following:
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The resulting partial adjustment equation for the commodity-producing �rm is as follows:
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or expressed in real prices

1 = pcomt
szCOMt

Zcomt
�pcomt

�com
2

�
Zcomt
Zcomt�1

� 1
��

3Zcomt
Zcomt�1

� 1
�
+
1

Rt
Et

"
�t+1p

com
t+1�com

�
Zcomt+1
Zcomt

� 1
��

Zcomt+1
Zcomt

�2#
:

(A.22)

A.3 Imports

Similarly to (A.13), the �rst-order optimality condition associated with the problem of optimizing forward-
looking importers is the following:
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The condition (A.23) can be written as
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where Fm1t and F
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and where st and p
mf
t are the real exchange rate and the real foreign price of imports introduced by st =

etP
f
t =Pt and p

mf
t = Pmft =P ft , respectively. The aggregate import price satis�es the following condition:
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Combining (A.27) with (A.24), we get
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A.4 Households

The maximization of the lifetime utility (16) subject to the budget constraint (17) with respect to con-
sumption and bond holdings yields the following �rst-order condition:
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where �t is the marginal utility of consumption, which is given by
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The no-arbitrage condition on holdings of domestic and foreign bonds would imply the following interest
rate parity:
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35 ;
which is further augmented as in ToTEM to improve business cycle properties of the model as follows:
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The condition can be expressed in terms of real exchange rate st = etP
f
t =Pt as follows:

st = Et

264 st�1�ft
�t

!{0@st+1Rft
�
1 + �ft

�
Rt

�t+1

�ft+1

1A1�{
375 : (A.32)

A.5 Wage setting

The �rst-order optimality condition associated with the problem (21)-(22) is
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where the marginal rate of substitution between consumption and labor is introduced as follows:
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Using the demand (22), we write the optimality condition (A.33) as
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Introducing w�t =W
�
t =Pt, the condition (A.34) can be stated as
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The aggregate wage de�ned by (19) satis�es the following condition:
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Combining (A.38) with price settings of the optimizing labor unions (A.35), we get
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The marginal utility of consumption (A.30) can be expressed employing (18) as follows:
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B List of model variables

In Table B.1, we list 49 endogenous model variables. When solving the models, the variables are taken
either in levels or in logarithms as stated in the table.

Variable Symbol In logarithms
productivity At no
labor input Lt yes
capital input Kt yes
investment It yes
commodities used domestically COMd

t yes
import Mt yes
capital utilization ut no
capital depreciation dt no
gross production of intermediate good Zgt yes
net production of intermediate good Znt yes
total production Zt yes
consumption Ct yes
GDP Yt yes
marginal utility of consumption �t yes
in�ation �t yes
real marginal cost rmct yes
consumption Phillips curve term F1t yes
consumption Phillips curve term F1t yes
price dispersion �t yes
imported good in�ation �mt yes
imports Phillips curve term Fm1t yes
imports Phillips curve term Fm1t yes
in�ation target ��t yes
real price of import pmt yes
real exchange rate st yes
nominal interest rate Rt no
interest rate shock process �rt no
real price of intermediate good pzt yes
real wage wt yes
real price of commodities pcomt yes
marginal product of capital MPKt yes
interest rate on capital Rkt no
Tobin�s Q qt yes
real price of investment pit yes
foreign-currency price of commodities pcomft no
foreign real interest rate rft no
interest premium on foreign bonds �ft no
holdings of foreign bonds in real terms bft no
non-commodity export Xnc

t yes
export of commodities Xcom

t yes
foreign demand Zft no
total commodities produced COMt yes
�nal goods used in commodity production Zcomt yes
wage in�ation �wt yes
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wage Phillips curve term Fw1t yes
wage Phillips curve term Fw2t yes
optimal wage w�t yes
wage dispersion �wt yes
auxiliary expectation term exit no
auxiliary expectation term excomt no
foreign price of import pmft yes
GDP de�ator pyt yes
price of non-commodity export pxzt yes
consumption demand shock process �ct no
potential GDP �Yt yes

Table B.1: A list of model�s variables
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C List of model equations

The bToTEM model consists of 49 equations and 49 endogenous variables, as well as 6 exogenous autocor-
relative shock processes. Here we summarize all model equations.
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�Price dispersion (11), (A.20)
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� Market clearing conditions (32), (33), (34)
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D bToTEM parameters

The calibrated values of the parameters for the bToTEM model are summarized in the following two tables.

Parameter Symbol Value Source
Rates
�real interest rate �r 1.0076 ToTEM
�discount factor � 0.9925 ToTEM
�in�ation target �� 1.005 ToTEM
�nominal interest rate �R 1.0126 ToTEM
�ELB on the nominal interest rate Relb 1.0076 �xed
Output production
�CES elasticity of substitution � 0.5 ToTEM
�CES labor share parameter �l 0.249 calibrated
�CES capital share parameter �k 0.575 calibrated
�CES commodity share parameter �com 0.0015 calibrated
�CES import share parameter �m 0.0287 calibrated
�investment adjustment cost �i 20 calibrated
��xed depreciation rate d0 0.0054 ToTEM
�variable depreciation rate �d 0.0261 ToTEM
�depreciation semielasticity � 4.0931 calibrated
�real investment price �i 1.2698 ToTEM
�real noncommodity export price �x 1.143 ToTEM
�labor productivity �A 100 normalization
Price setting parameters for consumption
�probability of indexation � 0.75 ToTEM
�RT indexation to past in�ation 
 0.0576 ToTEM
�RT share ! 0.4819 ToTEM
�elasticity of substitution of consumption goods " 11 ToTEM
�Leontie¤ technology parameter sm 0.6 ToTEM
Price setting parameters for imports
�probability of indexation �m 0.8635 ToTEM
�RT indexation to past in�ation 
m 0.7358 ToTEM
�RT share !m 0.3 ToTEM
�elasticity of substitution of imports "m 4.4
Price setting parameters for wages
�probability of indexation �w 0.5901 ToTEM
�RT indexation to past in�ation 
w 0.1087 ToTEM
�RT share !w 0.6896 ToTEM
�elasticity of substitution of labor service "w 1.5 ToTEM
Household utility
�consumption habit � 0.9396 ToTEM
�consumption elasticity of substitution � 0.8775 ToTEM
�wage elasticity of labor supply � 0.0704 ToTEM
Monetary policy
�interest rate persistence parameter �r 0.83 ToTEM
�interest rate response to in�ation gap �� 4.12 ToTEM
�interest rate response to output gap �y 0.4 ToTEM
Other
�capital premium �k 0.0674 calibrated
�exchange rate persistence parameter { 0.1585 ToTEM
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�foreign commodity price �pcomf 1.6591 ToTEM
�foreign import price �pmf 1.294 ToTEM
�risk premium response to debt & 0.0083 calibrated
�export scale factor 
f 18.3113 calibrated
�foreign demand elasticity � 0.4 calibrated
�elasticity in commodity production sz 0.8 calibrated
�land F 0.1559 calibrated
�share of other components of output �z 0.7651 calibrated
�share of other components of GDP �y 0.311 calibrated
�adjustment cost in commodity production �com 16 calibrated
�persistence of potential GDP 'z 0.75 calibrated

Table D.1: Calibrated parameters in endogenous model�s equations

In Table D.1, we summarize the parameters in the endogenous equations of the model and in Table D.2,
we collect the parameters of the exogenous processes for shocks.

Parameter Symbol Value Source
Shock persistence
�persistence of interest rate shock 'r 0.25 ToTEM
�persistence of productivity shock 'a 0.9 �xed
�persistence of consumption demand shock 'c 0 �xed
�persistence of foreign output shock 'zf 0.9 �xed
�persistence of foreign commodity price shock 'comf 0.87 calibrated
�persistence of foreign interest rate shock 'rf 0.88 calibrated
Shock volatility
�standard deviation of interest rate shock �r 0.0006 calibrated
�standard deviation of productivity shock �a 0.0067 calibrated
�standard deviation of consumption demand shock �c 0.0001 �xed
�standard deviation of foreign output shock �zf 0.0085 calibrated
�standard deviation of foreign commodity price shock �comf 0.0796 calibrated
�standard deviation of foreign interest rate shock �rf 0.0020 calibrated

Table D.2: Calibrated parameters in exogenous model�s equations
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E Impulse response functions to foreign shocks
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Figure E.1: Impulse response functions: ROW commodity price shock
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Figure E.2: Impulse response functions: ROW demand shock
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Figure E.3: Impulse response functions: ROW interest rate shock
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F Implementation details of the DL solution method

For the purpose of constructing nonlinear global solutions, we split the variables in the bToTEM model
into four types:

� exogenous state variables,
Zt �

n
At; �

R
t ; �

c
t ; p

comf
t ; rft ; Z

f
t

o
; (F.1)

� endogenous state variables,

St �
n
Ct�1; Rt�1; st�1; �t�1;�t�1; wt�1; �

w
t�1;�

w
t�1; p

m
t�1; �

m
t�1; It�1; Z

com
t�1 ; b

f
t�1;

�Yt�1;Kt�1
o
, (F.2)

� endogenous intertemporal choice variables (these are variables that enter the Euler equation at both
t and t+ 1, where a t+ 1 value is a random variable unknown at t),

Yt �
�
F1t; F2t; F

w
1t ; F

w
2t ; F

m
1t ; F

m
2t ; qt; �t; st; ex

i
t; ex

com
t

	
; (F.3)

� and endogenous intratemporal choice variables (these are variables that are determined within the
current period t, given the intertemporal choice),

Xt �
�
Lt;Kt; It; COM

d
t ;Mt; ut; dt; Z

g
t ; Z

n
t ; Zt; Ct; Yt; �t; rmct;�t; �

m
t ; ��t; p

m
t ; Rt; p

z
t ; wt;

MPKt; R
k
t ; p

i
t; �

f
t ; b

f
t ; X

nc
t ; X

com
t ; COMt; Z

com
t ; �wt ; w

�
t ;�

w
t ;
�Yt; p

com
t ; pnct ; p

mf
t ; pyt

�
: (F.4)

Implementation of DL for bToTEM. The DL method is implemented in the context of the bToTEM
model as follows:
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(Algorithm DL): A global nonlinear DL solution method
Step 0. Initialization

a. Choose simulation length T and �x initial conditions Z0 �
n
A0; �

R
0 ; �

c
0; p

comf
0 ; rf0 ; Z

f
0

o
and S0.

b. Draw
n
�At+1; �

R
t+1; �

c
t+1; �

comf
t+1 ; �

rf
t+1; �

Zf
t+1

oT�1
t=0

and construct Zt �
n
At; �

R
t ; �

c
t ; p

comf
t ; rft ; Z

f
t

oT
t=0
:

c. Construct perturbation decision function bZ (�;bZ), bS (�;bS), bY (�;bY ) and bX (�;bX),
where bZ , bS , bY and bX are the polynomial coe¢ cients.

d. Use the perturbation solution to produce simulation fYt;Xt;St;ZtgTt=0 of T + 1 observations.
e. Construct a grid for endogenous and exogenous state variables fSm;Zmgm=1;:::;M
by using agglomerative clustering analysis.

f. Choose approximating functions (neural networks) for parameterizing the intertemporal choice:
Yt � bY (�;vY ), where vY is the parameter vector for the global solution method.

g. Use the perturbation solution bY (�;bY ) to construct an initial guess on vY .
h. Choose integration nodes,

n
�Aj ; �

R
j ; �

c
j ; �

comf
j ; �rfj ; �

Zf
j

o
j=1;:::;J

and weights, f!jgj=1;:::;J .

i. Compute and �x future exogenous states Z0m;j �
n
Am;j ; �

R
m;j ; p

c
m;j ; p

comf
m;j ; r

f
m;j ; Z

f
m;j

o
m=1;:::;M

:

Step 1. Updating the intertemporal decision functions
At iteration i, for m = 1; :::;M , compute:
a. The intertemporal choice variables Y0

m � bY (Sm;Zm;vY ) (part of this is S0m).
b. Intratemporal endogenous variables Xm satisfying the intratemporal choice equations.

c. The intertemporal choice variables in J integration nodes Y0
m;j � bY �S0m;Z0m;j ;vY �.

d. Intratemporal endogenous variables Xm;j in J satisfying the intratemporal choice equations.
e. Substitute the results in the intertemporal choice equations and compute bYm.
f. Find v that minimizes the distance bvY � argmin

v

PM
m=1




 bYm � bY (Sm;Zm;v)


.
g. Use damping to compute v(i+1)Y = (1� �)v(i)Y + �bvY , where � 2 (0; 1) is a damping parameter.
h. Check for convergence and end iteration if 1

M max
MP
m=1

���Y(i+1)
m �Y(i)

m

Y
(i)
m

���< $.
Proceed to the next iteration and iterate on these steps until convergence.

Several comments are in order: To approximate the intertemporal choice functions, we use a three-layer
neural network described in the main text. To compute conditional expectations in the intertemporal choice
conditions, we use a monomial formula with 2N nodes, where N = 6 is the number of stochastic shocks;
see Judd et al. (2011b) for a description of this formula. In the new Keynesian model studied in Maliar
and Maliar (2015), it was possible to derive closed-form expressions for the intratemporal choice, given the
intertemporal choice. The bToTEM is more complex and closed-form expressions are infeasible. In this
case, we solve for intratemporal choice variables X0m using a numerical solver. As for the intratemporal
choice variables in the integration nodes X0m;j , we �nd them either with a numerical solver or by using
interpolation of the intratemporal choice decision function X0m constructed for the current period using
a numerical solver. The damping parameter is set at � = 0:1, and the convergence criterion is set at
$ = 10�7.

Our hardware is Intel R
 CoreTM i7-2600 CPU @ 3.400 GHz with RAM 12.0 GB. Our software is written
and executed in MATLAB 2016a. We parallelize the computation across four cores. The running time for
constructing our global DL solution was about 6 hours; the running time is sensitive to speci�c choice of
the damping parameter �.
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G Accuracy evaluation

Maximum residual Average residual
Local Local Global Local Local Global

1st order 2nd order nn 1st order 2nd order nn
Lt -2.16 -2.72 -3.60 -2.89 -3.83 -4.65
Kt -3.60 -4.04 -4.67 -4.34 -5.30 -5.99
It -3.01 -3.38 -3.52 -4.42 -4.50 -4.84
COMd

t -2.17 -2.47 -3.68 -2.92 -3.65 -4.43
Mt -2.16 -2.94 -3.60 -2.89 -4.05 -4.65
ut -2.65 -3.20 -3.89 -3.36 -4.43 -5.16
dt -2.10 -2.58 -3.37 -2.78 -3.82 -4.64
Zgt -2.29 -3.03 -3.87 -3.05 -4.13 -4.92
Znt -2.29 -3.03 -3.87 -3.05 -4.13 -4.92
Zt -2.29 -3.04 -3.87 -3.06 -4.12 -4.94
Ct -3.19 -3.11 -4.01 -3.95 -4.23 -5.11
Yt -2.58 -3.17 -3.96 -3.24 -3.96 -4.96
�t -4.41 -3.84 -4.14 -5.15 -4.92 -4.57
rmct -2.91 -3.15 -4.04 -3.56 -4.30 -5.04
�t -4.44 -4.86 -5.38 -5.22 -5.32 -6.22
�mt -2.48 -2.70 -3.99 -3.60 -3.76 -5.00
pmt -2.48 -2.73 -4.13 -3.60 -3.78 -4.58
Rt -3.82 -3.91 -4.27 -4.51 -4.90 -4.74
pzt -2.45 -2.70 -3.56 -3.10 -3.83 -4.57
wt -4.13 -4.45 -4.15 -4.81 -5.38 -4.56
pcomt -2.40 -1.98 -3.05 -3.39 -3.15 -3.97
MPKt -2.24 -2.91 -3.34 -3.02 -4.10 -4.53
Rkt -2.88 -3.14 -4.27 -4.14 -4.46 -4.74
�ft -3.57 -2.44 -4.62 -4.65 -3.51 -5.62
bft -2.02 -2.27 -3.05 -3.05 -3.09 -3.98
Xnc
t -2.80 -2.38 -3.45 -3.79 -3.55 -4.37

Xcom
t -1.76 -2.29 -3.18 -2.51 -3.07 -4.41

COMt -2.28 -2.54 -3.40 -3.21 -3.28 -4.77
Zcomt -2.64 -2.37 -3.40 -3.25 -3.43 -4.67
�wt -3.95 -3.96 -4.61 -4.89 -5.03 -5.81
w�t -3.19 -3.10 -3.71 -3.97 -4.19 -4.48
�wt -1.44 -2.22 -3.47 -2.52 -3.46 -4.94
F1t -3.33 -1.71 -2.83 -3.79 -2.92 -3.89
F1t -3.41 -1.73 -2.91 -3.84 -2.94 -3.74
Fw1t -1.92 -1.54 -2.37 -2.68 -2.67 -3.60
Fw2t -3.11 -1.95 -2.95 -4.00 -3.16 -4.15
Fm1t -2.40 -1.48 -2.63 -2.61 -2.73 -3.87
Fm1t -2.46 -1.61 -3.05 -2.96 -2.83 -3.91
qt -2.47 -2.69 -2.91 -3.89 -4.14 -4.16
�t -2.32 -1.78 -2.72 -3.59 -3.02 -3.87
st -2.40 -1.98 -3.05 -3.39 -3.15 -3.97
Average -2.75 -2.76 -3.62 -3.58 -3.86 -4.63
Max -1.44 -1.48 -2.37 -2.51 -2.67 -3.60

Table G.1: Experiment 1. Residuals in the model�s equations on the impulse-response path, log10 units
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We assess the accuracy of solution by constructing unit-free residuals in the model�s equations on the
simulated paths obtained in our experiments. Our choice of points for accuracy evaluation di¤ers from the
two conventional choices in the literature, which are a �xed set of points in a multidimensional hypercube
(or hypersphere) and a set of points produced by stochastic simulation; see Kollmann et al. (2011). We
choose to focus on the path in the experiments because it is precisely the goal of central bankers to attain
a high accuracy of solutions in their policy-relevant experiments (rather than on some hypothetical set of
points).

For accuracy evaluation, we use a monomial integration rule with 2N2+1 nodes, which is more accurate
than monomial rule 2N used in the solution procedure, where N = 6 is the number of the stochastic shocks;
see Judd et al. (2011a) for a detailed description of these integration formulas.

The approximation errors reported in the table are computed over 40 quarters of the �rst experiment
with a negative foreign demand shock. The unit-free residual in each model�s equation is expressed in
terms of the variable reported in the table: such a residual re�ects the di¤erence between the value of that
variable produced by the decision function of the corresponding solution method and the value implied
by an accurate evaluation of the corresponding model equation, in which case the residuals are loosely
interpreted as approximation errors in the corresponding variables.

The resulting unit free residuals in the model�s equations are reported in log 10 units. These accuracy
units allow for a simple interpretation, namely, ��2�means the size of approximation errors of 10�2 = 1
percent while ��2:5�means approximation errors between 10�2 and 10�3, more precisely, we have 10�2:5 �
0:3 percent. The average residuals for the �rst- and second-degree plain perturbation methods, and the
second-degree global method are �3:20, �3:45, and �4:11, respectively, and the maximum residuals are
�1:43, �1:44, and �2:09, respectively.
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