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1 Introduction

Arti�cial intelligence (AI) is broadly de�ned as a device that perceives its environment and takes actions
that maximize its chance of successful achieving its goals. The AI de�nition closely resembles the notion
of "agent" in dynamic economic models under the following interpretation: i) the environment is the
economy�s state; ii) the actions are the decision and value functions of the agent; iii) the goal is an
optimum of the objective function. Therefore, economists, like researchers from other �elds, can apply
general-purpose AI technology for solving their models.

AI has many impressive applications, such as recognition of handwritten numbers/speech, reconstruc-
tion of images, production of non-distinguishable Chopin music, playing Go, facilitation of computer vi-
sion, operation of self-driving cars; see Goodfellow et al. (2016) for a review. At the same time, there
are many interesting problems that computational economists cannot satisfactorily solve yet, including
heterogeneous-agent models, large-scale central banking models, life-cycle models, expensive nonlinear es-
timation procedures. This paper shows that it is possible to solve challenging dynamic economic models by
using the same AI technology and the same combination of software and hardware that led to break-ground
applications in data science. Our analysis builds on deep learning (DL) framework and has the following
four novel results:

First, we o¤er a uni�ed approach that makes it possible to cast three fundamental objects of economic
dynamics �lifetime reward, Bellman equation and Euler equation �into objective functions of the state-of-
the-art deep learning framework. In e¤ect, our approach reduces dynamic economic models to regression
equations. Although such regression equations are nonlinear, complex and have many variables, the modern
DL technologies can readily handle them. Once the regression coe¢ cients are constructed, we use them to
infer the value and decision functions of the underlying dynamic economic models.

Second, we show how to adapt a stochastic gradient descent method to training the three constructed
objective functions. In each iteration, we train a neural network on just one or a few (batch) grid points,
which are randomly drawn from the state space, instead of using a �xed grid with a large number of grid
points, as the conventional projection and value iterative methods do in computational economics. Our
grid points are truly random, unlike bootstrap draws from the data sample in the DL literature. We also
show that not only neural networks but also other functional approximations such as polynomials and
piecewise linear functions can be e¤ectively trained by using the stochastic gradient method.

Third, we introduce integration methods that are suitable for the constructed objective functions in the
context of DL-based simulations. A distinctive feature of the objective functions, derived from economic
models, is that they have two types of expectation operators, one with respect to current state variables
arising because grid points that are randomly drawn from the state space, and the other with respect to
future state variables arising due to next-period shocks being randomly drawn from the given distributions.
One integration method we propose is a hybrid method that uses DL-style Monte Carlo simulation for
generating random grid points for state variables and that uses deterministic methods (such as quadrature,
monomials, sparse grids, low-discrepancy sequences) for constructing expectation functions with respect
to future shocks (in the Euler and Bellman equations).

However, our truly novel integration method is the so-called all-in-one expectation method that merges
the two expectation operators into one. The way we construct such an operator di¤ers for the three objective
functions considered. For the lifetime reward maximization, we draw randomly the initial values of state
variables, in addition to future shocks. For the Euler-equation method, we use two independent random
draws for evaluating two terms of a squared residual � this trick eliminates the correlation between the
terms and pulls the expectation operator out of the square. Furthermore, we show how to extend the Euler-
equation method for dealing with inequality constraints by representing the Kuhn-Tucker conditions with
the Fischer-Burmeister or minimum functions; see Jiang (1996) for a discussion of that function. Finally,
for the Bellman-equation method, we o¤er a novel value-iterative scheme that is particularly suitable for
the DL framework. Speci�cally, we combine a minimization of residuals in the Bellman equation with a
maximization of the right side of the Bellman equation into a single weighted-sum objective function.
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Our all-in-one integration method possesses an outstanding distributive property : a single Monte Carlo
draw of the integrand delivers an unbiased estimator of the stochastic gradient with respect to all random
variables. This property enables the use DL-style Monte Carlo simulation for evaluating expectation with
respect to both state variables and future shocks simultaneously, merging in one step the approximation of
decision functions and the integration with respect to future shocks. To increase the e¢ ciency of integration
even further, we employ variance reduction techniques such as antithetic variates; see, e.g., Cheng (1982).

Our last important contribution is to automate the DL solution framework in a way that makes it
ubiquitous and portable to a variety of economic models and applications. Our automated implementation
includes two steps: First, we input the model into a Dolo platform that provides a user-friendly interface for
manipulating the model�s equations and for combining such equations into a symbolic Python code.1 Next,
we pass the Dolo output �le to our model-free TensorFlow code that simulates the model and constructs
the solution. A jupyter notebook illustrating the method is available from open-source QuantEcon.org site
https://notes.quantecon.org/submission/5ddb3c926bad3800109084bf.

We �rst illustrate our DL solution framework in the context of the benchmark consumption savings
problem with borrowing constraints, as well as its multi-shock version. Approximation errors for our most
accurate methods do not exceed a fraction of percentage point �an impressive accuracy level for a model
with a kink in decision rules! Moreover, the computational expense increases practically linearly with the
dimensionality of the state space �a prominent feature of DL methods based on stochastic gradient. In
our experiments, we �nd the DL solution framework to be reliable, accurate and scalable.

We then solve a challenging Krusell and Smith (1998) model with up to 1,000 heterogeneous agents by
using two remarkable properties of neural networks, namely, their capacity to perform a model reduction
and their ability to handle multicollinearity. In that case, we train the machine on stochastic simulation
instead of exogenously given domain. We o¤er a remarkably simple algorithm for solving Krusell and
Smith�s (1998) model�we simulate forward a panel of heterogenous agents by feeding the entire joint
distribution of wealth and productivities into their decision functions in each training step. The resulting
decision function of each agent depends on thousands of state variables of all other agents, including
perfectly colinear variables. However, the neural network can learn compact representations of the state
space by extracting and condensing the relevant information from high-dimensional distributions into
smaller sets of variables in hidden layers. Furthermore, the neural network can learn to ignore the presence
of redundant collinear variables. Krusell and Smith (1998) discovered that a single statistic �the mean
of the wealth distribution �can e¤ectively characterize the aggregate state of their model but this result
does not hold for all heterogenous-agent models. In our algorithm, the neural network will automatically
search for all possible statistics that can e¤ectively characterize the state space of the given heterogeneous
agent economy �this is what model reduction means in our analysis.

Our solution framework is connected to both data science and computational economics. In the data
science, the related approaches are supervised, unsupervised and reinforcement learning. Concerning eco-
nomics, our lifetime-reward maximization method is related to an indirect inference procedure of Smith
(1987). The Euler-residual minimization method is related to the projection method of Judd (1992) and
the parameterized expectations algorithm (PEA) of Den Haan and Marcet (1990).Finally, our Bellman-
residual method is related to conventional value and policy function iteration; see, e.g., Rust (1996), Santos
(1999), Aruoba et al. (2006), Stachurski (2009). There are other papers that used neural networks in the
context of solution methods to dynamic economic models. Early applications date back to Du¤y and
McNelis (2001). Recent applications include Duarte (2018), Fernández-Villaverde et al. (2018), Villa and
Valaitis (2019) and Azinovic et al. (2019). To the best of our knowledge, we are the �rst to show how
to cast the entire economic model into an expectation function of DL framework and how to train such a
function on random grids by using stochastic gradient descent methods in the earlier 2018th version of the
present paper; see https://lmaliar.ws.gc.cuny.edu for our 2018 CEF and ESAM conference presentations.
We explain the connection of our analysis to the literature after presenting our framework.

The rest of the paper is organized as follows: Section 2 presents a quick overview of the key ingredients

1Dolo software is developed by Pablo Winant; see https://github.com/econforge/dolo.
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of DL (multilayer neural networks, stochastic gradient training method, etc.). Section 3 shows how to cast
three main objects of economic dynamics (lifetime reward, Bellman equation and Euler equations) into
expectation functions. Section 4 explains the relation of the proposed methods to the literature. Sections
5 and 6 analyze the consumption-saving model. Finally, Section 7 concludes.

2 There is AI technology out there

In this section, we describe canonical supervised learning framework and review numerical techniques
available to data scientists. Later in the paper, we show how this framework can be adapted to solving
dynamic economic models.

2.1 Canonical supervised learning and its generalization

In canonical supervised learning framework, a machine attempts to learn a function that maps inputs to
output given a collection of input-output pairs. Formally, let x 2 Rdx be input data, called features; and
let y 2 Rdy , be output data. The goal of the machine is to learn an approximation function (also, referred
to as a hypothesis or prediction function) ' : Rdx ! Rdy such that, given x, the value ' (x) provides an
accurate prediction about the true output y. The function ' is selected within a given family of parametric
functions

�
' (�; �) : � 2 Rd�

	
, where � is a parameters vector.

In order to construct ', we minimize losses from inaccurate predictions. We de�ne a loss function
` : Rdy �! R as the di¤erence between a true output y and predicted output ' (x; �) minimizing the
expected loss, called expected risk �(�),

�(�) �
Z
Rdx�Rdy

` (' (x; �) ; y) dP (x; y) = Ex [` (' (x; �) ; y)] ; (1)

where P : Rdx � Rdy �! [0; 1] is a joint probability distribution function, and Ex [�] is an expectation
operator. That is, �(�) gives expected loss, for a given ' (�; �) with respect to P . The goal of minimizing
�(�) is generally unattainable because there is incomplete information on P .

In practice, we solve the minimization problem by using a �nite set of draws from P . We de�ne an
estimate of the expected risk, called empirical risk �n(�),

�n(�) � 1

n

nX
i=1

` (' (xi; �) ; yi) ; (2)

where f(xi; yi)gni=1 � Rdx � Rdy is a set of n independently drawn input-output pairs. The goal of the
machine is to learn � that minimizes (2) �this step is referred to as training, typically performed by using
a version of a gradient descent (GD) method.

An example of supervised learning is a familiar linear regression model y = �x, in which approximation
is given by ' (x; �) = �x and the loss function is de�ned as the minimum least-squares deviation ` (�x; y) =
(y � �x)2. However, supervised learning accommodates many other interesting data-science applications,
in particular, classi�cation problems.2

The above framework is called supervised because for each data point xi, the machine is given correct
output yi to check its prediction '(xi; �). We now generalize this framework to the case when correct
output yi is not given but de�ned implicitly in the objective function (1). Denoting an input-output pair
(x; y) by !, we rewrite the theoretical risk (1) and empirical risk (2), respectively, as

�(�) = E! [� (!; �)] , and �n(�) =
1

n

nX
i=1

� (!i; �) ; (3)

2An example is a problem of handwritten-digits recognition. In this case, y is an actual value of a handwritten digit, x
is a scan of the handwritten digit, and ' is a function that takes the pixels of x and classi�es them into one of ten possible
outputs 0; :::; 9.
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where f!igni=1 denotes the given set of input-output pairs f(xi; yi)g
n
i=1 and � (!; �) � ` (' (x; �) ; y). This

change of variables converts supervised learning into generic optimization of expectation functions.
Optimization framework (3) is more suitable for the purpose of solving dynamic economic models than

the original supervised-learning framework because correct output values (i.e., the true values yi of decision
function '(xi; �)) are generally unknown to computational economists).

Finally, implicit optimization framework (3) can also be viewed as a version of unsupervised learning.
Generally, unsupervised learning analysis focuses on how to extract and e¤ectively represent information
available in the data, for example, by assigning data into clusters, by constructing principal components
for dimensionality reduction. In terms of framework (3), an unsupervised machine attempts to learn the
value of � that captures regularities in the data !, as speci�ed in the objective function �(�). In that sense,
our representation (3) provides a connection between supervised and unsupervised learning.

2.2 Approximating family: multilayer neural network

There are many parametric functions ' (�; �) that can be used for the purpose of approximating a solution
to (3), including various polynomial families, splines, radial basis functions, etc. In particular, in our
numerical experiments, we use piecewise linear and polynomial functions, among others. However, the
class of multilayer neural networks plays so important role in the modern DL literature that it warrants a
more detailed exposition.

An arti�cial neural network is a collection of connected nodes, called arti�cial neurons. Each arti�cial
neuron can receive a signal from another neuron, process it and transmit a processed signal to other
neurons connected to it. In Figure 1, a circle represents an arti�cial neuron, and an arrow represents a
connection from the output of one neuron to the input of another. An ith input (i.e., a received signal)
is denoted by xi = (xi;0; :::; xi;n), with xi;0 = 1 (by convention) and n = 3 in the �gure. Signal processing
consists of linear weighing of x by a coe¢ cients vector � = (�0; :::; �n) 2 Rn+1 (called weights) to obtain
the non-activated output �xi = �0xi;0 + :::+ �nxi;n and by activating �x with an activation function � (�),
i.e., � (�x). A coe¢ cient �i controls the strength of a signal passing from one node to another. Under
some activation functions, there exists a threshold that determines whether the signal is sent in case the
aggregate signal overpasses such a threshold.

Figure 1. An arti�cial neuron.

Arti�cial neurons are aggregated into layers. There are three kinds of layers: the �rst layer �an input
layer, the last layer �an output layer, and intermediate layers between the input and output layers �hidden
layers. In a fully connected feed-forward neural network, the neurons of one layer are connected with all
neurons of the previous layer. Distinct layers may use di¤erent activation functions (i.e., they can perform
di¤erent kinds of transformations of their inputs).
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The predicted output of the output layer is a highly non-linear function of the input layer. The
presence of hidden layers allows us to combine information in a more abstract way and makes neural-
network approximations more �exible, compared to the case of standard approximations in which inputs
and outputs are related directly (e.g., standard polynomial approximation). To use GD-type of methods,
we are to compute the gradient of the objective �n(�) with respect to the parameters vector �. In the
context of deep learning, this is done by the chain rule, using a technique called back propagation; see
Appendix A for details.

Neural networks are called universal approximators and possess several appealing features that can
push the feasibility frontiers in economics. In particular, they are: (i) linearly scalable, i.e., the number
of parameters grows linearly with dimensionality; (ii) robust to multicollinearity and can perform model
reduction automatically; and (iii) suitable for approximating highly nonlinear environments including kinks,
discontinuities, discrete choices, switching, etc. These features will be critical for solving a high-dimensional
Krusell and Smith (1998) model in Section 5.

2.3 Training the machine: deep learning

For simple approximation functions, training the machine to solvemin
�
�n(�) can be trivial. For example, for

a linear approximation function '(x; �) = �x, the solution is the familiar ordinary least squares estimator
that can be derived in a closed form � = (x0x)�1 x0y. However, for more complex approximating functions,
such as multilayer neural networks, training is performed numerically and can be complicated and costly.
Training the multilayer networks is often referred to as deep learning because such networks have complex
interconnected topologies with the coe¢ cients and weights buried in multiple layers.

In particular, computing the gradient of the expectation function r��n(�) can be expensive when the
data size n is large. To reduce the cost, a popular approach is a stochastic batch gradient descent (BGD)
method which constructs the gradient on a small random subset of data with n0 � n data points,

�k+1  �k � �kr��(�k); with r��n
0
(�k) � r�

"
1

n0

n0X
i=1

� (!i; �k)

#
; (4)

where a subset (!1; :::; !n0) is called batch, r� is gradient operator, �k and �k are a parameter vector and
a parameter step on iteration k, respectively.

Two limiting cases of the BGD method are n0 = n and n0 = 1. In the former case, we use all data points
for constructing the gradient and thus, the BGD method is equivalent to the conventional gradient descent
(GD) method. In the latter case, the BGD method is equivalent to a stochastic gradient (SG) method
which approximates the expectation function with the value of such a function in one randomly chosen data
point !k, i.e., r�E! [� (!; �k)] � r�� (!k; �k). While such approximation can be very imprecise on each
given step, SG is unbiased and the cumulative average converges to the true gradient 1

K

PK
k=1r�� (!k; �)!

r��(�) over K updates, provided that the coe¢ cients are stabilized, �k � �. In Appendix B, we provide
a detailed discussion of gradient descent methods and their convergence properties.

2.4 Summarizing up: an DL algorithm for optimization

We now summarize the techniques developed in Sections 2.1�2.3 in the form of an DL computational algo-
rithm. We also add a discussion of the hyperparameters (denoted by �) such as regularization techniques
dealing with over�tting and ill conditioning, for example, Tykhonov and Lasso regularization techniques;
see, e.g., Judd et al. (2011).
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Algorithm 1. DL algorithm for supervised learning.

Step 1. Initialize the algorithm.
i). Set up an expected risk �(�) = E! [� (!; �)].
ii). De�ne approximation ' (�; �) for ', where � � [#; �] and # and � are

the approximation coe¢ cients and hyperparameters of the algorithm, respectively.
iii). De�ne an empirical risk �n(�) = 1

n

Pn
i=1 � (!i; �).

iv). Fix convergence criteria cinn and cout for inner and outer loops, respectively.
v). Split the data into 3 samples for constructing a solution (Sample 1),

for validation (Sample 2) and for evaluating the accuracy (Sample 3).

Step 2. Train the machine, i.e., �nd � that minimizes the empirical risk �n(�).
Outer loop (validation on Sample 2): Fix the hyperparameters �.

Inner loop (approximation on Sample 1): Fix the approximation coe¢ cients #.
Use data from Sample 1 to evaluate r#� (!i; �) (SGD or BGD) and update #.

End the inner loop if the convergence criterion cinn is reached.
Use data from Sample 2 for validation and update �.

End the outer loop if the convergence criterion cout is reached.

Step 3. Assess the accuracy of constructed approximation ' (�; �) on Sample 3.

What is the role of regularization? Fitting an approximating function ' (�; �) on the training Sample 1
insures the best �t to the data on that speci�c sample but not necessarily on other samples. Regularization
increases the �t on another (validation) Sample 2 at the cost of reducing the �t on training Sample 1 and
ensures that the resulting approximation is not critically determined by a speci�c set of points used for
training.

Let us consider, for example, Tykhonov regularization in a linear regression model y = �x. Instead of
minimizing ` (�x; y) = (y � �x)2, we augment the loss function to include a penalty on the coe¢ cients sizeè(�x; y; �) = (y � �x)2+��2. If there is an ill conditioning, (e.g., multicollinearity) the penalty parameter �
helps us discriminate among multiple solutions with similar �t in favor of more stable solutions with smaller
coe¢ cients; see Judd et al. (2011) for a review of regularization techniques for dealing with ill-conditioned
inverse problems.

As we will see, solution methods for dynamic economic models will bring additional hyperparameters.
Such methods lead to objective functions in the form of weighted averages of multiple objectives with
unknown weights; and we will use the same procedure for identifying the weights as the one used for
identifying other hyperparameters such, as the unknown regularization parameters.

2.5 The main novelty: computational technology!

An objective function in (3) and Algorithm 1 look fairly unsophisticated. It might be disappointing to see
that machine learning is essentially the familiar gradient descent optimization. On the other hand, it is
absolutely remarkable that so many real-life problems can be solved in that way.

There is not much methodological novelty in the DL framework. The gradient descent method is known
since Newton and its stochastic optimization version was developed in early 1950th. Neural networks
are also discovered long ago (Rosenblatt, 1958). There are even remarkable early applications of neural
networks to solving dynamic economic models (Du¤y and McNelis, 2001).

However, machine learning is so technology intensive that DL methods were put aside until platforms
like TensorFlow or Pytorch had been developed to facilitate their implementation.3 Such platforms provide
a graph representation of operations, which can be automatically manipulated and optimized. In particular,
gradient computations are performed using automatic di¤erentiation in a numerically stable way, without
any user input. The elements of the graphs, the so called tensors, are nothing else than multidimensional

3TensorFlow is de�ned as a data�ow programming software, or a ML platform, while Pytorch, that has essentially the
same functions, is called DL software.
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arrays manipulated by e¢ cient vectorized symbolic engines. This is particularly useful if one wants to
evaluate the same function with many draws of shocks for computing conditional expectation.

In fact, Monte Carlo simulations are essentially single instruction multiple device (SIMD) calculations,
well-suited to modern hardware. For instance, high-end GPUs feature thousands of powerful CUDA cores,
which can all operate at the same time. Google has developed its own TPU units too. Also, commercial
interest is high and the surge of cloud computing has made it possible to rent the vast amounts of computing
power, e.g., Amazon.

3 Casting dynamic economic models into expectation functions

In Section 2, we described DL technology that can e¤ectively optimize expectation functions. However, to
use that technology, we must convert dynamic economic models into expectation functions. In this section,
we show how this can be done for three key objects of economic dynamics: i) lifetime reward, ii) Bellman
equation, and iii) Euler equation. We also outline the challenges that economists face when adapting the
DL tools to their applications.

3.1 A class of dynamic economic models

We consider a class of dynamic Markov economic models with time-invariant decision functions�the main
framework in modern economic dynamics. An agent (consumer, �rm, government, central bank, etc.)
solves a canonical intertemporal optimization problem.

De�nition 3.1 (Optimization problem) An exogenous state mt+1 2 Rnm follows a Markov process
driven by an i.i.d. innovation process �t 2 Rm with a transition function M ,

mt+1 =M(mt; �t): (5)

An endogenous state st+1 is driven by the exogenous state mt and controlled by a choice xt 2 Rnx according
to a transition function S,

st+1 = S(mt; st; xt;mt+1): (6)

The choice xt satis�es the constraint in the form

xt 2 X(mt; st): (7)

The state (mt; st) and choice xt determine the period reward r(mt; st; xt). The agent maximizes discounted
lifetime reward

max
fxt;st+1g1t=0

E0

" 1X
t=0

�tr(mt; st; xt)

#
; (8)

where � 2 [0; 1) is the discount factor and E0 [�] is an expectation function across future shocks (�1; �2; :::)
conditional on the initial state (m0; s0).

Without loss of generality, we assume that the constrained sets are re-mapped into the real set, so that
the transition and reward functions are de�ned for any succession of choices xt 2 Rnx .

De�nition 3.2 (Decision rule) A decision rule is a function ' : Rnm � Rns ! Rnx, such that
xt = '(mt; st) 2 X(mt; st). An approximate decision rule is a member of a family of functions ' (�; �)
parameterized by a real vector �, such that '(mt; st; �) 2 X(mt; st).

We do not assume the smoothness of the approximation function and its linearity with respect to coe¢ cients
� and state (mt; st). But we do require the problem to be time consistent, so that its solving amounts to
�nding time-invariant decision rules.
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Objective 1: Lifetime-reward maximization

We �rst focus on the method that directly maximizes the lifetime reward. We approximate the in�nite-
horizon problem with a �nite-horizon solution by truncating the model at some �nite T <1. Luckily, the
objective function (8) has the form of expectation function E0 [�], i.e., it appears exactly in the form (3)
that is necessary for Algorithm 1. However, the above formulation implies that the lifetime reward is to
be maximized for just one �xed initial condition (m0; s0), whereas economists typically want the solution
that is valid for any initial condition (state) within a given domain. Therefore, we reformulate the problem
so that initial condition (m0; s0) is drawn randomly from the domain on which we want the solution to be
accurate. The resulting expectation operator E0 [�] includes two types of randomness, one is a random state
(m0; s0) and the other is a random sequence of future shocks (�1; :::; �T ). We call this operator all-in-one
expectation operator because it summarizes all random variables in one place. The following de�nition
shows such operator for the lifetime-reward maximization problem (8).

De�nition 3.3 (All-in-one expectation operator for lifetime reward) Fix time horizon T > 0,
select a decision rule ' (�; �) and de�ne the distribution of the random variable ! � (m0; s0; �1; :::; �T ). For
given �, lifetime reward (8) associated with the rule ' (�; �) is given by

�(�) = E! [� (!; �)] � E(m0;s0;�1;:::;�T )

"
TX
t=0

�tr(mt; st; ' (mt; st; �))

#
; (9)

where transitions are determined by equations (5), (6) and (7).

The expectation operator (9) can be viewed as theoretical risk (3) in DL optimization and can be used as
an input to Algorithm 1.

Note that our all-in-one expectation operator has a remarkable distributive property: a single random
draw or batch is used to evaluate all the expectation functions and stochastic gradients in the model at
once. Whenever the all-in-one expectation operator uses n random draws, an integration method that
separately constructs the two expectation functions would require n0 draws for evaluating the expectation
function with respect to (m0; s0) and n00 draws for evaluating the expectation function with respect to
(�1; :::; �T ) �in total, n0 � n00 random draws. The associated di¤erence in cost can be immense, especially,
in high-dimensional applications. The all-in-one expectation operator can reduce that cost dramatically.

Objective 2: Euler-residual minimization

We now consider a class of economic models in which the objective functions are di¤erentiable, so that the
solution is characterized by a set of �rst-order conditions (Euler equations). Such equations can follow from
the lifetime reward maximization problem (8) or from an equilibrium problem and may include �rst-order
conditions, equilibrium conditions, transition equations, constraints, etc.

De�nition 3.4 (Euler equations) Euler equations are a set of equations written in the form:

E�
�
fj
�
m; s; x;m0; s0; x0

��
= 0; j = 1; :::; J; (10)

where fj : Rnm � Rns � Rnx � Rnm � Rns � Rnx ! R, E� [�] is an expectation operator with respect to
next-period shock �, and the optimal agent�s choice satis�es constraints (5), (6) and (7) expressed in a
recursive form m0 =M(m; �), s0 = S(m; s; x;m0) and x 2 X(m; s), respectively.

Equations (10) are again de�ned just for a given state (m; s). We want the solution to be accurate on a larger
area of the state space, so we draw the state (m; s) randomly from that area. To identify the solution, we
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minimize the squared sum of residuals in the Euler equations. Below, we de�ne the corresponding expected
risk to be used as an input to Algorithm 1.

De�nition 3.5 (Euler-residual minimization) Select a decision rule ' (�; �), and de�ne the distribution
of random variables ! � (m; s). For given �, the squared residuals in the Euler equations (10) associated
with the rule ' (�; �) are given by

�(�) = E! [� (!; �)] � E(m;s)

8<:
JX
j=1

vj
�
E�
�
fj
�
m; s; x;m0; s0; x0

���29=; ; (11)

where (v1; :::; vJ) is a vector of weights on J optimality conditions.

The objective function (11) has again two expectation operators E(m;s) [�] and E� [�]. One integration
approach we develop and test in the paper is a hybrid method that constructs two expectations separately,
namely, we use Monte Carlo simulation for constructing the expectation function E(m;s) [�] with respect to
the state (m; s), and we use another integration methods for constructing the expectation function E� [�]
with respect to the future shocks �, which can be either Monte Carlo or some deterministic integration
method such as quadrature and monomial rules, sparse grids, low-discrepancy sequences, etc. We �nd
that such a hybrid integration method is useful for small problems in which the construction of E� [�] is
inexpensive. For larger problems, it would be highly bene�cial to construct all-in-one expectation operator
�we will show this construction in Section 3.2.

Objective 3: Bellman-residual minimization

We now consider Bellman-equation formulation of problem (8).

De�nition 3.6 (Bellman equation) Value function V : Rnm �Rns ! R associated with the problem (8)
satis�es:

V (m; s) = max
x;s0

�
r(m; s; x) + �E�

�
V
�
m0; s0

��	
; (12)

subject to constraints (5), (6) and (7) expressed in a recursive form as m0 = M(m; �), s0 = S(m; s; x;m0)
and x 2 X(m; s), respectively.

Under the standard assumptions about r, M , S and X, the solution to (12) exists and is unique. It
consists of policy and value functions that make the left and right sides of the Bellman equation coincide.
Similar to the Euler-equation method, we can �nd the solution by minimizing the squared residuals in the
Bellman equation (12) over the given area of the state space. However, the Bellman equation has also a
nontrivial max operator which requires nested optimization, namely, it requires �nding a maximum within
a minimization cycle:

min
m;s
E(m;s)

�
V (m; s)�max

x;s0

�
r(m; s; x) + �E�

�
V
�
m0; s0

��	�2
:

There are three main approaches in the literature for constructing a solution to the maximum operator in
(12), including, i) direct optimization such as a grid search or numerical solver; ii) the �rst-order conditions
(FOC); and iii) the envelope conditions (EC). We can formulate these three procedures, respectively, in
terms of the following objective functions to minimize:

�max = �
�
r(m; s; x) + �E�

�
V
�
m0; s0; �1

��	
; (13)

�FOC =
�
r2(m; s; x)� �E�

�
V2
�
m0; s0; �1

��	2
; (14)

�EC = fV2 (m; s; �1)� r2(m; s; x)g2 ; (15)
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where fi denotes a �rst-order partial derivative with respect to the ith argument of function f . The
objective functions (13) and (14) correspond to the conventional value function iteration (VFI) and the
last objective function corresponds to the envelope condition method introduced in Maliar and Maliar
(2013) and developed in Arellano et al. (2016).4

The value iterative methods existing in economic dynamics minimize the objective problems (13)�(15)
inside the iterative cycle of the Bellman equation. See Coleman et al. (2018) for a review and comparison
analysis. Such nested optimization is expensive, which makes the conventional value-iterative methods
prohibitive in high-dimensional applications.

We therefore introduce a di¤erent value iterative method that is more in line with our DL framework,
namely, we combine a minimization of the residuals in the Bellman equation with a minimization of one
of the objectives (13)�(15) that characterize the solution to the maximum operator.

De�nition 3.7 (Bellman-residual minimization) Select a value function V (�; �1) and decision rule
x = ' (�; �2) and de�ne a distribution of the random variable ! � (m; s). For given � � (�1; �2), the
squared residuals in the Bellman equations (12) associated with V (�; �1) and ' (�; �2) are given by

�(�) = E! [� (!; �)] �

E(m;s)
�
V (m; s; �1)� r(m; s; x)� �E�

�
V
�
m0; s0; �1

��	2
+ vE(m;s) f� (m; s; �)g ; (16)

where � 2
�
�max; �FOC ; �EC

	
and v > 0 is an exogenous relative weight of the two objectives ( �FOC and

�EC can contain multiple conditions, which means that v is a vector that includes multiple weights).

The objective function (16) contains, as a special case, the standard value iterative methods that nest the
maximum operator inside the iterative cycle of the Bellman equation. Speci�cally, for each iteration on
value function V (m; s; �1) in the Bellman equation, we compute the decision rule ' (�; �2) by minimizing
one of the objectives (13)�(15) �in that case, we simply set v = 0 because the second objective is already
minimized and thus, it does not need to be included into the objective function (16) for the DL simulation.

3.2 All-in-one expectation operators for Euler and Bellman equations

In our previous analysis, we constructed all-in-one expectation for the lifetime reward maximization prob-
lem (9) but not for the Euler- and Bellman-residual minimization problems (11) and (16), respectively. This
is because in the former case, the expectation operators are related linearly, so they are simple to merge
together E(m0;s0)

�
E(�1;:::;�T )r (�)

�
= E(m0;s0;�1;:::;�T ) [r (�)]. However, in the latter case, E� [�] is squared, so

the two expectations cannot be naturally combined E(m;s) (E� [fj(m; s; �)])
2 6= EmsE�

�
fj(m; s; �)

2
�
. As

a result, we cannot use the stochastic gradient with respect to all random variables since it is biased
E(m;s) (E� [rfj(m; s; �)])2 6= rE(m;s) (E� [fj(m; s; �)])2.

An important contribution of the present paper is to o¤er a technique that allows us to combine the
expectation functions Ems [�] and E� [�] in a single expectation operator in the presence of squares. To be
speci�c, instead of using the same random draw � for both terms in the square, we use two independent
random draws or two batches �1 and �2 for the two terms yielding

E�1 [f (�1)]E�2 [f (�2)] = E(�1;�2) [f (�1) f (�2)] : (17)

With this approach, we are able to write the Euler-residual function (11) as a single expectation function
EmsE�1�2 [�] which is needed for making the stochastic gradient descent method unbiased in our DL solution
framework.

4There is also a method of reformulating state space in terms of the future endogenous state variables by Carroll (2006),
which is known as endogenous-grid method. It is straightforward to generalize the proposed techniques to include this method.
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De�nition 3.8 (Euler-residual minimization with all-in-one expectation operator) Select a deci-
sion rule ' (�; �), and de�ne a distribution of random variable ! � (m; s; �1; �2). For a given �, the squared
residuals in the Euler equations (10) associated with the rule ' (�; �) are given by

�(�) = E! [� (!; �)]

� E(m;s;�1;�2)

8<:
JX
j=1

vj

h
fj
�
m; s; x;m0; s0; x0

���
�=�1

i h
fj
�
m; s; x;m0; s0; x0

���
�=�2

i9=; ; (18)

where (v1; :::; vJ) is a vector of weights on J optimality conditions.

We can also use the method of uncorrelated shocks in (17) for constructing one-in-all expectation function
for the Bellman-residual minimization (16). We �rst focus on the method that represents the maximum
operator with objective function (13) in which case (16) contains both linear and quadratic terms E� [�] and
(E� [�])2. One possibility is to use one draw �1 for constructing the �rst term, and use two draws �1 and �2
for constructing the second term. Alternatively, we can apply a simple transformation that eliminates the
linear term. Namely, given that (a� b)2 � vb =

�
b� a� v

2

�2 � v �a+ v
4

�
, we can re-write objective (16) in

the form shown below.

De�nition 3.9 (Bellman-residual minimization with all-in-one expectation operator) Select
value function V (�; �1) and decision rule x = ' (�; �2) and de�ne the distribution of the random variable
! � (m; s). For given � � (�1; �2), the squared residuals in the Bellman equations (12) associated with
V (�; �1) and ' (�; �2) are given by

�(�) = E! [� (!; �)] �

E(m;s;�1;�2)

nh
V (m; s; �1)� r(m; s; x)� �

h
V
�
m0; s0; �1

���
�=�1

i
+
v

2

i
�h

V (m; s; �1)� r(m; s; x)� �
h
V
�
m0; s0; �1

���
�=�2

i
+
v

2

i
� v

h
V (m; s; �1) +

v

4

io
; (19)

where v > 0 is an exogenous relative weight of the two objectives.

It is straightforward to combine the technique of two uncorrelated shocks in (17) with the other two
objectives (14) and (15), namely, the former objective leads to a set of residuals (18) which must be
evaluated under uncorrelated shocks �1; �2 jointly with the residuals in the Bellman equation and the latter
objective does not contain shocks, thus, requiring no integration.

To conclude, we derive all-in-one expectation operators for each method considered in the paper. We
can thus evaluate all expectation functions and their gradients with just one draw or batch. This is true
for problems with any dimensionality.

3.3 Dolo software: automating the construction of the objective functions

We have shown how to convert a canonical dynamic economic model into three objective functions that
can be used in the context of our DL method summarized in Algorithm 1. Our objective functions are
formulated in terms of (m; s; x; �), which are vectors of exogenous and endogenous state variables, decision
functions and shocks. Therefore, as a �rst step, we must represent an economic model in this notation.
It is not hard to rename the variables in a simple one-agent growth model but it is a burdensome task
for larger models, such as central banking models that may contain hundreds of equations and unknowns.
For some models, even the construction of state space is far from obvious if we do it manually. Finally, a
translation of large models into the required (m; s; x; �) format can lead to additional errors and bugs.

We automate the construction of the objective functions by using Dolo software.5 This is an open-
5 It is developed by Pablo Winant; see https://dolo.readthedocs.io/en/latest.
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source platform which is similar to Dynare but has a collection of routines for constructing global nonlinear
solutions, in addition to perturbation methods. We will not use the computational capacities of Dolo but
use it as a convenient interface for preprocessing and reformatting the model. Dolo uses a classi�cation
scheme of variables and equations that coincides with the one we use in the paper. In particular, Dolo uses
the same symbols for exogenous and endogenous state variables (m and s), control variables (x), reward
functions (r) and value functions (v). After we introduce the equations into Dolo in the format "yaml", it
will produce a generic Python code with the model�s equations that can be directly used as an input to
our model-free DL optimization routine written in TensorFlow.

3.4 Data science versus economic dynamics

We have shown that economic models can be reformulated as DL problems but there are some important
di¤erences between the data science and economic dynamics. We discuss such di¤erences below. We also
explain the relation of our analysis to the literature.

Learning is always deep in economic models. In data science, the learning is called "deep" because
the neural networks have interconnected topologies with multiple layers of the coe¢ cients. In economic
dynamics, there is another reason for calling learning "deep". Speci�cally, objective functions derived
from dynamic economic models contain variables of multiple periods and nested decision functions which
lead to multilayer interconnected topologies and approximation coe¢ cients buried in several layers of
intertemporal optimization, similar to those observed in multilayer neural network. In that sense, learning
is always "deep" in dynamic economic models, even for simple one-layer approximating functions such as
polynomial or piecewise linear functions.

Data are truly random in economic dynamics. In data science, a data set is usually �xed and
batches are not really random but a pseudo-random bootstrap of the given data. In such applications,
we split the available data into 3 samples, namely, for construction of a solution, validation and accuracy
assessment; see entry v) in Step 1 of Algorithm 1. In economic dynamics, we just need to �x the distribution
for random draws. When solving dynamic models, we are able to simulate the model at will and we can
generate as much data as we want. In that sense, our data are truly random.

Antithetic variates improve e¢ ciency of Monte Carlo integration. Monte Carlo integration
has a low square-root rate of convergence. We can increase the e¢ ciency of SGD by using variance
reduction techniques. One simple method is antithetic variates: assuming a zero mean, for every realization
(!1; :::; !n0), we also consider its antithetic realization (�!1; :::;�!n0). Another possibility is a tensor-
product antithetic variates, i.e., to consider all possible combinations (�!1; :::;�!n0). In the lifetime
reward function, the sequence (��1; :::;��T ) may be expensive to analyze, so we can consider a truncated
sequence with antithetic variates just for the �rst � periods, namely, (��1; :::;��� ; ��+1; :::; �T ). The distant
future terms are discounted so that making �rst few draws antithetic can still bring a considerable increase
in accuracy.

Validation for identifying the hyperparameters. Objective functions (11), (16), (18) and (19) con-
tain the unknown weight parameters v. How can we deal with such parameters? The common approach to
calibrating these and other hyperparameters (i.e., degree of regularization) is validation: we assume some
values of such parameters, �nd a solution, check the accuracy out of sample (i.e., on a new sample) and
iterate, until the most accurate solution out of sample is obtained.

Lifetime reward maximization with deterministic integration of shocks. For the Euler- and
Bellman-equation methods, we had two versions: one in which we compute integrals with respect to state
variables and future shocks separately and the other is all-in-one expectation version. For the lifetime
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reward, we only have the version with all-in-one expectation operator. But we can also implement a
method that computes the two expectations separately, for example, one that uses Monte Carlo integration
for evaluating E(m0;s0) [�], and that uses deterministic integration for evaluating E(�1;:::;�T ), i.e., we compute
sequentially the two expectation operators in E(m0;s0)

h
E(�1;:::;�T )

PT
t=0 �

tr(�)
i
. To evaluate E(�1;:::;�T ), we

can use a deterministic integration method suggested in Adjemian and Juillard (2013). In each period t, we
construct n integration nodes (by using quadrature, monomials, etc.) This leads to an exploding tensor-
product tree. For example, a tree with just 2 Gaussian nodes ��, result in sequence ��0;��1;��2; ::: that
has exponentially growing number of nodes 2, 4, 8,.... But Adjemian and Juillard (2013) propose a clever
re�nement that makes the problem tractable by eliminating those branches of the tree whose probabilities
are low.

Nested local approximations and deterministic models. Each of the three constructed objective
functions contains two nested models: One is the model in which the solution is approximated locally
around the given state, and the other is the deterministic model. In the former case, state (m; s) is �xed
in (9) (11), (16), (18) and (19) and expectation is computed only with respect to exogenous shocks �. Such
a solution may be interesting per se, for example, for studying transitions of an underdeveloped economy
to the steady state because the solution constructed just in the ergodic set may be insu¢ ciently accurate.
In turn, the deterministic model is the one in which a realization of shocks � is �xed and the state (m; s)
is random.

Is this the best possible AI technology for solving economic models? Our solution framework
was designed to take advantage of existing DL technology. "Is this the best possible technology for solving
dynamic economic models?" �the answer to this question is not clear.

First, neural networks are powerful universal approximators, but their training is expensive and their
convergence to the solutions is not guaranteed. It is actually an open question whether there is much
value in using deep neural networks for approximating decision rules in economics which often can be well
approximated by simple functions like polynomials and splines.

Second, Monte Carlo simulation laid in the basis of DL framework has a low square-root rate of
convergence. It is possible to improve on the Monte Carlo method by engineering sequences that deliver
more accurate approximations to integrals (e.g., quadrature, monomials, quasi-random sequence, sparse
grids, clusters, epsilon-distinguishable sets), as well as by applying variance-reduction techniques such as
antithetic variates; see Maliar and Maliar (2014) for a review.

Third, instead of stochastic optimization, we can use other numerical solvers, e.g., �xed-point iteration,
conventional GD methods, Gauss-Jacobi, Gauss-Siedel and linear programming; see Judd (1998). These
techniques are commonly used in computational economics, and we expect them to be useful alternatives
to our baseline SGD in some applications.

Finally, there are other AI-style methods that can be used for solving economic models, in particular,
unsupervised and reinforcement learning methods. These methods o¤er a possibility of online learning and
additional powerful approximation techniques such as alternating of learning, exploration or exploitation �
such techniques are absent in our static o­ ine supervised learning framework. However, the DL technology
that we employ is highly scalable, ubiquitous, optimized and free of errors. It is implemented using the
state-of-the-art software and hardware. Taken together, these advantages can compensate for potential
ine¢ ciencies.

Accuracy tests in economic dynamics are indirect. In a canonical supervised learning regression,
we assess the quality of approximation by looking at the di¤erence between the true and predicted output
out-of-sample. In a logistic regression (e.g., the problem of handwritten digits classi�cation), the success
can be also measured by a fraction of times the machine classi�es the digits correctly, e.g., it recognizes
the handwritten digits correctly in 80 percent of the cases.
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In the context of economic dynamics, a parallel direct accuracy test would require us to compare an
approximate and exact solutions. This is generally infeasible since the exact solutions are unknown. One
way to deal with this complication is to construct a more accurate reference solution by using more �exible
approximation functions, more precise solvers and more accurate numerical integration methods. However,
such a reference solution may be infeasible or excessively costly; see Judd et al. (2017) for a discussion and
examples of cheaper direct testing methods that rely on numerical construction of the error bounds.

Following the economic literature, we concentrate on indirect approaches to the accuracy evaluation.
Speci�cally, we will check certain properties that an accurate solution is known to satisfy, such as zero
residuals in the Euler or Bellman equation. Indirect accuracy tests are simple to design and they can be
implemented in an out-of-sample way which is characteristic for AI applications. Moreover, we can de�ne
indirect accuracy measures to re�ect the economic signi�cance of accuracy. For example, we can express
approximation errors in percentage terms of consumption; see Section 5 for examples and discussion.

3.5 Connection to the literature

In this section, we discuss the connection between our analysis and three types of learning methods in
the data science �supervised, unsupervised and reinforcement learning. Interestingly, there are numerous
AI-like approaches in computational economics that were discovered independently or even preceded the
AI approaches in the data science.6

3.5.1 Supervised learning

Essentially, all solution methods in economics use regression or interpolation techniques for approximating
policy and value functions o¤ the grid � such techniques can be classi�ed as supervised learning. The
typical approximation family is polynomials (ordinary, Chebyshev, Hermite, etc.) but other families were
also considered, including neural networks. The �rst application of neural networks to economic dynamics
dates back to Du¤y and McNelis (2001) who use neural networks for parameterizing decision functions in
a growth model. Recently, multilayer neural networks are used by Duarte (2018) for approximating value
function solving continuous-time second-order di¤erence equation; by Fernández-Villaverde et al. (2018)
or approximating the aggregate law of motion in a continuous-time version of the Krusell and Smith
(1998) model; by Villa and Valaitis (2019) for dealing with ill-conditioning in a parameterize expectations
algorithm (PEA) of Den Haan and Marcet (1990); and by Lepetyuk et al. (2019) for solving a large-scale
central banking ToTEM model of the Bank of Canada.

However, interpolation does not fully utilize the capacities of the existing AI technology. Here, such
technology does not solve the entire economic model but serves as one of the ingredients of the conventional
solution method. We di¤er from that literature in that we generalize supervised learning to cast the entire
economic model into a single objective function, so that AI produces the entire solution �we do so for
three key objects of economic dynamics: lifetime reward, Bellman equation and Euler equation.

There are papers on computational economics that propose numerical approaches related to ours. The
lifetime-reward maximization method is related to an indirect inference procedure of Smith (1987). The
Euler-equation method is related to seminal contributions to numerical solution methods in economics,
namely, a projection method of Judd (1992) and PEA of Den Haan and Marcet (1990). Like Judd (1992),
we formulate a least-squares problem in which we minimize the squared sum of residuals in the Euler
equation by using a gradient-descent approach. We di¤er in that we use deep neural networks instead
of polynomial functions; we use a random grid instead of conventional �xed grid; and we use all-in-one
expectation operator instead of deterministic integration methods. Taken together, these novel elements
make it possible to combine all expectation operators into one to fully bene�t from the DL framework.

6 See Goodfellow et al. (2016) for a review of supervised and unsupervised learning in the computer science literature, in
particular, deep learning; see Sutton and Barto (2018) for a review of reinforcement learning literature and see Powell (2008)
for a review of the related �eld of approximate dynamic programming.
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In turn, PEA solves the least-squares problem on simulated series instead of a grid, and it uses �xed-
point iteration instead of gradient-descent methods. Like us, PEA possesses the property of merging the
expectation operators into one but it is achieved via a di¤erent mechanism, namely, when iterating on
current decision functions, PEA takes the expectation functions from the previous iteration as given. A
shortcoming of PEA is that it requires long time-series simulation for accurate solutions which is not
easily parallelizable; in turn, we need only few random grid points and can fully bene�t from the modern
distributive computing. Also, a recent paper by Azinovic et al. (2019) shows a solution method which is
similar to the Euler equation method we introduced earlier in 2018th version of the paper and which we
presented here. Azinovic et al. (2019) solve a life-cycle model with 60 state variables but assume a �nite
set of shocks, abstracting thus from the issues of integration and unbiased stochastic gradient that is an
important contribution of our analysis; furthermore, we solve problems with higher dimensionality such
as Krusell and Smith�s (1998) model with 2000 state variables. Finally, our Bellman-equation method is
related to conventional value and policy function iteration (see e.g., Rust, 1996, Judd, 1998, Santos, 1999,
Aruoba et al., 2006, Stachurski, 2009) but we di¤er in two respects: �rst, we combine the maximization
and minimization operators into a single optimization step, and second, we implement integration with two
uncorrelated shocks in a way that leads to all-in-one expectation operator. However, our most important
contribution does not consist in developing some new algorithms but in showing that dynamic economic
models can be treated by using the same model-free DL technologies that the scienti�c community uses in
many other �elds, leading to truly break-ground applications.

3.5.2 Unsupervised learning

Unsupervised learning literature focuses on how to e¤ectively represent information that is available in a
given set of features. For example, it clusters closely situated data, it reduces dimensionality of collinear
features by principal component analysis or similar, etc. There are examples of applications of unsupervised
learning in the economic literature, for instance, Judd et al. (2011) analyze a variety of regularization
techniques that can be classi�ed as unsupervised learning; Maliar and Maliar (2015) use clusters and
epsilon-distinguishable sets; Judd et al. (2017) and Coleman et al. (2018) use low-discrepancy (quasi-Monte
Carlo) sequences. Moreover, there are papers that combine supervised learning with unsupervised learning.
In particular, Lepetyuk et al. (2019) use clusters to re�ne the solution domain and use neural network for
parameterizing decision functions. The neural network itself can actually deal with ill conditioning and
reduce dimensionality instead of unsupervised learning methods; see Villa and Valaitis (2019). However,
again the existing literature uses unsupervised learning just as a step of the conventional solution methods,
whereas we use DL methods and modern data platforms to generate the entire solution to the model. In
fact, Azinovic et al. (2019) interpret their analysis as a version of unsupervised learning which is another
possible interpretation given a tight connection between supervised and unsupervised learning discussed
in Section 2.1.

3.5.3 Reinforcement learning

Reinforcement learning is a �eld that focuses on solving dynamic problems with a delayed, often discounted,
reward. For instance, the game-playing engine Alphazero, gets a positive reward when a game is won, and
zero otherwise; see Sutton and Barto (2018) for a review of RL literature; see Powell (2010) for a related
�eld of approximate dynamic programming; and see Lepetyuk and Jirniy (2012) for early remarkable
application of RL for solving Krusell and Smith (1998) model.

However, much of RL research focuses on aspects that are absent in our analysis. For instance, an
interesting element of RL is the ability to learn online and the trade-o¤ during the learning, exploration or
exploitation phases. In contrast, in our case, learning is fully o­ ine: after a batch of simulations, decisions
are adjusted according to the simulation feedback and new simulations are ran again. Furthermore, RL
approaches allow for model-free learning. In contrast, we assume full knowledge of the model and the ability
to simulate trajectories. The Euler-equation method sets us further apart from the RL agenda, limited
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to the optimal control problems. But our Euler-equation method can be adapted to online optimization
learning so the frontiers are not fully watertight.

4 Numerical analysis of the consumption-saving problem

In this section, we solve a consumption-saving model with occasionally binding borrowing constraint.
We elaborate the results for three objective functions: the lifetime reward, and the Euler- and Bellman-
equation residuals. Our experiments are designed to illustrate the advantages of the proposed DL method,
in particular, its ability to accurately approximate kinks, its capacity to handle ill-conditioned problems and
its scalability. We also discuss some problems that the users may run into when using the DL technologies.

4.1 The consumption-saving problem

We consider a version of the consumption-saving problem with multiple shocks,

max
fct;wt+1g1t=0

E0

" 1X
t=0

�te�tu (ct)

#
(20)

s.t. wt+1 = re%t (wt � ct) + eytept(1��); (21)

ct � wt; (22)

where ct and wt are consumption and the beginning-of-period cash-on-hand, respectively; fyt; pt; %t; �tg �
zt is a vector of exogenous state variables, which includes a temporary income shock yt, a permanent income
shock pt, an interest-rate shock %t and a preference shock �t; � 2 f0; 1g is an indicator function; u is a
utility function, which is assumed to be strictly increasing and concave; � 2 [0; 1) is a subjective discount
factor; r 2

�
0; 1�

�
is a (gross) constant interest rate, and initial condition (z; w) is given. Note that the

borrowing limit in (22) is set to zero without loss of generality. For each exogenous shock z 2 fy; p; %; �g,
we assume an AR(1) process,

zj;t+1 = �jzj;t + �j�j;t and �j;t � N (0; 1) ; (23)

where
���j�� < 1 and �j > 0. A solution to the model can be characterized by the Bellman equation

V (z; w) = max
c;w0

�
u(c) + �E�

�
V
�
z0; w0

��	
s.t. (21)�(23), (24)

Also, the solution can be characterized by the Kuhn-Tucker conditions

c� w � 0; h � 0 and (c� w)h = 0, (25)

where h � u0(c)e��% � �rE�
h
u0 (c0) e�

0
i
is a Lagrange multiplier.

We parameterize the model by u (c) = c1�
�1
1�
 with a risk-aversion coe¢ cient of 
 = 2, and we assume

� = 0:9, r = 1:04, and �y = 0:1. Our baseline uni-shock model has just a temporary i.i.d. income shock y
(i.e., �j = 0 for j = 1; :::; 4; �j = 0 for j = 1; 2; 3 and �4 > 0). Having just one (endogenous) state variable
allows us to illustrate the decision function by two-dimensional plots. For the multi-shock model, we use:
�y = 0:9 and �y = 0:1; �p = 0:999 and �p = 0:001; �% = 0:2 and �% = 0:001; and �� = 0:9 and �� = 0:01.

4.2 Computational details

We wrote the code in Python using a Google TensorFlow library version 1:14:0, and we use a laptop with
Intel(R) Core(TM) i7-7500U (2.70 GHz), RAM 16GB with 4 physical (and 8 virtual) cores. Training is
performed over L22 using a mini-batch gradient descent method and a version of the stochastic gradient
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descent algorithm, called ADAM, in which a learning rate is di¤erent for each coe¢ cient; in both cases,
we consider 16 random draws; see Appendix B for a discussion of training methods.

Initial points for state variables are drawn from: (i) an ergodic distribution of exogenous processes for
shocks z; (ii) a uniform distribution for cash-on-hand in an interval [w1; w2] = [0:1; 4].

We parameterize a decision function of a consumption ratio ct
wt
� �t = � (�0 + ' (zt; wt; �)), where

' (�) is a neural network � (x) = 1
1+e�x is a sigmoid function, so that �t is bounded to be in an interval

[0; 1]. To initialize the coe¢ cients (�0; �), we assume �0 = 0:95, and we draw � randomly; in particular,
we use a "he" uniform distribution for biases and a "glorot" uniform distribution for the other (non-bias)
coe¢ cients of the hidden layers. We parameterize the value function with Vt = V0 + ' (zt; wt; �), where

' (�) is again a neural network. To initialize the coe¢ cients (V0; �), we assume V0 = 1
1��

c1�
ss �1
1�
 , and we

perform a random initialization for �, similarly to the decision-function case. For both the decision and
value functions, a neural network ' contains two hidden layers, with each of the hidden layers including
32 (leaky) relu (recti�ed linear units) neurons; see our description in Appendix A.

In the training step, we �x the number of iterations to be K = 50; 000. To evaluate the accuracy, we
produce 1; 024 random draws and use the constructed approximate decision rules to produce the lifetime
reward and unit-free Euler equation residuals. To approximate integrals in the accuracy test, we use an
accurate 10-node Gauss-Hermite quadrature rule for the uni-shock baseline case and a 100-node Monte
Carlo integration method for the multi-shock case.

4.3 Objective 1: Lifetime reward

This lifetime reward objective is constructed as follows: Fix time horizon T > 0, select a decision rule
' (�; �), and de�ne a random vector ! � (z0; w0; �1; :::; �T ) composed of an initial state and a realization of
exogenous shocks drawn from the corresponding distribution. For a given random draw !, we de�ne the
lifetime reward (20) associated with the rule ' (�; �) by

�(�) = E! [� (!; �)] � E!

"
TX
t=0

�tu (c (zt; wt; �))

#
; (26)

where transitions are determined by the constraints (21)�(23).
Figure 2 displays the outcomes of training (on the horizontal axis, K = 50; 000 appears as 4 � log10 5).

We show the average Euler-equation residuals (denoted L2) and lifetime reward in the left and right
panels, respectively. We consider four training methods, namely, SGD with an updating parameter � 2
f0:05; 0:1; 0:5g and ADAM.
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Figure 2. Training with a maximization of the lifetime reward in the baseline model.

As is seen from the �rst panel, the Euler-equation residuals are the largest for SGD with the slowest
learning rate (� = 0:05) and are the smallest for ADAM. In the latter case, they are of order 10�2:5 (i.e.,
0:3%), which is quite low, given that we solve the model with a kink in the decision rule. In terms of the
lifetime reward, all the training methods gradually converge to the level of �9:61 shown with a dashed
line, which is the level of the lifetime reward in the optimum computed with a very accurate projection
method. ADAM reaches slightly higher value of the lifetime reward than the other training methods.

4.4 Objective 2: Euler-equation method with Kuhn-Tucker conditions

As a �rst step, we rewrite the conditions with inequality constraints in (25) as equations that hold with
equality with the help of the Fischer-Burmeister (FB) function

	FB (a; b) = a+ b�
p
a2 + b2 = 0; (27)

where a = w � c and b = u0 (c) � �re%tE� [u0 (c0)]. The FB function is similar to the minimum function
	min (a; b) = min fa; bg = 0 and leads to the solution a � 0, b � 0 and ab = 0 but it is di¤erentiable; see,
e.g., Jiang (1996) for a discussion of that function. Here, we expressed the terms a and b in comparable
consumption units; in general, it might be necessary to add relative weights that re�ect the importance of
the two objectives a and b, i.e., to consider 	FB (a; vb).

The objective function for the Euler-equation-residual minimization is constructed as follows: Select a
decision rule ' (�; �), draw random state ! � (z; w) and de�ne residuals in (27) by

�(�) = E! [� (!; �)] � E!
�
	FB

�
w � c; u0 (c)� �re%tE�

�
u0
�
c0
����2

: (28)
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The results of training under the objective (28) are shown in Figure 3.

Figure 3. Training with a minimization of Kuhn-Tucker-conditions residuals in the
baseline model.

As is evident from the �rst panel, ADAM is again most accurate, reaching 10�3 (i.e., 0:1% of the
residuals), although there it has more variability over the training steps. In terms of the value of lifetime
reward, ADAM appears to deliver the highest lifetime reward in the �nal stage of training but starts farther
away the true value, relative to the other training methods; in particular, SGD with the lowest learning
rate � = 0:05 starts with some advantage in the initial stage of training. The comparison of Objectives 1
and 2 in Figures 2 and 3 shows that the ranking of the training methods depends on a speci�c objective
used and can change over di¤erent training stages.

4.5 Objective 3: Bellman equation

For the Bellman equation residuals, we focus on the objective function (13) which does not assume di¤er-
entiability. We select a value function V (�; �1) and a consumption rule ' (�; �2), draw random state (z; w)
and de�ne residuals in (24) by

�(�) = E! [� (!; �)]

= E(z;w)
�
V (z; w; �1)� u (c)� �E�

�
V
�
z0; w0; �1

���2 � vE(z;w) �u (c) + �E� �V �z0; w0; �1��	 ; (29)
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Figure 4 plots the training process for Objective 3 with three values of the weight v 2 f0:0005; 0:001; 0:005g
using ADAM.

Figure 4. Training with a minimization of Bellman-equation residuals in the baseline model.

Recall that we treat the weight hyperparameter similar to regularization parameters: we try out several val-
ues to �nd the values that yields the most accurate solution. We see that smaller weights v 2 f0:0005; 0:001g
produce the correct solution, while an excessively high value of v leads to nonconvergence: in that case,
too much weight is put on approximating the maximum operator, at the expense of the poor �t in the
Bellman equation leading to non-convergence.

Another �nding in the �gure is that the value iterative method is less accurate than the two previous
methods. This fact is not surprising: Coleman et al. (2018) compare the conventional VFI method which
solves the Bellman equation by constructing the decision function via direct maximization (13), as we
do here, versus otherwise identical methods that use derivatives of the value function via �rst-order and
envelope conditions given by (14), (15), respectively. They �nd that the methods that approximate the
derivatives of V are far more accurate than the methods that approximate V alone. It is straightforward
to extend our Bellman-equation method to include the FOCs: we just need to replace the second objective
in (29) with squared Fischer-Burmeister (FB) function by setting a = w � c and by computing b either
from FOC of Bellman equation b = u0 (c) � �re%tE� [V2 (z0; k0; �1)] or from the envelope condition b =
u0 (c) � V2 (z; k; �1). We do not consider these more accurate versions of the Bellman-equation method
because they are more related to the Euler-equation method; see Arellano et al. (2016) for a discussion.
Instead, we turn to some interesting �nding in our numerical experiments.

4.6 Decision rules: the role of the training method in accuracy

Let us look at the resulting decision rules. We focus on the objective (28) that corresponds to the Kuhn-
Tucker conditions. We consider four training methods, namely, ADAM and SGD with � 2 f0:05; 0:1; 0:5g.

Figures 5 and 6 focus on the decision rules of consumption and a consumption share ct
wt
� �t, respec-

tively. In both �gures, we plot a normal-size decision rule, a zoomed-in decision rule, and an error in the
corresponding variable (relative to the optimal solution, obtained with an accurate projection method).
The consumption function is de�ned in the interval

�
1
10 ; 4

�
, which corresponds to cash-on-hand w.
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Figure 5. The consumption decision rule in the baseline model.

In the �rst panel of Figure 5, there is virtually no di¤erence in the consumption decision rules across
the training methods considered. A closer look in the second panel shows that there are larger (but still
small) di¤erences near the kink, with ADAM being the most accurate and SGD with the lowest � being
the least accurate. Nevertheless, it is remarkable how well neural networks were able to approximate the
kink without any information on where the kink was!

In Figure 6, we plot the corresponding panels for the consumption shares.

Figure 6. The consumption-share decision rule in the baseline model.

Overall, the tendencies for consumption shares in Figure 6 are similar to those we observed for con-
sumption units in Figure 5 although the di¤erences between the rules are somewhat larger. One visible
�nding in Figure 6 is that the ADAM remains to be extremely accurate in approximating the kink, while
the SGD leads to less accurate solutions, in particular, when the updating rate � is low.

22



4.7 Role of activation functions in a convergence to the right solution

The choice that also proves to be important for the results is the activation function. Recall that our
benchmark activation function is relu (namely, each of the two hidden layers has 32 leaky-relu neurons).
Now, we use a sigmoid function �another common choice in the DL literature. Surprisingly, such a small
modi�cation �ipped over our results completely: now, the algorithm converged to a wrong solution! The
corresponding results are shown in Figure 7.

Figure 7. Sigmoid activation function.

In fact, the "wrong" solution is still a valid solution to the Kuhn-Tucker conditions but it is an unstable
solution leading to an explosive path that violates the transversality condition. However, the wrong solution
leads to residuals that are even smaller in size than those produced by the correct solution. Thus, we cannot
detect this problem by looking at the residuals alone but we can do so by looking at the lifetime reward:
in that way, we can discard the solution obtained under the sigmoid activation function.

Can sigmoid activation functions be just generically bad for approximating solutions in economic mod-
els? To answer this question, we also consider the lifetime reward maximization with sigmoid activators.
Here, we got the correct solution in which the decision rule is accurate (and coincides with the one produced
with relu). Our conclusion is that we need to have techniques for checking properties of the constructed
solutions that go beyond conventional Euler equation residuals, such as the second-order conditions or
the value of the objective functions. But such techniques are needed not just for our method but for all
methods that rely on �rst-order conditions.

4.8 Multicollinearity, ill-conditioning and model reduction

The lifetime-reward objective function (26) is built on all-in-one expectation operator and it is directly
suitable for high-dimensional applications. In Figure 8, we present the results obtained with reward
maximization for the multistate model (20)�(23). We used 64 relu nodes in each of the two hidden layers,
and the training method was ADAM.
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Figure 8. Training with a maximization of the lifetime reward
in the multishock model.

Three cases are considered in the �gure. The main case is the multi-shock model denoted by "multidim".
The other two cases, "lowdim" and "multidim0", correspond to a version of the model with one shock which
is an income shock parameterized by �y = 0:9. But the two models di¤er in the inputs that we supply to
the neural network: in the "lowdim" model, the irrelevant shocks other than income shock are not supplied
at all, while in "multidim0", they are supplied to the neural network by setting all of them equal to zero.
Thus, the latter model has perfect multicollinearity, so that the inverse problem is ill-conditioned and
cannot be solved with conventional regression or approximation methods, such as ordinary-least squares
(OLS).

There are two main results to learn from this experiment: First, neural-network approximations do
not su¤er from multicollinearity and ill conditioning, unlike the conventional polynomial approximation.
Training of the model with zero shocks leads to the same solution and has roughly the same convergence
rate as those of the other two models. This experiment illustrates how neural networks can do the model
reduction: they learn to ignore the e¤ect of nonexisting shocks although at some additional initial cost
(i.e., the residuals of the last model are slightly larger in the beginning of training than those of the other
models). Second, training in the multi-shock model has approximately the same convergence rate as that
of the other models. The cost of iteration in the multi-shock model is slightly larger than in the uni-shock
model but this di¤erence is relatively small. This �nding indicates that the proposed solution method is
potentially tractable in problems with high dimensionality.

4.9 The Euler- and Bellman-equation methods with the all-in-one expectation oper-
ator

In our previous implementation of the Euler- and Bellman-equation methods for the uni-shock model (28),
we approximate the two expectation operators separately. We now show how to construct the all-in-one
expectation operator for these two methods in the presence of Kuhn-Tucker conditions. To this purpose,
we introduce a supplementary variable � that represents the expectation function and rewrite (28) as a
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composite objective

E(z;w)
�
	
�
w � c; u0(c)� �

��2
+ v

�
�re%tE�

�
u0
�
c0
��
� �

�2
; (30)

where v is an exogenous weight. Using the technique of two uncorrelated shocks (17), we then arrive to
the objective function that combines integration with respect to z, w and �

E! [� (!; �)] = E(z;w;�1;�2)

n�
	
�
w � c; u0(c)� �

��2
+v
h
�re%t

h
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�
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���
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� �
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�
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���
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i
� �

io
: (31)

(For Bellman-residual minimization, the all-in-one expectation operator (19) is directly applicable to the
given problem with just a straightforward change of notation).

Figure 9 displays the outcome of training of (31) for the multi-shock model under the weight v = 0:5.
As before, we parameterize a decision function of the consumption ratio ct

wt
� �t by a sigmoid function

�t = � (�0 + ' (zt; wt; �)), where ' (�) is a neural network. In addition, we parameterize a decision function
of �t by an exponential function �t = exp (�0 + ' (zt; wt; �)).

Figure 9. Expectations with all-in-one expectation: training with a minimization of
Euler-equation residuals

In the �gure, we show the �rst 10,000 iterations with the ADAM training method. On each iteration,
we now use the batch size of 512 random grid points (instead of 16). In the left panel, we show the Euler
equation residuals which we evaluated by using a 10,000-point Monte Carlo integration method. "Monte
Carlo (Original)" and "Monte Carlo" correspond to two objectives (28) to (31) that we evaluate in the
test. We see that both objectives show very similar convergence patterns. In the right panel, we show how
the consumption rules evolve along the iterations.

Finally, in Figure 10, we illustrate the scalability of the Euler-equation method. We vary the batch size
from N = 8 to N = 8; 192 draws and we document accuracy and running time.
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Figure 10. E¤ects of the batch size on the accuracy and speed.

In the left panel, we observe that a larger batch size leads to more accurate solutions although the
convergence rate is similar for all batch sizes. In the right panel, we see that the training time changes
roughly linearly with the batch size. Thus, the Euler-equation methods with uncorrelated shocks scale
linearly with dimensionality. The same is true for all the methods built on one-in-all expectation operator.

5 Model reduction in Krusell and Smith�s (1998) analysis

We now use the DL method to solve a version of the Krusell and Smith (1998) model. We show that
the DL simulation combined with the model reduction can be used to construct decision functions with
thousands of state variables.

5.1 Krusell and Smith�s (1998) model

The economy consists of a set of heterogeneous agents i = 1; :::; ` that are identical in fundamentals, but
di¤er in productivity and capital. Each agent i solves

max
fcit;kit+1g1t=0

E0

" 1X
t=0

�tu
�
cit
�#

(32)

s.t. cit + k
i
t+1 = Rtk

i
t +Wtz

i
t; (33)

zit+1 = �zz
i
t + �z�

i
t with �

i
t � N (0; 1) ; (34)

kit+1 � 0; (35)

where cit, k
i
t are z

i
t consumption, capital and labor productivity and initial condition

�
ki0; z

i
0

�
is given. The

production side of the economy is described by a Cobb-Douglas production function ztk�t , so that

Rt = 1� d+ zt�k��1t and Wt = zt (1� �) k��1t ; (36)

zt+1 = �zt + ��t with �t � N (0; 1) ; (37)

where kt =
P
kit is aggregate capital, and zt is an aggregate productivity shock. In general, the state space

of the model includes the state variables of all agents
�
kit; z

i
t

	`
i=1
, as well as the aggregate shock zt, so we

must solve for the decision and value functions in terms of 2`+ 1 state variables of (
�
kit; z

i
t

	`
i=1
; zt).
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To make the model tractable, Krusell and Smith (1998) introduce a numerical approach that replaces the
distributions of state variables with a �nite set of their moments mt, i.e., they approximate the state space
by (kit; z

i
t; zt;mt)�this approach proved to work remarkably well in a variety of models and applications.

Other early approaches to solving heterogeneous agent models are o¤ered by Den Haan (1997), Judd (1997)
and Reiter (2009); see Den Haan (2010) for a review. Lepetyuk and Jirniy (2012) propose a non-parametric
reinforcement learning algorithm for solving that model. Recent numerical methods for solving Krusell
and Smith�s (1998) model include Ahn et al. (2017), Bayer and Luetticke (2018), Boppart et al. (2018),
and Fernández-Villaverde et al. (2018). These new developments in solution techniques are primarily
motivated by recent interest in modeling the e¤ects of �scal and monetary policies on distributions.

5.2 Deep learning solution algorithm

A distinctive feature of our DL framework is that it enables to solve the Krusell and Smith (1998) model by
working directly with the actual state space. We speci�cally parameterize the consumption share of agent

i by cit
wit
� �it = �

�
�0 + '

�
kit; z

i
t;
�
kit; z

i
t

	`
i=1
; zt; �

��
, where ' (�) is a neural network and � (x) = 1

1+e�x is

a sigmoid function, which ensures that �it is bounded to be in interval [0; 1]. If agents are heterogenous in
fundamentals, we need to approximate ` di¤erent individual decision functions, each of which has 2` + 1
dimensions. With symmetric agents, as in Krusell and Smith (1998), we need just one 2`+ 1�dimensional
decision function to characterize the choices of all ` agents.7

Objective function. We form the objective function that minimizes the Euler-residual using our tech-
nique of two uncorrelated shocks (17):

E! [� (!; �)] = E(K;Z;z;�1;�2;�1;;�2)
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; (38)

where K =
�
k1; :::; k`

�
; Z =

�
z1; :::; z`

�
and z are random draws of the economy�s state; �1 =

�
�11; :::; �

`
1

�
,

�2 =
�
�12; :::; �

`
2

�
are two uncorrelated random draws of individual productivity shocks; and �1;, �2 are two

uncorrelated random draws for the aggregate productivity shocks.

Solution algorithm: simulating a panel of heterogeneous agents. Our DL algorithm alternates
between the solution and simulation steps. It proceeds as follows: i) draw initial productivity z0 and initial
distributions fK0; Z0g =

�
ki0; z

i
0

	`
i=1
; ii) compute aggregate capital k0 and prices R0, W0; iii) train neural

network to satisfy (38) for ` agents; iv) perform forward simulation to produce next-period productivity z1
and distribution fK1; Z1g =

�
ki1; z

i
1

	`
i=1

and proceed iteratively until the convergence is achieved. As the
machine is trained and the panel is simulated, the decision functions are re�ned jointly with the ergodic
distribution.8 Our method is similar in spirit to Krusell and Smith�s (1998) algorithm but is conceptually
simpler as it does not involve a separate approximation of the law of motion for aggregate variables. We
just simulate the panel of heterogeneous agents and use the resulting distributions to infer the aggregate
quantities and prices as the economy evolves over time.

7 Since the true decision rule ' (�; �) is invariant to any permutation of
�
kit; z

i
t

	`
i=1
, neural networks should eventually learn

this symmetry. In general, a faster learning speed could be achieved if the symmetry is imposed in the solution method. For
instance, because of unequal initial asset levels, some agents are given higher weight in the objective functions than the others.
By reshu­ ing randomly the positions of agents, we can prevent over�tting during the training.

8 Since random variables are autocorrelated in our model, the stochastic gradient is correlated over time and hence, it is
biased. To reduce the bias, we train the model on cross-sections which are su¢ ciently separated in time instead of using all
consecutive periods.
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Ergodic-set domain. When we solve the consumption-savings problem, we drew the state variables
from a prespeci�ed exogenous rectangular domain. However, for Krusell and Smith�s (1998) model, we
generate state variables by simulating the economy forward. Why don�t we use a �xed rectangular domain
now? This is because the volume of rectangular domain is huge in high-dimensional problems, and it is
prohibitively expensive to attain an accurate approximation everywhere on such a huge domain. In fact,
only an in�nitesimally small fraction of rectangular domain is generally visited in equilibrium in high-
dimensional applications; see Judd et al. (2011) for a discussion. We take advantage of that fact by solving
the model on simulated series �we restrict attention to much smaller ergodic-set domain in which the
solution "lives". This strategy helps us deal with the curse of dimensionality.

Perfect multicollinearity. In the approximating function of the consumption share, we include the
state variables of agent i twice,

'i = '
�
kit; z

i
t;
�
kit; z

i
t

	`
i=1
; zt; �

�
;

namely, they enter both as variables of agent i and as an element of the distribution. This repetition
implies perfect collinearity in explanatory variables, so that the inverse problem is not well de�ned. Such
a multicollinearity would break down a conventional numerical method which solves the inverse problem
but neural networks can learn to ignore redundant colinear variables, as shown earlier. Thus, even though
it is possible to design a transformation that avoids a repetition of variables, it would require cumbersome
and costly permutations. Thus, it is easier to keep the repeated variables.

Model reduction. We solve the models with up to ` = 1; 000 of agents which corresponds to 2` +
1 = 2; 001 state variables. How can the DL method deal with such a huge state space? In addition
to the ability to handle multicollinearity, neural networks possess another remarkable property: they
automatically perform the model reduction. When we supply a large number of state variables to the input
layer, the neural network condenses the information into 64 neurons of two hidden layers, making it more
abstract and compact. In a sense, this procedure is similar to the photo compression or principal component
transformation when a large set of variables is condensed into a smaller set of principal components without
losing essential information; see Goodfellow et al. (2016) for a discussion of neural networks.

Krusell and Smith (1998) �nd one speci�c model reduction that works extremely well for their model,
namely, they approximate the distribution of state variables with a �nite set of moments. They �nd that in
their model, just one moment �the mean of wealth distribution mt �is a su¢ cient statistic for capturing
all relevant information, reducing their state space to just four state variables (kit; z

i
t; zt;mt).

If Krusell and Smith�s (1998) construction is the most e¢ cient representation of the state space, the
neural network will possibly �nd this representation as an outcome of training. However, neural network
automatically considers many other possible ways of extracting the information contained in the distribu-
tion

�
ki1; z

i
1

	`
i=1

and condensing it into a relatively small set of hidden layers. The output of the machine
can look like moments or some other statistics �we will not always be able to understand how the machine
handles the information in the hidden layers but this fact does not prevent us from using this miraculous
technology in applications.

Calibration and computational details. In the benchmark case, we parameterize the model by u (c) =
c1�
�1
1�
 with a risk-aversion coe¢ cient of 
 = 1, and assuming � = 0:96; � = 0:9; � = 0:07; �z = 0:9; and

�z = 0:4
�
1� �2z

�1=2. We perform training using the ADAM method with the batch size of 10 and the
learning rate of 0:001. We �x the number of iterations (which is also a simulation length) to beK = 100; 000.
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5.3 Numerical results

We solve the Krusell and Smith (1998) model with ` 2 f1; 5; 10; 50; 100; 300; 1000g agents by minimizing
the residuals in the Euler equation. As an illustration, Figure 11 shows a solution with ` = 5 agents.

The Krusell and Smith (1998) model with �ve agents.

The upper left panel illustrates the training process. We see that the algorithm reaches the accuracy
level of order 10�4 in unit-free terms. The upper right panel shows the consumption decision rules for 7
productivity states implied by the Gauss-Hermite quadrature points. The kink is smoother than in the
simple consumption savings problem but it is still quite visible. Note that here the axis x shows capital
and not wealth, so the kink happens in the negative range (that is, zero wealth means that Rtkit+Wtz

i
t = 0

which allows for kit < 0). In turn, the lower panels show a simulation of capital series of 5 agents and the
corresponding aggregate capital. We see that the individual capital occasionally approaches a zero bound
and that the aggregate capital series appear to be stationary as expected.

` std(y) corr(y; c) Gini(k) Bottom 40% Top 20% Top 1% Time, sec: R2

1 1.51 0.858 - - - - 235 0.999999
5 1.51 0.772 0.335 0.176 0.385 0.031 234 0.993473
10 1.51 0.595 0.391 0.144 0.428 0.036 254 0.995091
50 1.51 0.635 0.497 0.099 0.530 0.050 467 0.995284
100 1.51 0.658 0.450 0.121 0.486 0.047 1020 0.997600
500 1.51 0.462 0.484 0.096 0.506 0.052 7552 0.996554
1000 1.51 0.268 0.501 0.092 0.528 0.047 16435 0.995415

Table 1. Selected statistics for the Krusell and Smith (1998) model.

In Table 1, we present some statistics for the model with di¤erent number of agents. In the �rst column,
we show that all the studied models have the same standard deviation of output equal to std(y) = 1:51.
This is because we normalize the mean of individual shocks to one in every period to eliminate the e¤ect on
idiosyncratic shocks on the aggregate economy. In the second column, we provide the correlation between
output and aggregate consumption, which visibly reduces with the number of agents. There is a literature
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that tries to understand why the real business cycle models overstate the correlation between these two
variables and our analysis suggests that heterogeneity can be a clue.

Columns 3�6 report the Gini coe¢ cient of the wealth distribution and the share of income by quantiles.
Here, the numbers are comparable across the models and are similar to those obtained in Aiyagari (1994).
This fact is not particularly surprising since our calibration closely follows the one used in that paper. We
di¤er from that paper in that we also introduce the aggregate shocks but this is not a su¢ ciently strong
mechanism to change the distributional implications of the baseline Aiyagari�s (1994) model.

Column 7 reports the running time. We see that the time varies from 228 to 16,435 seconds which is not
prohibitively large. We conclude that much larger models can be solved using a more powerful hardware
beyond a laptop. In fact, the bottleneck is actually not the running time but memory: manipulating large
neural networks becomes increasingly expensive as the number of agents increases.

Finally, column 8 contains the most interesting and controversial statistic which is R2 of the Krusell
and Smith�s (1998) style regression:

ln (kt+1) = �0 + �1 ln (kt) + �2 ln (zt) ; (39)

i.e., a regression of current capital on the past capital and aggregate productivity; see den Haan (2010) for
a discussion. Krusell and Smith (1998) �nd that R2 in their model was in excess of 0.99999, which means
that the aggregate capital kt+1, and hence, the prices, can be accurately predicted by using just aggregate
state variables kt and zt. This result is referred to as "approximate aggregation". In Table 1, we see that
R2 is also relatively large, e.g., it is in excess of 0.993 for all models. However, it is not as large as the one
reported by Krusell and Smith (1998) and other papers that implemented related methods, e.g., Maliar et
al. (2010).

However, our analysis is not exactly identical to the one studied by Krusell and Smith (1998). They
had two aggregate shocks and solve for two state-contingent rules ln (kt+1) = �

g
0+ �

g
1 ln (kt) and ln (kt+1) =

�b0 + �
b
1 ln (kt), where "g" and "b" denote the good and bad aggregate-productivity states. In their state-

contingent regressions, the sampling errors are associated only with the aggregate capital. In turn, we have
a more complicated setup with a continuum of aggregate states. Our sampling errors in (39) are driven
by both the aggregate capital and aggregate productivity. Possibly, if we split the data by the level of
aggregate productivity to mimic Krusell and Smith�s (1998) state-contingent regressions, we would get R2

which is close to theirs. However, it is not the main goal of our paper to verify the validity of Krusell and
Smith�s (1998) approximation. Rather, our goal is to demonstrate that the proposed DL solution method
makes it possible to solve large-scale heterogeneous-agent models by using the actual state space without
making any simplifying assumptions.

6 Concluding comments: the grain of salt, black magic and no-free-
lunch theorem

Economists spent considerable e¤orts on designing solution methods for their models � some of these
methods are surprisingly smart. Maybe it is the time to move from their model-speci�c methods to
general-purpose AI technologies. Imagine the future: All that economists need to do is to explain their
models to machines. The machines are capable of solving such complex games as chess and Go, so they
should be able to solve apparently far less sophisticated economic models. But will the arti�cial intelligence
lead to the same breakthrough in economics as in many other �elds?

Here is the grain of salt: It is actually unknown at the moment whether economic models are easy or
di¢ cult for AI. In fact, the answer to this question may critically depend on the way in which the problem
is framed for numerical treatment. For example, many applications, in which DL recently triumphed, are
miscategorized as intractable under earlier algorithmic approaches but proved to be relatively straightfor-
ward when the deep learning approach has been discovered that mimics the behavior of trained humans.
Thus, economists need to �nd ways to make their models "easy" for machines.
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In the paper, we propose one AI technology that makes economic models tractable �a deep learning
method based on Monte Carlo simulation. Our analysis is technology driven: we do not aim to design AI
approaches that would work best for a certain class of economic models but rather we adapt the economic
models themselves to the available AI technologies. The modern data-science tools are ubiquitous, well
developed, free of errors and optimized �these may be su¢ cient to compensate for potential ine¢ ciencies.
We have shown the promise of the DL approach by solving the Krusell and Smith (1998) model with
thousands of state variables without resorting to a simplifying assumption about the economy�s state
space � such an analysis has been infeasible up to now. Furthermore, there is a variety of methods
from computational economics that can be incorporated in the proposed DL framework leading to further
e¢ ciency gains. Consequently, it seems to be a promising direction to explore.

"Will AI replace computational economists completely?" � this question belongs to a science-�ction
domain. Our guess is that it is unlikely to happen, at least in the near future. Experience from other �elds
suggests that there is a little hope that the same combinations of techniques will work equally well for all
kinds of models and applications. For example, a given class of approximation functions may work well
for some problems but not others; increasing accuracy in certain regions can be obtained by neglecting
accuracy in other regions, etc. Similarly, when it comes to convergence of the training algorithm, a popular
theorem among mathematicians states that for any optimization algorithm which converges e¢ ciently for
one class of problems, there is another class of problems where it is extremely ine¢ cient. These results
look familiar to economists because they are versions of the famous no-free-lunch theorem.

The same logic applies to AI methods. Despite impressive achievements of the Alphazero player in
the Go game, it is actually unknown how close it is to solve the chess game, whereas Deep Blue chess
player does not know how to play Go. Thus, the idea that there is an all-purpose procedure, which will
remove the curse of dimensionality without any trade-o¤s and will produce a highly precise and uniformly
accurate solution for any kind of models is beyond our current capabilities. Human input is still critical for
designing e¤ective machine-learning methods. Computational economists have a unique chance of applying
new technologies in order to extend vastly what has been up to now feasible to economics.
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A Neural networks

In this section, we describe in details neural networks. Neural networks are designed to mimic neurons
in the human brain. A human neuron consists of a cell body connected to other neurons through input
and output wires; an input wire, called dendrite, carries information, impulses of electricity, from another
neuron, while an output wire, called axon, sends impulses to another neuron. The �rst simpli�ed model
of a biological neuron �a perceptron �was invented by a psychologist Frank Rosenblatt (1957). In his
model, an input x = (x0; :::; xn) is linearly weighted by a coe¢ cients vector � = (�0; :::; �n) (called weights)
to deliver a non-activated output, i.e., �x = �0x0 + :::+ �nxn; x0 = 1 by convention. Output is activated
by an activation function � (�x) given by a heaviside step function � (�x) = 1�x�0; this is precisely what a
neuron�s computation is. A modern arti�cial neuron assumes an arbitrary activation function � . Such a
neuron is represented in Figure 1 of the main text. In the �gure, a circle represents a neuron�s cell body; a
dendrite is the input connection with another neuron and an axon is the output connection with another
neuron.

There is a variety of possible activation functions: (i) heaviside step function: �(x) = 1x�0; (ii) sigmoid
(logistic): �(x) = 1

1+e�x ; (iii) tanh (hyperbolic tangent); (iv) �(x) =
ex�e�x
ex+e�x ; relu (recti�ed linear units):

�(x) = max(0; x); (v) leaky relu: r(x) = max(�x; x), � � 0; (vi) maxout: �(x) = max(a1x + b1; a2x +
b2; a3x+ b3).9 Figure A.1 plots three of such functions, namely, a sigmoid, hyperbolic tangent, and leaky
relu.

Figure A.1. Common activation functions.

Neural network: general notation. In �(�) =
n0P
i=1
(yi � '�(xi; �))2, we are to specify an approximation

function '(�) that relates input fxig and output fyig. Below, we describe how to obtain predicted output
nodes f'(xi; �)g using neural networks for approximation.

Consider a fully connected feed-forward neural network. Such a network consists of K layers of nodes
�an input layer L1 and an output layer LK , as well as intermediate layers, called hidden layers, between
the input and output layers. An lth layer l 2 f1; 2; :::;Kg consists of wl nodes, with wl being the layer�s
width. The nodes of the input layer L1, denoted xi = (xi;0; :::; xi;w1), are referred to as input features (by
convention, xi;0 = 1). The nodes of an lth hidden layer, labeled a(l) =

�
al0; :::; a

l
wl

�
, are called activation

units, where alj is an activation of a unit j in a layer l.
Omitting an ith observation subscript, denote by z(l) an input of a layer l > 1. It is linearly combined

with a matrix of coe¢ cients �(l) 2 Rwl+1 � Rwl+1, i.e., z(l) = �(l�1)a(l�1). Note that z(1) = x and
z(L) = �(L�1)a(L�1). A non-activated input z(l) is transformed into an activated one by applying an
activation function � l 2 T , such that

a(l) = � l

�
�(l)z(l)

�
;

9 In applications, it is convenient that �0(x) = �(x)(1� �(x)).
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where � l is applied element-wise, i.e., in such a way that the dimension of its argument is the same as the
dimension of its output. The predicted output is the result of a hypothesis function ' (x; �) = �L

�
z(L)

�
=

�L

�
�(L�1)a(L�1)

�
. Denoting by T the set of all activation functions, we de�ne a feedforward neural network

of depth L by its topology ((�1; w1); : : : ; (�L; wL)) 2 (T � R?)L.
The parameters vector � is obtained by minimizing �(�) =

wLP
i=1
(yi � '(x0; :::; xw1 ; �))

2. i.e., mean

squared error between the data �the given output features �denoted by y = (y0; :::; ywL) and the predicted
output nodes given by ' (x; �).

Neural network: example. As an example, consider a simple neural network with three layers (L = 3)
� an input layer L1, hidden layer L2 and output layer L3. Input features are given by a vector x =
(x0; x1; x2; x3), where x0 = 1 is a bias unit. The parameter vector is � � (�(1); �(2)), where �(l) is a matrix
made by the weights between the neurons of layer l and the next layer l+1; its element �(l)ij is a parameter
associated with the connection between the neuron j in layer l and the neuron i in layer l + 1, for i, with
j = 0, 1, 2, 3, and l = 1, 2. For our example, �(1) 2 R4 � R3 and �(2) 2 R4 � R1. Let z(l)i denote the
nonactivated output of a neuron i in the layer l, � be an activation function, corresponding to computations
performed by a neuron, a(l)i be activated output of neuron i in layer l. Then, for the input layer L1, we have

a
(1)
1 = x. For the second layer L2, we have z

(2)
1 = �

(1)
10 x0 + �

(1)
11 x1 + �

(1)
12 x2 + �

(1)
13 x3, which is nonactivated

output of neuron 1 in layer 2, and a(2)1 = �1(z
(2)
1 ), which is activated output of neuron 1 in layer 2; in

a matrix form, we have a(2) = �2(�
(1)z(2)). For the output layer L3, activated output is computed by

a(3) = �(�(2)z(2)) = �(�(2)(�(�(1)x)) = '(x; �); this is our predicted output; see Figure A.2.

Figure A.2. A neural network with one hidden layer.

Backpropagation algorithm. Given the assumption on �(�), we are to compute @

@�
(l)
ij

�(�). For this

purpose, one can use a backpropagation algorithm. Given the data (called a training set in machine
learning) f(xt; yt)gn

0

t=1, we perform the following steps for a neural network with L layers:

� Initially, set an error 4(l)ij to 0 for all (l; i; j). This variable will be used for accumulating the gradient.

� For each observation t, set activated output of the �rst layer to x, i.e., a(1) = xt. Apply forward

activation to compute the activated output a(l) for l = 2; 3; :::; L, as a(l) = � l

�
�(l)z(l)

�
where the
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non-activated output is z(l) = �(l�1)a(l�1). This computation is performed for the assumed values of
the parameters vector �.

� For each fytgn
0

t=1,

� compute the error value for the last layer as the di¤erence between the actual result in the last
layer and the true output,

�(L) = a(L) � yt;

�Compute the error of cost for a(l) in all the layers before the last one, i.e., �(L�1); :::; �(2) as
follows

�(l) = �(l)0�(l+1): � � 0
�
z(l)
�
;

where :� denotes the element-wise multiplication;
� update the new error matrix as

4(l) = 4(l) + �(l+1)a(l)0:

� The unknown gradient is given by the partial derivative of the lth layer for the parameter �(l)i;j ,

@

@�
(l)
i;j

� =
1

n0
4(l)ij :

Neural networks as universal approximators. Multilayer feedforward networks with hidden layers
provide a universal approximation framework.

(Hornik�s et al. (1989) universal approximation theorem). Whenever the activation function is bounded
and nonconstant, a standard multilayer feedforward network can approximate any (Borel) measurable func-
tion arbitrarily well, given that su¢ ciently many hidden units are considered.10 Given that any continuous
function on a closed and bounded subset of Rn is Borel measurable, the above theorem establishes that
any continuous function on a compact set can be approximated by a neural network. In addition, a neural
network can approximate arbitrarily well any function that maps from any �nite dimensional discrete space
to another.

Leshno et al. (1993) generalize Hornik�s et al. (1989) theorem to provide necessary and su¢ cient
conditions for universal approximation. In particular, they show that a standard multilayer feedforward
network can approximate any continuous function arbitrarily well if and only if the activation function is
nonpolynomial (including recti�ed linear units). They emphasize the role of the threshold values without
which the result does not hold. A threshold is an element that should be added to an activation function
if it is not dense in C (Rn). For example, � (x) = sin (x) cannot be used to approximate cos (x) in [�1; 1]
because sin (w � x), w 2 R is not dense in C ([�1; 1]). This can be changed by adding a threshold �

2 ,
i.e., sin

�
x+ �

2

�
= cos (x). Activation functions need not be smooth or continuous �nonpolynomiality is

the only restriction on he activation functions required. Leshno�s et al. (1993) results just specify that a
su¢ ciently wide network could represent any function without addressing the questions of the network�s
depth or e¢ ciency. In other words, the theory tells us that a large neural network will be able to represent
any function. However, there is no guarantee that the training algorithm will be actually able to learn that
function.

In particular, a failure can occur due to the following two reasons. First, the optimization algorithm we
use to train the neural network may fail to �nd parameters values corresponding to the desired function.
Second, the training algorithm may over�t which leads to �nding a wrong function. A no-free-lunch result
applies therefore: there exists no universally superior machine learning algorithm. Barron (1993) shows
that although a single-layer network is su¢ cient to approximate a broad class of functions, an exponential
number of hidden units may be required in the worse-case scenario.
10Hornik et al. (1990) also demonstrate that the derivatives of a function can be approximated to any desired degree of

accuracy by the derivatives of the feedforward network.
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B Training methods

In this section,we discuss some training methods that are used in machine learning literature.

Stochastic and batch gradient descent methods. For very simple approximating functions, the
training is easy since a solution to the optimization problem can be constructed in a closed form. The
familiar OLS regression is an example in which, y = �x and � = (x0x)�1 x0y. For more sophisticated
approximating functions, the training is implemented using a numerical iterative procedure. Possible
alternatives include, among others, Gauss-Jacobi, Gauss-Siedel and gradient descent methods. The basic
gradient descent (GD) method is given by

�k+1  �k � �kr�(�): (B.1)

Computing the true gradient r� can be costly or even infeasible. In machine learning, optimization
methods for �nding � can be classi�ed into two broad categories, namely, stochastic and batch. First, a SGD
method approximates the gradient of the expectation function with a single realization of the integrand
` (' (!)), i.e., r�(�) � r` (' (!k; �)). Thus, f�kg is not a uniquely determined sequence but a stochastic
process that depends on the realized sequence f!kg. Also, such approximation can be very imprecise for
each given step, but the cumulative average converges to the true gradient 1

K

PK
k=1r` (' (!k; �))! r��(�)

over K updates, provided that the coe¢ cients are stabilized, �i � �. That is, each direction �r` (' (!k; �))
should not be necessarily descent, however, if it is descent in expectation, we can �nd a minimum of �(�)
over a large number of iterations. Second, a BGD method in (4) uses multiple random draws on each
iteration

�k+1  �k �
�k
n0

n0X
i=1

r` (' (!i; �k)) ;

where the multiple random draws (!1; :::; !n0) are called batches, n0 2 f1; :::; ng; if n0 = n, the method is
called a full BGD and if n0 < n, it is called a mini BGD.

SGD and BGD methods have di¤erent trade-o¤s in terms of per iteration costs and expected per-
iteration improvement. Because of the sum structure in the coe¢ cients updating, a full BGD algorithm
greatly bene�ts from parallelization. However, the SGD algorithm does a more e¢ cient use of information
about the gradient than a batch one. To understand, create a new sample by copying the original sample
multiple times. By construction, the optimum of the larger set coincides with that of the original smaller
set. The full BGD algorithm that uses the larger set will be more expensive than its version that uses a
smaller set. The SGD performs the same computation and has the same costs in both scenarios. Although
in practice samples are not obtained by creating multiple copies of the original sample, there is plenty
of redundancy in the data. This observation suggests that it is ine¢ cient to use the whole sample on
every iteration, as is done under the full batch approach, and that working with small samples, even one
observation, as in the case of the SGD method, might be more bene�cial. In practice, however, the SGD is
characterized by fast improvements on initial iterations but dramatic posterior slowdowns (see Bertsekas,
2015) for an intuitive explanation of such behavior. This issue is addressed by a steady reduction in the
stepsize as iterations progress. Although in theory, the basic SGD has a slower rate of convergence than
the full BGD does, its per iteration costs is independent of the sample size n. A mini BGD method still
has gains from parallelization but is also more e¢ cient than a full-batch version.

There are other more sophisticated versions of the SGD method that ensure faster convergence and
have stronger convergence properties such as Nesterov and ADAM methods; see Goodfellow et al. (2016).
There is a trade-o¤ between using lots of parallel simulations with a large N so that the last term is a close
approximation of the expected gradient and going for faster updates. These training algorithms feature
time-varying learning rates and/or parameter speci�c updates rules (so that higher variance parameters
are updated slower). In the paper, we use some of these training methods, in particular, ADAM. Below
we provide some details on this training method.
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ADAM was proposed by Kingma and Ba (2014); its name is an abbreviation from "adaptive moments".
It is a combination of two other extensions of stochastic gradient descent, namely, Root Mean Square
Propagation, RMSProp, and momentum. RMSProp includes

gk  
1

n0

n0X
i=1

r` (' (!i; �k)) ;

rk+1  �rk + (1� �) gk � gk;

4�k+1 = �
�p

� + rk+1
� gk;

�k+1  �k +4�k+1:

where � is a small constant; � 2 (0; 1). Here, the learning rates of all parameters are adjusted individually
by making a step that is inversely proportional to the square root of the exponentially moving average of
the previous squared values gk � gk of the gradient gk. RMSProp also includes an estimate of the second-
order moment gk � gk. In a momentum algorithm, there are two additional parameters, a velocity vector
v and a hyperparameter � 2 [0; 1); the latter determines how quickly the e¤ect of the previous gradients
gk decreases,

gk  
1

n0

n0X
i=1

r` (' (!i; �k)) ;

vk+1  �vk � �gk;
�k+1  �k + vk+1:

ADAM applies momentum to the rescaled gradients. The algorithm calculates an exponential moving
average of the gradient and the squared gradient, and the parameters �1 and �2 control the decay rates of
these moving averages,

gk  
1

n0

n0X
i=1

r` (' (!i; �k)) ;

sk+1  �1sk + (1� �1) gk
rk+1  �2rk + (1� �2) gk � gk;bsk+1  sk+1

1� �t1
;

brk+1  rk+1
1� �t2

;

4�k+1 = �
bsk+1

� +
p
rk+1

;

�k+1  �k +4�k+1:

Thus, ADAM incorporates bias corrections for the �rst�order-moment estimate gk and for the second�order-
moment estimate gk � gk. In contrast, RMSProp only includes a correction for the second�order-moment
estimate (and not the �rst-order moment estimate) and does not have a correction factor 1� �t2.

Convergence of the GD method. In our minimization (maximization) problems, objective functions
should not be necessarily convex (concave) in parameters �. Such functions may have multiple local minima
(maxima) and other stationary points. It turns out that one can still provide some guarantees that the
basic SGD method converges in nonconvex (nonconcave) settings.
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Below, we provide the proof of this result for the case of a constant learning rate. In this proof, we
follow Bottou, Curtis and Nocedal (2018). The proof works interchangeably for both the expected risk and
empirical risk. Therefore, to represent both of them, we denote the objective by F : Rd ! R,

F (�) =

8<:
�(�) = E [` (' (!; �))] ;

or
�n(�) = 1

n

Pn
i=1 ` (' (!i; �)) :

(B.2)

The di¤erence between these two cases depends on how the SGD chooses the samples in each iteration. If
F (�) = �(�), then it is done uniformly from a �nite set of observations. If F (�) = �n(�), it is done using
the probability distribution P : Rd �! [0; 1].

Denote by g (!k; �k) a stochastic vector of gradients that covers, respectively, both the basic SGD and
a mini-batch GD methods

g (!k; �k) =

8<:
r` (' (!k; �k))

or
1
n0
Pn0

k=1r` (' (!k; �k)) :
Below, we provide a general discussion of the steps for the GD algorithms studied.

Algorithm 1. (GD algorithm):

� Make an initial guess on the parameters vector, i.e., �1.

� For k = 1; 2; :::, do the following:

� draw a random realization for !k.

� compute a stochastic vector of gradients g (!k; �k).
� choose a learning rate �k > 0.
� compute the new parameters vector as �k+1  �k � �kg (!k; �k).

� End iterations when convergence is achieved.
The proof of convergence relies on two assumptions, one is about a Lipschitz-continuous objective

gradient, and the other is about the �rst and second moments of the gradients.

Assumption 1. (Lipschitz-continuous objective gradients). (1) The objective function F :
Rd ! R is continuously di¤erentiable.

(2) The gradient of F denoted rF : Rd ! R is Lipschitz continuous with a constant L > 0 :

rF (�)�rF ���


2
� L



� � �


2
for all

�
�; �
	
� Rd. (B.3)

Note that Assumption 1 is equivalent to the following property:

F (�) � F
�
�
�
+rF

�
�
�0 �
� � �

�
+
1

2
L


� � �

2

2
for all

�
�; �
	
� Rd. (B.4)

The equivalence of (B.3) and (B.4) is veri�ed in Bottou et al. (2018). Moreover, this assumption leads to
the following useful result for all iterations k 2 f1; :::;Kg:

E!k [F (�k+1)� F (�k)] � ��krF (�k)
0E!k [g (!k; �k)] +

1

2
�2kLE!k

h
kg (!k; �k)k22

i
; (B.5)

which follows directly by Assumption 1.
One can achieve convergence of the studied GD methods by including additional requirements on the

�rst and second moments of g (!k; �k). These requirements help us bound the right-hand side of the
inequality (B.5). We de�ne the variance of g (!k; �k) as follows:

V!k [g (!k; �k)] � E!k
h
kg (!k; �k)k22

i
� kE!kg (!k; �k)k

2
2 : (B.6)

To be speci�c, assume that our optimization problem is a minimization problem.
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Assumption 2. (Limits on the �rst and second moments). The objective function F in (B.2) and
Algorithm 1 satisfy the following three properties:
(a) (Objective function). The sequence f�kg is in an open set where the objective function F is bounded
from below by a scalar Finf , i.e., F (�k) � Finf for all k 2 f1; :::;Kg.
(b) (First moment). There exist scalars �G and � such that �G � � > 0 and for all k, we have

rF (�k)0E!k [g (!k; �k)] � � krF (�k)k
2
2 ; (B.7)

kE!kg (!k; �k)k2 � �G krF (�k)k2 : (B.8)

(c) (Second moment). There exist scalars H � 0 and HV � 0 such that for all k, we have

V!k [g (!k; �k)] � H +HV krF (�k)k22 : (B.9)

Given Assumptions 1 and 2, we prove the following convergence result for Algorithm 1.
Theorem (Nonconvex objective and a �xed learning rate). Suppose Assumptions 1 and 2 hold.

Assume �k = � > 0 (constant) for all k and it satis�es

� � �

LHG
: (B.10)

Then, the expected sum of squares of the gradients of F (�k) satis�es

E

"
KX
k=1

krF (�k)k22

#
� K�LH

�
+
2F (�1)� Finf

��
; (B.11)

and the expected average squared gradients of F (�k) satis�es

E

"
1

K

KX
k=1

krF (�k)k22

#
� �LH

�
+
2 [F (�1)� Finf ]

K��
(B.12)

�!
K�!1

�LH

�
: (B.13)

Proof.

� From (B.5) and (B.7), we have

E!k [F (�k+1)� F (�k)]

� ��krF (�k)0E!k [g (!k; �k)] +
1

2
�2kLE!k

h
kg (!k; �k)k22

i
� ���k krF (�k)k22 +

1

2
�2kLE!k

h
kg (!k; �k)k22

i
: (B.14)

� The de�nition of the second moment in (B.6), together with Assumption 2 in (B.9), yields

E!k

h
kg (!k; �k)k22

i
� H +

�
HV + �

2
G

�| {z }
�HG��2

� krF (�k)k22 : (B.15)

� Combining the last two equations (B.14) and (B.15) yields

E!k [F (�k+1)� F (�k)] � �
�
�� 1

2
�kLHG

�
�k krF (�k)k22 +

1

2
�2kLH: (B.16)
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� Taking the total expectation of (B.16), we obtain

E [F (�k+1)]� E [F (�k)] � �
�
�� 1

2
�kLHG

�
�kE krF (�k)k22 +

1

2
�2kLH:

� Imposing now that �k = � and that � � �
LHG

, we get

E [F (�k+1)]� E [F (�k)] � �
1

2
��E krF (�k)k22 +

1

2
�2LH:

� Summing up the latter expression over all iterations k 2 f1; :::;Kg and recalling that the sequence
f�kg is such that F (�k) � Finf for all k, we obtain

Finf � F (�1) � E [F (�K+1)]� F (�1) � �
1

2
��

KX
k=1

E krF (�k)k22 +
1

2
K�2LH:

� Re-grouping the terms in the last expression leads to (B.11). The division of the resulting equation
by K implies (B.12). �

According to Assumption 2 about the second moment in (B.9), whenH = 0, there is no noise or the noise
goes down proportionally to krF (�k)k22, so that equation (B.13) implies that the sum of squared gradients
is �nite and that the sequence fkrF (�k)k2g �! 0 as K �! 1. When H > 0, there is an interaction
between the learning rate � and the variance of the stochastic directions. Result (B.12) provides a bound
on the average squared gradient of the objective function observed over K iterations. As K increases, this
average squared gradient becomes smaller, implying that a GD method spends increasingly more time in
regions where the objective function has a (relatively) small gradient. According to (B.13), when H 6= 0,
noise in the gradients prevents further progress in convergence (as the presence of nonzero term �LH

�
indicates). However, the average squared gradient can be reduced by choosing a small learning rate; the
drawback of a smaller � would be a lower speed of convergence.

One can also prove the convergence result for the case of non-constant learning rate �k. We state this
result without proving it in the theorem below.

Theorem (Nonconvex objective and a diminishing learning rate). Suppose Assumptions 1
and 2 hold. Assume a sequence f�kg satis�es

�k �
KX
k=1

�k =1 and
KX
k=1

�2k <1: (B.17)

Then, the expected sum of squares of the gradients of F (�k), weighted by �k, satis�es

E

"
KX
k=1

�k krF (�k)k22

#
<1; (B.18)

and the expected average squared gradients of F (�k), weighted by �k, satis�es

E

"
1

�k

KX
k=1

�k krF (�k)k22

#
�!

K�!1
0: (B.19)

Proof. See Bottou, Curtis and Nocedal (2018).

41



References

[1] Bertsekas, D., (2015). Convex Optimization Algorithms. Athena Scienti�c, Nashua, NH, USA.

[2] Bottou, L., F. Curtis, and J. Nocedal, (2018). Optimization methods for large-scale machine learning.
Manuscript.

[3] Goodfellow, I., Y. Bengio, and A. Courville, (2016). Deep learning. Massachusetts Institute Technology
Press.

[4] Hornik, K. (1989). Multilayer feedforward networks are universal approximators. Neural networks 2,
359-366.

[5] Kingma, D. and J. Ba, (2014). Adam: a method for stochastic optimization.
https://arxiv.org/pdf/1412.6980.pdf

[6] Leshno, M., V. Lin, A. Pinkus, S. Schocken, (1993). Multilayer feedforward networks with a nonpoly-
nomial activation function can approximate any function. Neural Networks 6, 861-867.

42


