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Abstract

The Canadian economy was not initially hit by the 2007-2009 Great Recession but ended up having
a prolonged episode of the e¤ective lower bound (ELB) on nominal interest rates. To investigate the
Canadian the ELB experience, we build a �baby�ToTEM model �a scaled-down version of the Terms
of Trade Economic Model (ToTEM) of the Bank of Canada. Our model includes 49 nonlinear equations
and 21 state variables. To solve such a high-dimensional model, we develop a projection deep learning
algorithm �a combination of unsupervised and supervised (deep) machine learning techniques. Our
�ndings are as follows: The Canadian ELB episode was contaminated from abroad via large foreign
demand shocks. Prolonged ELB episodes are easy to generate with foreign shocks, unlike with domestic
shocks. Nonlinearities associated with the ELB constraint have virtually no impact on the Canadian
economy but other nonlinearities do, in particular, the degree of uncertainty and speci�c closing condition
used to induce the model�s stationarity.
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1 Introduction

The Canadian economy did not experience a 2007 subprime crisis and was not initially hit by the Great
Recession, unlike the U.S. and Europe; see a speech of the Bank of Canada Deputy Governor Boivin (2011).
Nonetheless, after few months into the recession, Canada entered a prolonged episode of the e¤ective lower
bound (ELB) on nominal interest rates.1 In the paper, we investigate a hypothesis that the ELB crisis was
contaminated to Canada from abroad, in particular, from the U.S.

Bank of Canada has a well-developed macroeconomic model of the Canadian economy called the Terms
of Trade Economic Model (ToTEM); see a technical report of Dorich et al. (2013). That model is huge �
356 equations and unknowns and 215 state variables �and is analyzed exclusively by linearization-based
methods. In the paper, we construct a scaled-down version of ToTEM, which we call a �baby�ToTEM.
The model is still very large: it includes 49 equations and 21 state variables. To solve it, we introduce a
deep learning (DL) projection algorithm �a combination of unsupervised and supervised machine learning
techniques �capable of constructing global, fully nonlinear solutions.

We calibrate the bToTEM model by following the ToTEM analysis as closely as possible, and we check
that our scaled-down model reproduces remarkably well the impulse response functions of the full-scale
model. We conduct two empirically relevant policy experiments related to the ELB episode in Canada
during the Great Recession. In the �rst experiment, we introduce into bToTEM a sequence of foreign
shocks from ToTEM; and in the second experiment, we analyze a change in the in�ation target from 2 to
3 percent.

Our analysis delivers several interesting results. First, we demonstrate that the international trans-
mission of ELB is empirically plausible mechanism for explaining the Canadian ELB experience. To be
speci�c, in the beginning of the Great Recession, Canada faced a dramatic reduction in foreign demand (in
particular, in the U.S. demand), and it proved su¢ cient to produce a prolonged ELB episode in a realistic
and meticulously calibrated bToTEM model of the Canadian economy.

Second, we demonstrate that it is relatively easy to generate realistic ELB (or ZLB) episodes in new
Keynesian models via the foreign shocks calibrated from the data. In contrast, it is di¢ cult to produce
realistic ELB episodes via domestic shocks which lead to comovements that are inconsistent with basic
business-cycle facts. Thus, generating an appealing domestic ELB scenario is a challenge for bToTEM,
like it is for other new Keynesian models studied in the literature.

Third, we �nd that the Canadian economy would entirely avoid the ELB episode if the target in�ation
rate were 3 instead of 2 percent. However, this �nding must be taken with caution. Our analysis abstracts
from the issue of credibility of in�ation targeting, so achieving a higher in�ation target in the model is
straightforward. However, it seems questionable that central banks could easily meet an increased in�ation
target, given persistently low in�ation in many developed economies in recent years despite high degrees
of monetary accommodation.

Fourth and contrary to what we expected, we �nd that the ELB constraint plays a relatively minor
role in the bToTEM�s performance. In our baseline simulation, both local and global solution methods
predict similar timing and duration of the ELB episodes. Furthermore, the presence of active ELB does
not visibly a¤ect the model�s variables other than the interest rate. We argue that a modest role of ELB
is due to the presence of rule-of-thumb �rms and wage-unions in bToTEM. Such agents dampen excessive
responses of the economy to future shocks, ameliorating the forward guidance puzzle. The nature of the
ELB irrelevance result in our model is di¤erent from the one advocated in Debartoli et al. (2019). In
their case, the ELB constraint does not a¤ect the economy because of the availability of unconventional
monetary policies (forward guidance, quantitative easing, etc.) while in our case, such constraint is not
quantitatively signi�cant due to the presence of the rule-of-thumb agents.

Fifth, we discover that other nonlinearities �those not associated with ELB �can play an important
role in the model�s predictions. In particular, when assessing the impact of a hypothetical transition from

1ELB is similar to ZLB on (net) nominal interest rates but it is set at a level other than zero. What is important in both
cases is that there is a lower bound that becomes binding.
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a 2 to 3 percent in�ation target on the Canadian economy, we spot economically signi�cant di¤erences
between the linear and nonlinear dynamics. We show that such di¤erences are attributed to an uncertainty
e¤ect which implies large di¤erences in steady states between linear and nonlinear solutions. The e¤ect of
uncertainty on the steady state is known in the literature but we show a simple way to control for such
e¤ect: if the initial condition for each solution is constructed in relation to its own steady state (which we
view as a coherent approach), then the linear and nonlinear impulse responses look like vertical shifts of
one another.

Finally and most strikingly, we �nd that the closing condition, used to ensure stationarity in open-
economy models, plays an important role in the bToTEM dynamics. This �nding is surprising because it
is at odds with the well-known conclusion of Schmitt-Grohé and Uribe (2003) that closing conditions play
virtually no role in the implications of the open-economy models. Our conclusion is di¤erent because the
analysis of Schmitt-Grohé and Uribe (2003) relies on linearization while we focuses on nonlinear e¤ects.
In particular, in one experiment, we show that the closing conditions in linear and exponential forms
lead to signi�cantly di¤erent transitional dynamics. However, the linearized versions of these two closing
conditions are identical, so the linearization analysis of Schmitt-Grohé and Uribe (2003) cannot di¤erentiate
between them. In turn, our nonlinear analysis reveals the importance of high-order terms, neglected by
the linearization method.

The introduction of deep learning was critical for telling the nonlinear tale of the Canadian ELB
episode.2 Models like bToTEM are intractable under conventional value function iteration and projection
methods due to the curse of dimensionality. Our computational strategy di¤ers from the conventional
solution methods in three main respects. First, we introduce deep learning analysis into projection meth-
ods for analyzing dynamic economic models. Second, we combine supervised and unsupervised learning
techniques into an e¤ective computational strategy. Finally, we show how the new solution method can
be used for analyzing large-scale, central banking models that are intractable up to now. There are other
prominent recent papers on deep learning that had appeared while we were working on the present paper,
including Duarte (2018), Villa and Valaitis (2019), Fernández-Villaverde et al. (2019), Maliar et al. (2019),
and Azinovíc et al. (2019). We explain the relation of our work to that literature after we present our DL
method.

The rest of the paper is organized as follows: In Section 2, we construct the bToTEM model. In
Section 3, we describe the implementation of DL nonlinear solution methods. In Section 4, we use the
bToTEM model to analyze the Canadian ELB episode. In Section 5, we assess the role of di¤erent types of
nonlinearities in the bToTEM dynamics, in particular, we simulate a hypothetical increase of the in�ation
target from 2 to 3 percent and we analyze the role of the closing condition. Finally, in Section 6, we
conclude.

2 The bToTEM model

Nowadays, the central banks, leading international organizations and government agencies, use large-scale
macroeconomic models for projection and policy analysis. The term of trade economic model (ToTEM)
of the Bank of Canada is among the largest: it contains 356 equations and unknowns, including 215 state
variables. It includes several types of utility-maximizing consumers, several pro�t-maximizing production
sectors, �scal and monetary authorities, as well as a foreign sector.

At this moment, it is technically infeasible for us to solve the full-scale ToTEM nonlinearly. We
therefore construct and analyze bToTEM �a scaled down version of ToTEM that has 49 equations and
unknowns, including 21 state variables. In our construction of bToTEM, we follow ToTEM as closely as
possible. Like the full-scale ToTEM model, the bToTEM is a small open-economy model that features the

2 In the earlier version of the paper, namely, Lepetyuk et al. (2017), we solved bToTEM by using unsupervised learning
(clustering) for constructing the solution domain but we use the conventional polynomial functions for approximation. In the
present version, we add deep learning, namely, we replace the polynomial functions with more �exible deep neural networks.
This modi�cation allowed us to increase accuracy and enhance convergence under empirically relevant parameterizations.
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new-Keynesian Phillips curves for consumption, labor and imports. As in ToTEM, we assume the rule-of-
thumb price settlers in line with Galí and Gertler (1999). We use a quadratic adjustment cost of investment
and a convex cost of capital utilization. We maintain the ToTEM�s terms of trade assumption, namely, we
allow for bidirectional trade that consists of exporting domestic consumption goods and commodities, and
importing foreign goods for domestic production. In the main text, we describe the key model�s equations of
bToTEM; the derivation of equilibrium conditions and extended list of the model�s equations are provided
in Appendices A and C, respectively. In Appendix E, we show that bToTEM produces impulse response
functions that are remarkably close to those produced by ToTEM.

2.1 Production of �nal goods

The production sector of the economy consists of two stages. In the �rst stage, intermediate goods are pro-
duced by identical perfectly competitive �rms from labor, capital, commodities, and imports. In the second
stage, a variety of �nal goods are produced by monopolistically competitive �rms from the intermediate
goods. The �nal goods are then aggregated into the �nal consumption good.

First stage of production. In the �rst stage of production, the representative, perfectly competitive
�rm produces an intermediate good using the following constant elasticity of substitution (CES) technology:

Zgt =

�
�l (AtLt)

��1
� + �k (utKt)

��1
� + �com

�
COMd

t

���1
�
+ �m (Mt)

��1
�

� �
��1

; (1)

where Lt, Kt, and COMd
t are labor, capital and commodity inputs, respectively,Mt is imports, ut is capital

utilization, and At is the level of labor-augmenting technology that follows a stochastic process given by

logAt = 'a logAt�1 + (1� 'a) log �A+ �at ; (2)

with �at being a normally distributed variable, and 'a being an autocorrelation coe¢ cient.
Capital depreciates according to the following law of motion:

Kt+1 = (1� dt)Kt + It; (3)

where dt is the depreciation rate, and It is investment. The depreciation rate increases with capital
utilization as follows:

dt = d0 + de
�(ut�1): (4)

The �rm incurs a quadratic adjustment cost when adjusting the level of investment. The net output is
given by

Znt = Z
g
t �

�i
2

�
It
It�1

� 1
�2
It: (5)

The objective of the �rm is to choose Lt, Kt+1, It, COMt, Mt, ut in order to maximize pro�ts

E0

1X
t=0

R0;t
�
P zt Z

n
t �WtLt � P it It � P comt COMd

t � Pmt Mt

�
subject to (1)�(5). The �rm discounts nominal payo¤s according to household�s stochastic discount factor
Rt;t+j = �j (�t+j=�t) (Pt=Pt+j), where �t is household�s marginal utility of consumption and Pt is the �nal
good price.
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Second stage of production. In the second stage of production, a continuum of monopolistically
competitive �rms indexed by i produce di¤erentiated goods from the intermediate goods and manufactured
inputs. The production technology features perfect complementarity

Zit = min

�
Znit

1� sm
;
Zmiit
sm

�
;

where Znit is an intermediate good and Z
mi
it is a manufactured input, and sm is a Leontief parameter. The

di¤erentiated goods Zit are aggregated into the �nal good Zt according to the following CES technology:

Zt =

�Z 1

0
Z

"�1
"

it di

� "
"�1

:

Cost minimization implies the following demand function for a di¤erentiated good i:

Zit =

�
Pit
Pt

��"
Zt; (6)

where

Pt =

�Z 1

0
P 1�"it di

� 1
1�"

: (7)

The �nal good is used as the manufactured inputs by each of the monopolistically competitive �rms.
There are monopolistically competitive �rms of two types: rule-of-thumb �rms of measure ! and

forward-looking �rms of measure 1�!. Within each type with probability � the �rms index their price to
the in�ation target ��t as follows: Pit = ��tPi;t�1. With probability 1� �, the rule-of-thumb �rms partially
index their price to lagged in�ation and target in�ation according to the following rule:

Pit = (�t�1)
 (��t)

1� Pi;t�1: (8)

The forward-looking �rms with probability 1�� choose their price P �t in order to maximize pro�ts generated
when the price remains e¤ective

max
P �t

Et

1X
j=0

�jRt;t+j

 
jY
k=1

��t+kP
�
t Zi;t+j � (1� sm)P zt+jZi;t+j � smPt+jZi;t+j

!
(9)

subject to demand constraints

Zi;t+j =

 Qj
k=1 ��t+kP

�
t

Pt+j

!�"
Zt+j : (10)

As in ToTEM, the presence of the rule-of-thumb �rms ameliorates the forward guidance puzzle by increasing
the discount on future marginal costs in the Phillips curve.

Relation between the �rst and second stages of production. The production in the �rst and
second stages are related as follows:

Znt =

Z 1

0
Znitdi = (1� sm)

Z 1

0
Zitdi = (1� sm)

Z 1

0

�
Pit
Pt

��"
Ztdi = (1� sm)�tZt; (11)

where �t =
R 1
0

�
Pit
Pt

��"
di is known as price dispersion.

Finally, in order to maintain the relative prices of the investment goods and noncommodity exports
in accordance to the national accounts, these goods are assumed to be produced from the �nal goods
according to linear technology that implies P it = �iPt and P

nc
t = �xPt, where P it and P

nc
t are the price of

investment goods and noncommodity exports goods, respectively.
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2.2 Commodities

The representative, perfectly competitive domestic �rm produces commodities using �nal goods according
to the following CES technology:

COMt = (Z
com
t )sz (AtF )

1�sz � �com
2

�
Zcomt
Zcomt�1

� 1
�2
Zcomt ; (12)

where Zcomt is the �nal good input, and F is a �xed production factor, which may be considered as land.
Similarly to production of �nal goods, the commodity producers incur quadratic adjustment costs when
they adjust the level of �nal good input.

The commodities are sold domestically (COMd
t ) or exported to the rest of the world (X

com
t )

COMt = COM
d
t +X

com
t :

They are sold at the world price adjusted by the nominal exchange rate as follows:

P comt = etP
comf
t ;

where et is the nominal exchange rate (i.e., domestic price of a unit of foreign currency), and P
comf
t is the

world commodity price. In real terms, the latter price is given by

pcomt = stp
comf
t ; (13)

where pcomt � P comt =Pt and p
comf
t � P comft =P ft are domestic and foreign relative prices of commodities,

respectively, P ft is the foreign consumption price level, and st = etP
f
t =Pt is the real exchange rate.

2.3 Imports

The �nal imported good Mt is bonded from intermediate imported goods according to the following tech-
nology:

Mt =

�Z 1

0
M

"m�1
"m

it di

� "m
"m�1

;

where Mit is an intermediate imported good i: The demand for an intermediate imported good i is given
by

Mit =

�
Pmit
Pmt

��"m
Mt;

where

Pmt =

�Z 1

0
(Pmit )

1�"m di

� 1
1�"m

:

We assume the prices of the intermediate imported goods to be sticky in a similar way as the prices of
the di¤erentiated �nal goods. A measure !m of the importers follows the rule-of-thumb pricing, and the
others are forward looking. The optimizing forward-looking importers choose the price Pm�t in order to
maximize pro�ts generated when the price remains e¤ective

max
Pm�t

Et

1X
j=0

(�m)
jRt;t+j

 
jY
k=1

��t+kP
m�
t Mi;t+j � et+jPmft+jMi;t+j

!
subject to demand constraints

Mi;t+j =

 Qj
k=1 ��t+kP

m�
t

Pmt+j

!�"m
Mt+j ;

where Pmft is the price of imports in the foreign currency. All intermediate importers are foreign and they
face the same marginal cost given by the foreign price of imports.
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2.4 Households

The representative household in the economy has the period utility function over consumption of �nished
goods and a variety of di¤erentiated labor service

Ut =
�

�� 1
�
Ct � � �Ct�1

���1
� exp

�
� (1� �)
� (1 + �)

Z 1

0
(Lht)

�+1
� dh

�
�ct ; (14)

where Ct is the household consumption of �nished goods; �Ct is the aggregate consumption, which the
representative household takes as given; Lht is labor service of type h; �ct is a consumption demand shock
that follows a process

log �ct = 'c log �
c
t�1 + �

c
t ; (15)

with �ct being a normally distributed variable, and 'c being an autocorrelation coe¢ cient.
The representative household of type h maximizes the lifetime utility

E0

1X
t=0

�tUt (16)

subject to the following budget constraints:

PtCt +
Bt
Rt
+

etB
f
t

Rft

�
1 + �ft

� = Bt�1 + etBft�1 + Z 1

0
WhtLhtdh+�t; (17)

where Bt and B
f
t are holdings of domestic and foreign-currency denominated bonds, respectively; Rt and

Rft are domestic and foreign nominal interest rate, respectively; �
f
t is the risk premium on the foreign

interest rate; Wht is the nominal wage of labor of type h; �t is pro�ts paid by the �rms.

2.5 Wage setting

The representative household supplies a variety of di¤erentiated labor service to the labor market, which
is monopolistically competitive. The di¤erentiated labor service is aggregated according to the following
aggregation function:

Lt =

�Z 1

0
L
"w�1
"w
ht dh

� "w
"w�1

:

Aggregated labor Lt is demanded by �rms in the �rst stage of production. A cost minimization of the
aggregating �rm implies the following demand for individual labor:

Lht =

�
Wht

Wt

��"w
Lt; (18)

where Wht is wage for labor service of type h, and Wt is de�ned by the following:

Wt �
�Z 1

0
W 1�"w
ht dh

� 1
1�"w

: (19)

Wages are set by labor unions that are of two types: rule-of-thumb unions of measure !w and forward-
looking unions of measure 1�!w. Within each type, with probability �w the labor unions index their wage
to the in�ation target ��t as follows Wit = ��Wi;t�1. The rule-of-thumb unions that do not index their wage
in the current period follow the rule

Wit =
�
�wt�1

�w (��t)1�wWi;t�1: (20)
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The forward-looking unions that do not index their wage choose the wage W �
t optimally in order to

maximize the household utility function when the wage is e¤ective

Et

1X
j=0

(��w)
j Ut+j (21)

subject to labor demand (18) written as

Lh;t+j =

 Qj
k=1 ��t+kW

�
t

Wt+j

!�"w
Lt+j ; (22)

and budget constraints (17) which can be written as

Pt+jCt+j =

jY
k=1

��t+kW
�
t Lh;t+jdh+	t+j ;

where 	t+j includes terms other than Ct+j and Lh;t+j .

2.6 Monetary policy

The monetary authority sets the short-term nominal interest rate in response to a deviation of the actual
in�ation rate from the target and a deviation of the actual output from potential output,

�t = �rRt�1 + (1� �r)
�
�R+ �� (�t � ��t) + �Y

�
log Yt � log �Yt

��
+ �rt ; (23)

where �r measures the degree of smoothing of the interest rate; �R is the long-run nominal interest rate;
�� measures a long-run response to the in�ation gap; ��t is the in�ation target; �Y measures a long-run
response to the output gap; �Yt is the potential level of output; �rt is an interest rate shock that is assumed
to follow the following process:

�rt = 'r�
r
t�1 + �

r
t ;

where �rt is a normally distributed variable, and 'r is an autocorrelation coe¢ cient. Potential output
changes with productivity in the following stylized way:

log �Yt = 'z log �Yt�1 + (1� 'z) log
�
At �Y
�A

�
:

If an e¤ective lower bound Relbt is imposed on the nominal interest rate, the interest rate is determined as
a maximum of (23) and Relbt :

Rt = max
n
Relbt ;�t

o
:

2.7 Foreign demand for noncommodity exports

We assume that the foreign demand for noncommodity exports is given by the following demand function:

Xnc
t = f

 
Pnct

etP
f
t

!��
Zft ; (24)

where Pnct is a domestic price of noncommodity exports and Zft is a foreign activity measure. In real terms,
we have

Xnc
t = f

�
st
pnct

��
Zft : (25)
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2.8 Balance of payments

The balance of payments is

etB
f
t

Rft

�
1 + �ft

� � etBft�1 = Pnct Xnc
t + P comt Xcom

t � Pmt Mt; (26)

where Bft is domestic holdings of foreign-currency denominated bonds, and R
f
t is the nominal interest rate

on the bonds. In real terms, it becomes

bft

rft

�
1 + �ft

� � bft�1 stst�1 = 1
�Y
(pnct X

nc
t + pcomt Xcom

t � pmt Mt) ; (27)

where the bond holdings are normalized as bft =
stB

f
t

P ft+1
�Y
, and rft is the real interest rate on the foreign-

currency denominated bonds.

2.9 Rest-of-the-world economy

The rest of the world is speci�ed by three exogenous processes that describe the evolution of foreign
variables. First, the evolution of the foreign activity measure Zft is given by

logZft = 'zf logZ
f
t�1 +

�
1� 'zf

�
log �Zf + �zft ; (28)

second, the foreign real interest rate rft follows

log rft = 'rf log r
f
t�1 +

�
1� 'rf

�
log �r + �rft ; (29)

�nally, a foreign commodity price pcomft is

log pcomft = 'comf log p
comf
t�1 +

�
1� 'comf

�
log �pcomf + �comft ; (30)

where �zft , �
rf
t and �comft are normally distributed random variables, and 'Zf , 'rf and 'comf are the

autocorrelation coe¢ cients.

2.10 Uncovered interest rate parity

We impose an augmented uncovered interest rate parity condition

et = Et

264(et�1){
0@et+1Rft

�
1 + �ft

�
Rt

1A1�{
375 ; (31)

where the term (et�1)
{ under the brackets is added to mimic the relationship assumed in ToTEM; see

Appendix A.4 for some more details. The augmentation reduces the responsiveness of the exchange rate
to a change in the interest rate di¤erential.

2.11 Market clearing conditions

We close the model by the following resource feasibility condition:

Zt = Ct + �iIt + �xX
nc
t + Zcomt + �zZt: (32)
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We de�ne GDP and GDP de�ator as follows:

Yt = Ct + It +X
nc
t +Xcom

t �Mt + �yYt; (33)

P yt Yt = PtCt + P
i
t It + P

nc
t X

nc
t + P comt Xcom

t � Pmt Mt + �yP
y
t Yt;

in real terms, the latter becomes

pyt Yt = Ct + p
i
tIt + p

nc
t X

nc
t + pcomt Xcom

t � pmt Mt + �yp
y
t Yt: (34)

2.12 Stationarity condition for the open-economy model

The budget constraint (17) of the domestic economy contains Rft
�
1 + �ft

�
where Rft is the rate of return

to foreign assets and �ft is the risk premium. If the rate of return to foreign assets does not depend on
quantity purchased, then the domestic economy can maintain nonvanishing long-run growth by investing
in foreign assets. Schmitt-Grohé and Uribe (2003) explore several alternative assumptions that make it
possible to prevent this undesirable implication and to attain stationarity in open-economy models. We
adopt one of their assumptions, namely, we assume that the risk premium �ft is a decreasing function of
foreign assets

�ft = &
�
�bf � bft

�
; (35)

where �bf is the steady-state level of the normalized bond holdings. This assumption ensures a decreasing
rate of return to foreign assets. As we will see, a speci�c functional form assumed for modeling risk
premium plays an important role in the model�s predictions.

2.13 Calibration of bToTEM

The bToTEM model contains 61 parameters to be calibrated. Whenever possible, we use the same values
of parameters in bToTEM as those in ToTEM, and we choose the remaining parameters to reproduce a
selected set of observations from the Canadian time series data. In particular, our calibration procedure
targets the ratios of six nominal variables to nominal GDP P yt Yt, namely, consumption PtCt, investment
P it It, noncommodity export P

nc
t X

nc
t , commodity export P

com
t Xcom

t , import Pmt Mt, total commodities
P comt COMt, and labor input WtLt. Furthermore, we calibrate the persistence of shocks so that the
standard deviations of the selected bToTEM variables coincide with those of the corresponding ToTEM
variables, namely, those of domestic nominal interest rate Rt, productivity At, foreign demand Z

f
t , foreign

commodity price pcomft , and foreign interest rate rft . The parameters choice is summarized in Tables D.1
and D.2 provided in Appendix D.

3 A deep-learning global solution method

bToTEM is a complex nonlinear model that represents a serious challenge to the existing global nonlinear
solutions methods. First, bToTEM has much higher dimensionality �21 state variables �than the new
Keynesian models studied in the literature with the global solution methods. Second, the open-economy
bToTEM model produces a more complex system of equations than a baseline closed-economy new Key-
nesian model studied nonlinearly in the literature, namely, bToTEM has more than 30 nonlinear equations
that must be treated with a numerical solver in all grid points, as well as in all future states, inside the
main iterative loop. Finally, the economy faces an occasionally binding ELB constraint on the nominal
interest rate.

To address the challenges of bToTEM, we introduce a deep learning (DL) projection method that relies
on a combination of supervised and unsupervised learning techniques. Speci�cally, we use a multilayer
neural network for approximating decision functions, and we use simulation and clustering analysis for
constructing the solution domain. In this section, we describe these techniques, explain how they help us
deal with the curse of dimensionality and discuss the relation of our DL method to the literature.
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3.1 Supervised learning: deep neural network

Deep neural networks are a �exible parametric family of functions which can be used as an alternative
to traditional approximating functions such as polynomials or splines, in particular, in high-dimensional
applications. In Figure 1, we show a three-layer neural network that we use for constructing the solution
to bToTEM; such a network consists of three layers �one input, one hidden and one output layers; in the
�gure, layers are represented by superscripts.

Figure 1: Three layer neural network

The input layer consists of a vector of inputs x 2 Rn to which we add a constant term of one, denoted as
�+1� in the �gure. In both hidden and output layers, we �rst construct a linear combination of inputs,
called the �nonactivated neuron� z � b +Wx, where b is a bias that corresponds to the constant term,
and W 2 Rn is a vector of weights that corresponds to the vector of inputs x. We then transform the
nonactivated neuron z into activated neuron a using an activation function a = � (z).

In the hidden layer, as an activation function, we use a symmetric sigmoid function, namely, the
hyperbolic tangent function tanh(z) = 2= [1 + exp(�2z)]� 1. Thus, each activated neuron i of the hidden
layer is constructed by applying the same activation function to inputs

a
(1)
i = �1

�
z
(1)
i

�
= tanh

�
b
(1)
i +W

(1)
i x

�
;

however it has its own bias b(1)i and a vector of weights W (1)
i .

In the output layer, as an activation function, we use a simple identity function � (z) = z, so activated
and nonactivated neurons coincide. The inputs of this layer are the activated neurons of the hidden layer
a(1) to which we also add the constant term. Thus, each output i of the output layer is given by

yi = z
(2)
i = b

(2)
i +W

(2)
i a(1);

where b(2)i and W (2)
i are the corresponding bias and weights.

A straightforward construction of inputs for a neural network would be to use a vector of 21 state
variables of bToTEM plus a constant term. However, we chose to construct a more �exible approximation
by using quadratic basis (terms of the second-order ordinary polynomial) of the state variables as an input.
For 21 state variables of bToTEM, the quadratic base consist of 252 variables plus the constant term of one.
This approach allows us to reduce the degree of nonlinearity explicitly attributed to the neural network
and to achieve higher accuracy with just one hidden layer. The quadratic basis also helps us facilitate
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convergence of the iterative �xed-point algorithm that we used to compute the coe¢ cients and weights of
the neural network.

We use 11 neurons in both hidden and output network layers to match the number of bToTEM in-
tertemporal choice variables. For this number of neurons, the neutral network includes 2,915 coe¢ cients:
there are 2,783 coe¢ cients in the hidden layer, and there are 132 coe¢ cients in the output layer. All in-
puts and outputs of the neural network are normalized by a linear transformation to lie within an interval
[�1; 1].

3.2 Unsupervised learning: clustering analysis

We construct the solution to be accurate in the high-probability area of the state space, instead of focusing
on a much larger conventional rectangular domain. To produce a grid in the high-probability area of the
state space, we use cluster grid analysis (CGA); see Maliar et al. (2011), and Maliar and Maliar (2015) for
a discussion of this and other ergodic-set techniques. Our grid construction can be understood by looking
at a two-dimensional example in Figure 2.
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Figure 2: Construction of a cluster grid from simulated points

In the �rst panel of the �gure, we see a cloud of points that is obtained by stochastic simulation of an
economic model: this cloud covers a high-probability area of the state space. The crude simulated cloud
contains many redundant points that are located close to one another. The CGA method eliminates the
redundancy by replacing a large set of simulated points with a smaller set of �representative�points. This
process is illustrated in the remaining panels of the �gure: �rst, CGA splits the simulated points into a set
of clusters; then it computes the centers of the clusters; and �nally, it uses the centers of the clusters as a
grid for constructing a nonlinear solution. To measure the distance between simulated points, we compute
the principal components of the simulated data and we normalize them to unit standard deviation. To
distinguish clusters, we use a hierarchical clustering algorithm with the Euclidean distance and Ward
linkage. Finally, to construct the centers, we compute simple averages of all simulated points that belong
to the clusters distinguished.

3.3 Implementation details of the DL solution method

For the purpose of constructing nonlinear global solutions, we split the variables of the bToTEM model
into four types (see Appendix B for the list of model variables):

� exogenous state variables,
Zt �

n
At; �

R
t ; �

c
t ; p

comf
t ; rft ; Z

f
t

o
;

� endogenous state variables,

St �
n
Ct�1; Rt�1; st�1; �t�1;�t�1; wt�1; �

w
t�1;�

w
t�1; p

m
t�1; �

m
t�1; It�1; Z

com
t�1 ; b

f
t�1;

�Yt�1;Kt�1
o
;
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� endogenous intertemporal choice variables; these are variables that enter the model equations at both
t and t+ 1, where a t+ 1 value is a random variable unknown at t,

Yt �
�
F1t; F2t; F

w
1t ; F

w
2t ; F

m
1t ; F

m
2t ; qt; �t; st; ex

i
t; ex

com
t

	
;

� endogenous intratemporal choice variables; these are variables that are determined within the current
period t, given the intertemporal choice,

Xt �
�
Lt;Kt; It; COM

d
t ;Mt; ut; dt; Z

g
t ; Z

n
t ; Zt; Ct; Yt; �t; rmct;�t; �

m
t ; ��t; p

m
t ; Rt; p

z
t ; wt;

MPKt; R
k
t ; p

i
t; �

f
t ; b

f
t ; X

nc
t ; X

com
t ; COMt; Z

com
t ; �wt ; w

�
t ;�

w
t ;
�Yt; p

com
t ; pnct ; p

mf
t ; pyt

�
:

The DL method is implemented in the context of the bToTEM model as summarized in Algorithm 1.

Step 0. Initialization

a. Choose simulation length T and �x initial conditions Z0 �
n
A0; �

R
0 ; �

c
0; p

comf
0 ; rf0 ; Z

f
0

o
and S0.

b. Draw
n
�At+1; �

R
t+1; �

c
t+1; �

comf
t+1 ; �

rf
t+1; �

Zf
t+1

oT�1
t=0

and construct Zt �
n
At; �

R
t ; �

c
t ; p

comf
t ; rft ; Z

f
t

oT
t=0
.

c. Construct perturbation decision functions bZ (�;bZ), bS (�;bS), bY (�;bY ) and bX (�;bX),
where bZ , bS , bY and bX are the polynomial coe¢ cients.

d. Use the perturbation solution to produce simulation fYt;Xt;St;ZtgTt=0 of T + 1 observations.
e. Construct a grid for endogenous and exogenous state variables fSm;Zmgm=1;:::;M
by using agglomerative clustering analysis.

f. Choose approximating functions (neural networks) for parameterizing the intertemporal choice:
Yt � bY (�;vY ), where vY is the parameter vector for the global solution method.

g. Use the perturbation solution bY (�;bY ) to construct an initial guess on vY .
h. Choose integration nodes,

n
�Aj ; �

R
j ; �

c
j ; �

comf
j ; �rfj ; �

Zf
j

o
j=1;:::;J

and weights, f!jgj=1;:::;J .

i. Compute and �x future exogenous states Z0m;j �
n
Am;j ; �

R
m;j ; �

c
m;j ; p

comf
m;j ; r

f
m;j ; Z

f
m;j

o
m=1;:::;M

.

Step 1. Updating the intertemporal decision functions
At iteration i, for m = 1; :::;M ,
a. Compute intertemporal choice variables Y0

m � bY (Sm;Zm;vY ).
b. Compute intratemporal choice variables X0m satisfying the intratemporal choice equations.
c. Form S0m from Y0

m and X
0
m.

d. Compute intertemporal choice variables in J integration nodes Y0
m;j � bY �S0m;Z0m;j ;vY �.

e. Compute intratemporal choice variables X0m;j in J satisfying the intratemporal choice equations.
f. Substitute the results in the intertemporal choice equations and compute bYm.
g. Find v that minimizes the distance bvY � argmin

v

PM
m=1

 bYm � bY (Sm;Zm;v).
h. Use damping to compute v(i+1)Y = (1� �)v(i)Y + �bvY , where � 2 (0; 1) is a damping parameter.
i. Check for convergence and end iteration if 1

M max
MP
m=1

���Y(i+1)
m �Y(i)

m

Y
(i)
m

��� < $.
Proceed to the next iteration and iterate on these steps until convergence.

Algorithm 1: A global nonlinear DL solution method

To compute conditional expectations in the intertemporal choice conditions, we use a monomial formula
with 2N nodes, where N = 6 is the number of stochastic shocks; see Maliar and Maliar (2014) for a
description of this formula. To solve for intratemporal choice variables X0m, we use a numerical solver. As
for the intratemporal choice variables in the integration nodes X0m;j , we �nd them either with a numerical
solver or by using interpolation of the intratemporal choice decision functionX0m constructed for the current
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period using a numerical solver. We rely on Levenberg-Marquardt optimization to train the neural network
in order to update the neural network coe¢ cients bvY . Following the common practice in the deep learning
literature, we do not use all the data (grid points) for training but we split them into training, validation
and testing samples in the proportion 70, 15 and 15 percent, respectively. In each iteration, we alternate
the training and validation steps until the appropriate regularization hyperparameter is computed. The
testing sample was used both to monitor the quality of approximation in each iteration and to determine the
number of epochs (iterations) necessary for convergence of our approximations. The damping parameter
is set at � = 0:1, and the convergence criterion is set at $ = 10�7. The running time for constructing our
global DL solution was about 6 hours;3 the running time is sensitive to a speci�c choice of the damping
parameter �.

3.4 Designing the DL method to address the challenges of bToTEM

How does our design of the DL method help us address the challenges of bToTEM? First of all, the
introduction of neural networks was critical for producing accurate solutions. To be speci�c, in the earlier
version of the present paper, namely, Lepetyuk et al. (2017), we approximated the decision functions by
using the conventional polynomial functions. However, such function were not �exible enough for accurate
approximations, and our method ran into the problem of non-convergence. To attain convergence, we
scaled down the volatility of shocks, which also reduced the role of nonlinearities in the earlier version. In
the current version, we both increased accuracy and enhanced convergence by replacing polynomials with
deep neural networks. Our current DL algorithm is capable of constructing an accurate global nonlinear
solution under empirically relevant volatility of shocks. As a result, the e¤ects of nonlinearities on the
solution became more important. However, the improvements came at a cost: the introduction of deep
neural networks instead of polynomial functions increased the running time up to 10 times.

In turn, the cluster grid technique was critical for making our DL method tractable. This technique re-
duces computational expenses in three ways. First, it allows us to restrict attention only to the ergodic area
in which the solution �lives�, which is typically an in�nitesimally small fraction of the high-dimensional
hypercube domain used by conventional projection methods; see Maliar and Maliar (2014) for a discus-
sion. Second, clustering reduces the number of grid points compared to pure simulation method, such
as parameterized expectation algorithm in Den Haan and Marcet (1990), Du¤y and McNelis (2001) and
Villa and Valaitis (2019). Given that the system of the bToTEM equations is treated with an expensive
numerical solver in each grid point and integration node, the reduction in the number of grid points by
clustering reduces the cost dramatically. Finally, it avoids the need to re-simulate grid points in each
iteration, namely, we construct the grid just once in the beginning of the solution procedure using some
low-accuracy solution such as a �rst-order perturbation solution. (We checked that updating the grid as
the solution re�nes does not practically a¤ect accuracy in our model).

Re-simulating the solution along iteration is an indispensable step of a pure simulation but not projec-
tion methods. This is because the simulation methods use simulated points for constructing expectation
functions. If such simulation points are produced by a low-accuracy solution, the expectation functions
are computed inaccurately, which leads to the low overall accuracy of solutions. This is not the case for
our projection method that uses simulated points only for constructing the grid but computes expectation
functions using an accurate monomial integration method; see Maliar and Maliar (2014) for a survey of
this and other deterministic integration methods. For smooth functions like bToTEM decision functions,
the monomial rules are remarkably accurate with just few integration nodes, while Monte-Carlo integration
methods have a low square-root rate of convergence and thus require long simulation for accurate solutions;
see Maliar and Maliar (2014) for a comparison analysis. Finally, to compute the �xed-point parameters
of the neural network, we use derivative-free �xed-point iteration. Taken together, the above techniques
make our DL method tractable in problems with high dimensionality like bToTEM!

3Our hardware is Intel R CoreTM i7-2600 CPU @ 3.400 GHz with RAM 12.0 GB. Our software is written and executed in
MATLAB 2019a. We parallelize the computation across four cores.
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3.5 Relation to the literature

The key novel feature of our solution method is the use of DL techniques for approximating decision
functions which we introduce following the recent trends in computer-science literature; see Goodfellow
et al. (2016). The application of neural networks in economic dynamics is dated back to a seminal work
of Du¤y and McNelis (2001) who incorporated this functional family into the parameterized expectation
algorithm of Den Haan and Marcet (1990).

The subsequent progress in that direction was slow, however, recently, several papers applied deep
learning methods to analyze their dynamic economic models. In particular, Duarte (2018) and Fernandez-
Villaverde et al. (2019) use neural networks in the context of continuous-time models, speci�cally, the
former paper uses neural networks to construct a solution to the Bellman equation in the optimal control
problems in �nance, and the latter paper uses neural networks for approximating a nonlinear aggregate
law of motion in a version of Krusell and Smith�s (1998) model. In a discrete-time application, Villa
and Valaitis (2019) show that neural networks can help to deal with ill-conditioning in the context of the
parameterized expectation algorithm. Our DL analysis shares the use of simulation techniques with the
latter paper, however, we incorporate additional projection-style elements such as clustering and deter-
ministic integration that lead to important advantages over pure simulation methods; see our discussion
in Section 3.4.

Furthermore, Maliar et al. (2018) introduce a di¤erent DL approach that allows to cast the entire
economic model (in the form of lifetime reward and residuals in the Euler and Bellman equations) into
an objective function of supervised learning which is optimized via the Google TensorFlow platform. This
approach is developed further in Maliar et al. (2019) who solve Krusell and Smith�s (1998) model using
the model-reduction property of neural networks instead of relying on approximate aggregation. Finally,
Azinovíc et al. (2019) independently develop a method similar to Maliar et al. (2018, 2019) and they
use it for solving a challenging life-cycle model with aggregate uncertainty. The key di¤erence of the DL
analysis from the above literature is that the literature focuses on supervised (deep) learning techniques
for approximation of decision functions via Monte Carlo simulation, while the present paper emphasizes
bene�ts of combining supervised and unsupervised learning methods into an e¤ective DL computational
strategy for analyzing high-dimensional applications.

4 Was the Canadian ELB crisis imported from abroad?

In the U.S. and European countries, the Great Recession and the ELB episodes were caused by the 2008
�nancial crisis. In contrast, Canada did not experience any signi�cant �nancial crisis or economic slowdown
at the beginning of the Great Recession. Nonetheless, Canada also ended up reaching ELB on nominal
interest rates and remained there during the 2009�2010 period. To be speci�c, the Bank of Canada targeted
the overnight interest rate at 0.25 percent annually, which at that time was viewed by the Bank of Canada
to be a lower bound on the nominal interest rate.

What factors led the Canadian economy to the ELB crisis? In this section, we argue that the recession
spread to Canada from the rest of the world, primarily from the U.S., which is the main Canadian trade
partner (around 75 percent of Canadian exports go to the U.S.). The Canadian economy experienced a
huge (16 percent over 3 quarters) drop in exports in the beginning of the Great Recession; see a speech
by Boivin (2011), a former Deputy Governor of the Bank of Canada. Using bToTEM simulation, we �nd
that negative foreign shocks of such magnitude are su¢ cient to produce a prolonged ELB episode in the
Canadian economy.

4.1 Generating the ELB episode in Canada using foreign shocks

Calibration of exogenous foreign shocks using ToTEM. An important question is how to realis-
tically calibrate the behavior of the rest of the world (ROW) sector in the bToTEM model since foreign
�nancial crisis a¤ects not just foreign demand but also foreign prices and foreign interest rates. Our
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methodology combines the analysis of bToTEM and ToTEM. Namely, we �rst simulate ToTEM to pro-
duce impulse responses to a negative ROW shock, and we then fed the resulting responses into bToTEM as
exogenous state variables. The ROW sector in ToTEM consists of three variables: a ROW interest rate, a
ROW commodity price and a ROW activity measure. These three shocks produced by ToTEM are shown
in Figure 3.
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Figure 3: Exogenous ROW shocks

A negative shock in the ROW sector has three e¤ects in ToTEM: �rst, the ROW commodity price
reduces (because the world demand goes down); second, the ROW nominal interest rate reduces (since
the monetary authority in the ROW model is assumed to follow a Taylor rule); and third, the foreign
activity measure declines (because the ROW foreign demand decreases). The size of the ROW shocks
generated by ToTEM is in line with the data. Speci�cally, the ROW commodity price shock in the �gure
matches a 50 percent decline in the global commodity price index documented by the IMF.4 The ROW real
interest rate shock matches a 5 percent peak-to-trough decline in the e¤ective U.S. federal funds rate.5 The
ROW activity measure shock is slightly smaller than an 18 percent decline in the foreign activity measure
estimated by the Bank of Canada.6 See also another related observation of a 20 percent peak-to-trough
decline of Canadian exports during the Great Recession. When we fed the ROW shocks from ToTEM into
bToTEM, we obtain an ELB episode that is similar to the one observed in the Canadian data.

bToTEM simulation of the ELB episode in Canada. Figure 4 displays the simulated time series
for the key model variables under the given behavior of the ROW sector imported from ToTEM. Here,
ELB on the nominal interest rate is set at 2 percentage points below the deterministic steady state of
the nominal interest rate. All the variables are reported in percentage deviations from the deterministic
steady state, except of in�ation and the interest rates that are shown in annualized deviations from the
deterministic steady state. We assume that initially, the domestic interest rate in bToTEM is slightly
below the deterministic steady state, namely, by 1 percent, which makes it is easier to reach ELB on the
nominal interest rate.7

We plot three di¤erent solutions, namely, a �rst-order perturbation solution with ELB imposed; a plain
second-order perturbation solution produced by Dynare without imposing ELB; and a DL solution with
ELB imposed. To impose ELB on the perturbation solution, we use the IRIS toolbox by Bene� et al.
(2015) that deals with occasionally binding constraints by introducing auxiliary anticipated shocks as in
Laséen and Svensson (2011). We also checked that the IRIS produces the same solutions as the OccBin
toolbox developed by Guerrieri and Iacoviello (2015); see also Holden (2016) for a related method. As

4 Source: All Commodity Price Index, incudes both Fuel and non-Fuel Price Indices. IMF Data. https://data.imf.org/
5 Source: E¤ective Federal Funds Rate, https://fred.stlouisfed.org/series/FEDFUNDS
6 Source: Foreign Activity Measure. Indicators of Capacity and In�ation Pressures for Canada. Bank of Canada.

https://www.bankofcanada.ca/rates/indicators/capacity-and-inflation-pressures/product-market-definitions/
product-market-historical-data/

7The natural yearly rate of interest in bToTEM is calibrated to 3 percent as in ToTEM. This value is chosen to represent
the long-run historical average of the natural rate of interest in the Canadian economy. However, the current natural rate of
interest in Canada is considerably lower. Setting the initial interest rate below the steady state is a way to account for the
current low interest rate.
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Figure 4: Responses of linear perturbation, quadratic perturbation, and global DL solutions to ROW
shocks

we see, the three solutions look very similar in the �gure, so we conclude that the nonlinearities do not
signi�cantly a¤ect the solution in this particular simulation experiment.

To check the accuracy of numerical solutions, we compute unit-free residuals in the model�s equation
along the simulation path; see Appendix F for details of our accuracy assessment. As expected, the global
solution method is the most accurate. The least accurate �rst-order perturbation method can produce
residuals of order 10�1:44 � 3:6 percent, while the DL method produces residuals which are about an
order of magnitude lower, namely, equal to 10�2:37 � 0:4 percent. (The accuracy results are similar on a
stochastic simulation). Given that all three numerical solutions look similar, we conclude that numerical
errors of these magnitudes do not a¤ect the qualitative implications of the model in this experiment.

A modest role of nonlinearity in our baseline simulation is not a generic property of the bToTEM model
but a numerical �nding that is valid just for these speci�c simulation and calibration procedures. We could
have increased the di¤erence between linear and nonlinear solutions by augmenting volatility of shocks (still
within a reasonable range) or by modifying some model�s assumptions (such as the closing cost speci�cation
considered in Section 5.2). However, it was not the goal of our analysis to �nd parameterizations that
emphasize the role of nonlinearities. Rather, our goal was to meticulously calibrate the bToTEM model
to reproduce the Canadian data, trying to make it as close as possible to the full-scale ToTEM model. It
turned out that under such calibration, nonlinearities proved to be relatively unimportant, including ELB.
In Section 5, we show simulation experiments in which nonlinearities are important.

Understanding the ELB episode in Canada: a contagion mechanism. Under the considered
scenario of negative ROW shocks, there are three foreign variables that decline during the crisis, namely,
the foreign activity measure, the foreign interest rate, and the world commodity price; see Figure 3. The
immediate consequence of these shocks for the domestic economy in Figure 4 is a sharp decline in com-
modity and noncommodity exports in the Canadian economy. There are signi�cantly fewer commodities
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extracted due to a huge decline in commodity prices and as a consequence, domestic output starts declin-
ing. The central bank responds by lowering the interest rate to stimulate the economy but the magnitude
of shocks is so large that the bank reaches the lower bound on the nominal interest rate by six quarters.
Without unconventional monetary tools, the interest rate stays at the lowest value for two years until the
foreign economy su¢ ciently recovers. All three numerical methods considered deliver the same qualitative
predictions about the ELB episode. Thus, the proposed contagion-style mechanism is strong enough to
account for this ELB episode in the Canadian economy.8

How robust is the contagion mechanism to the key bToTEM assumptions? To evaluate the
robustness of the contagion mechanism, we conduct three sensitivity exercises. First, we consider an
economy without the rule-of-thumb �rms and unions. Such a model exhibits a noticeably deeper de�ation
that would call for even more negative interest rates, thus prolonging the ELB episode. This result is not
surprising since the rule-of-thumb �rms set their prices based on past in�ation and the in�ation target, so
in the absence of such �rms, future real marginal costs have a larger impact on today�s price set by the
optimizing �rms. In our second robustness exercise, we exclude the augmentation from the UIP condition;
see equation (31). In our third exercise, we consider Cobb-Douglas technology in the second stage of
production instead of the baseline Leontief production technology. We �nd that these two modi�cations
marginally a¤ect the impulse-response functions that we documented for our baseline model. In particular,
ELB episodes have practically the same periodicity and duration as in our baseline model. In Appendix H,
we describe these experiments in more details, and we illustrate the resulting responses with Figure H.1.

4.2 Can we generate a realistic ELB episode using domestic shocks?

ELB episodes are di¢ cult to generate in closed economies using domestic shocks. As we
have shown, it is fairly easy to generate realistic ELB episodes in our open-economy bToTEM model using
foreign shocks. In contrast, the literature �nds that ELB episodes are challenging to produce in closed-
economy new Keynesian models using typical domestic shocks. In particular, Chung et al. (2012) �nd that
standard structural models (e.g.; FRB/US; EDO; Smets and Wouter, 2007) deliver very low probability of
hitting ELB. To generate the ELB episodes in a stylized new Keynesian model, Maliar and Maliar (2015)
assume large 40-percent preference shocks a¤ecting the marginal rate of substitution between consumption
and leisure. Aruoba et al. (2018) augment the simulated series from the model to include historical data
from the U.S. economy in order to obtain realistic spells at ELB. Fernández-Villaverde et al. (2015) argue
that within the standard new Keynesian model, it is impossible to generate long ELB spells with modest
drops in consumption, which were observed during the recent crises; they suggest that the only way to get
around this result is to introduce wedges into the Euler equation. Also, Christiano et al. (2015) emphasize
the importance of such shocks as a consumption wedge (a perturbation governing the accumulation of the
risk-free asset), a �nancial wedge (a perturbation for optimal capital accumulation), a TFP shock, and a
government consumption shock.

Realistic ELB episodes are also di¢ cult to generate in open economies using only domestic
shocks. In our bToTEM simulation, the ELB episode is entirely due to foreign shocks. But would it be
equally easy to generate a realistic ELB episode in the bToTEM model using domestic shocks? To answer
this question, we build a domestic scenario in which the ELB episode is caused by a negative consumption
demand shock.

The domestic shock acts during the �rst three years and then gradually declines. We calibrate the
domestic demand shock to yield the same duration of the ELB episode as in the foreign demand scenario.

8There is related recent literature on the transmission of liquidity trap from one country to another; see Bodenstein et
al. (2016), Cook and Devereux (2016), and Corsetti et al.(2016) among others. See also Fernández et al. (2017) for recent
evidence on the importance of terms of trade shocks over the business cycle.
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The size of the shock at the peak is about 12 percent. The initial state of the economy is also the same as
in the foreign-demand scenario.

The simulation of bToTEM under the consumption demand shock is shown in Figure 5. As we see, it is
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Figure 5: Responses of linear and quadratic perturbation solutions in consumption demand scenario

indeed possible to generate the ELB episode under the domestic demand shock but the model�s implications
are inconsistent with the stylized business cycle comovements. In particular, investment increases in
response to negative demand shocks. Alternatives are not without �aws, for example, a negative supply
shock is in�ationary and counterfactually increases the interest rate according to the model�s Taylor rule
(see Figure E.3). Thus, generating an appealing domestic ELB scenario is a challenge in the bToTEM
model as well.

If our foreign demand and domestic demand scenarios appear extreme, we consider a mixed scenario in
which the foreign and domestic shocks from the above two scenarios are taken with 0.5 weights. The results
are shown in Figure G.1 in Appendix G. The mixed scenario leads to a realistic ELB episode with responses
that accord well with the business cycle comovements in the data, correcting thus the shortcomings of the
pure domestic ELB scenario. On the basis of our experiments, we conjecture that namely the presence of
foreign shocks makes it possible to generate realistic ELB episodes rather than open-economy features of
bToTEM.9

9Our comparison of foreign and domestic shocks should be taken with caution because such shocks are not directly
comparable. The foreign demand shock is closer in spirit to government shock in that it is exogenous demand for goods,
not a shock that a¤ects household or �rm demand.
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5 Understanding the role of nonlinearities in the bToTEM solution

In the past, policymakers were not concerned with nonlinearities in their large-scale macroeconomic mod-
els.10 The question �How wrong could linearized solutions be?�became of interest to policymakers in light
of the Great Recession and the ELB crisis. Since then, a considerable e¤ort was dedicated to understanding
the role of nonlinearities in the implications of new Keynesian models. In our baseline simulation of the
Canadian ELB episode, the nonlinearity e¤ects were modest but we found that variations in the model�s
parameterization and simulation scenarios make these e¤ects quantitatively important. In this section, we
show simulation experiments that highlight three e¤ects of nonlinearity on the bToTEM solution:

i). (Uncertainty e¤ ect). Linearized solutions do not depend on the degree of volatility �, as do nonlinear
solutions.

ii). (High-order e¤ ect). Linearization method neglects high-order polynomial terms, unlike more �exible
nonlinear solutions.

iii). (Solution-domain e¤ect). Perturbation (local) solutions are constructed to be accurate in a deter-
ministic steady state, and their accuracy can deteriorate dramatically when deviating from the steady state,
in particular, in the area of ELB.

Before discussing the simulation exercises, let us gain intuition into these three e¤ects by looking at the
perturbation solutions,

g (x; �) � g (�x; 0) + gx (�x; 0) (x� �x)| {z }
1st-order perturbation solution

+
1

2
g�� (�x; 0)�

2| {z }
uncertainty e¤ect

+
1

2
gxx (�x; 0) (x� �x)2| {z }
high-order e¤ect

; (36)

where g (x; �) is a decision function to be approximated; x is a vector of state variables; � is a degree
of volatility; (�x; 0) is a deterministic steady state; g (�x; 0), gx (�x; 0) and gxx (�x; 0) are, respectively, steady
state value, and Jacobian and Hessian matrices of g; x� �x is a deviation from a steady state; (x� �x)2 �
(x� �x)
(x� �x) is a tensor product of the deviations; the terms g� (�x; 0) and g�x (�x; 0) are omitted because
they are shown to be equal to zero in rational expectations models; see Schmitt-Grohé and Uribe (2004).

As follows from (36), the second-order perturbation method addresses the e¤ects i) and ii) by the shift
term 1

2g�� (�x; 0)�
2 and the second-order term 1

2gxx (�x; 0) (x� �x)
2, respectively. However, plain perturba-

tion methods do not address the e¤ect iii) because they are constructed to be accurate in just one point �
a deterministic steady state �and their quality can deteriorate when we deviate from the steady state, in
particular, to the ELB area. Piecewise linear solutions produced by the IRIS and OccBin toolboxes help
us correct the problem of the solution domain associated with ELB. However, the domain e¤ect can be
very large in new Keynesian models even in the absence of binding ELB.11

Our DL solution method addresses the e¤ects i) - iii) more conclusively than the perturbation methods.
First, it relies on a neural network approximation function which is more �exible than the �rst- and second-
order polynomial functions; it can accurately account for the uncertainty and high-order e¤ects. Second, it
solves the model on a large ergodic-set domain which includes the ELB area instead of a small neighborhood
of the steady-state point, so the accuracy of the DL solutions does not deteriorate as rapidly when deviating
from the steady state as does the accuracy of local (perturbation) methods. We analyze the nonlinearity
e¤ects i), ii) and iii) on the bToTEM solution in Sections 5.1, 5.2 and 5.3, respectively.
10As Bullard (2013) pointed out, �... the idea that U.S. policymakers should worry about the nonlinearity of the Taylor-type

rule and its implications is sometimes viewed as an amusing bit of theory without real rami�cations. Linear models tell you
everything you need to know. And so, from the denial point of view, we can stick with our linear models...�Similarly, Leahy
(2013) argues: �Prior to the crisis, it was easier to defend the proposition that nonlinearities were unimportant than it was to
defend the proposition that nonlinearities were essential for understanding macroeconomic dynamics.�
11 Judd et al. (2017) demonstrate that approximation errors in linear and quadratic perturbation solutions to new Keynesian

models can reach hundreds percent under empirically relevant calibrations, even if the economy is away from ELB.

20



5.1 The uncertainty e¤ect and the in�ation target

In this section, we illustrate the uncertainty e¤ect in the context of a hypothetical increase in the in�ation
target from 2 to 3 percent. This experiment is of interest because in new Keynesian models, an increase in
the in�ation target reduces the probability of the ELB episodes. As an illustration, in Figure 6 we show
that if the Bank of Canada had the in�ation target of 3 percent instead of 2 percent, ELB would never be
reached in bToTEM under any solution method in our previous experiment.
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Figure 6: Linear perturbation, quadratic perturbation, and global DL solutions under the in�ation target
of 3 percent (in deviations from the deterministic 3-percent in�ation-target steady state)

The Bank of Canada revises its level of the in�ation-control target every three to �ve years. The last
revision was in 2016: the Bank of Canada considered the possibility of increasing the in�ation target from
2 to 3 percent, but eventually it reached the decision to keep it at a 2-percent level for the next �ve years
(because a higher in�ation has certain costs for the Canadian economy; see Kryvtsov and Mendes, 2015
for a discussion).

Dramatic di¤erences between local and global solutions. We implement the increase in the in�a-
tion target in bToTEM by maintaining the same real interest rate. We thus increase the nominal interest
rate target level by one percent. The initial condition corresponds to the deterministic steady state of the
Canadian economy with an old in�ation target of 2 percent. We recompute the solution under the new
in�ation target of 3 percent, and we simulate a transition path from that initial condition assuming no
shocks over the transition path.

In Figure 7, we show the transition path under the three solution methods. Evidently, the local and
global solutions are dramatically di¤erent. The �rst-order perturbation solution behaves in a way that is
typical for new Keynesian models, and it agrees with our intuition. The credible change in the in�ation
target almost instantaneously translates into an increase in the in�ation rate. In�ation reacts so rapidly
because in our sticky-price economy, the non-optimizing �rms set their price according to the new in�ation
target. Following the Taylor rule with persistence, the interest rate remains below the new steady state
during the transition and therefore provides a monetary stimulus. The stimulus is re�ected in higher
investment, output, consumption and capital. However, the second-order and global nonlinear solutions
looks puzzling, in particular, consumption and investment produce wiggles and even go down. We will
show that the puzzling behavior of nonlinear solutions is explained by the uncertainty e¤ect.

Understanding the impact of uncertainty on the steady state. Since ELB is not binding in this
experiment, the �rst- and second-order perturbation solutions in (36) can di¤er either because of the un-
certainty e¤ect or because of the second-order e¤ect. The uncertainty e¤ect, represented by 1

2g
2
�� (�x; 0)�

2,
implies that the linear and nonlinear models have di¤erent steady states, speci�cally, when the realized
value of shocks is zero, a linear model converges to the deterministic steady state, while a nonlinear model
converges to the so-called risky steady state that depends on a degree of volatility �. The second-order ef-
fect, represented by 1

2gxx (�x; 0) (x� �x)
2, includes nonlinearities associated with wage and price dispersions
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Figure 7: A transition from a 2 percent to 3 percent in�ation target under linear, quadratic, and global
DL solutions (in deviations from the deterministic 2-percent in�ation-target steady state)

which are neglected by the linearization method. The uncertainty e¤ect is well appreciated from Figure 7.
Both the second-order perturbation and global DL solutions converge not to the deterministic steady state
but to some other levels.
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Figure 8: A transition from a 2 percent to 3 percent in�ation target under linear and two quadratic
solutions one of which starts from the deterministic steady state and the other starts from the risky steady
state (in deviations from the deterministic 3-percent in�ation-target steady state)

To assess the relative importance of the uncertainty and second-order e¤ects, in Figure 8 we show a
simulation of a second-order perturbation solution by using a risky steady state as an initial condition
instead of the deterministic steady state. After the adjustment of the initial condition, the second-order
e¤ect disappears! Now, the �rst-order and alternative second-order perturbation solutions are visually
indistinguishable, up to a constant term that shifts the second-order solution relative to the �rst-order
solution. We thus recognize that the puzzling wiggly behavior of nonlinear solutions in Figure 7 along the
transition happens simply because nonlinear solutions are e¤ectively confronted with two transitions: one
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is a transition to a new in�ation target and the other is a transition from the deterministic to their own
risky steady state. Adjusting the initial condition removes the second transition and makes the nonlinear
solutions meaningful. Our results also mean that second-order e¤ects associated with the wage and price
dispersions plays only a minor role in the second-order perturbation solutions.
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Figure 9: A transition from a 2 percent to 3 percent in�ation target under linear and two global DL
solutions one of which starts from the deterministic steady state and the other starts from the risky steady
state (in deviations from the deterministic 3-percent in�ation-target steady state)

We next perform a similar experiment with the global DL solution by starting the transition from
the risky steady state of the DL global solution; see Figure 9. The results for the global DL solution are
similar to those of the second-order perturbation solution. Here, we also observe an important uncertainty
e¤ects on the steady state but once we make an adjustment for di¤ering steady states, the local and global
solutions become qualitatively similar. However, nonlinearity plays a more important role in the global
solution than in the perturbation solution, in particular, the long-term changes of the interest and in�ation
rates are visibly larger. The consequence of a larger stimulus is that the e¤ect of the in�ation-target change
on output is positive for the global DL solution, while it was negative for the second-order perturbation
solution.

The fact that linear and nonlinear solutions have di¤erent steady states is well known. A novel feature
of our analysis is to show that the steady-state di¤erences can lead to non-trivial di¤erences in transition
dynamics. We also o¤er a simple way to control for the steady-state e¤ect, namely, we simulate each
solution starting from its own steady state (alternatively, one can start at the same relative distance from
the steady state). In our case, this eliminates the uncertainty e¤ect and makes the simulated solutions to
look like vertical translations of one another.

5.2 The high-order e¤ect and the closing condition

In the previous section, the uncertainty e¤ect was qualitatively important, while the high-order e¤ect
played a relatively minor role (provided that we make an adjustment for di¤ering steady states). We now
show an experiment in which the high-order e¤ect is qualitatively important. We speci�cally revisit the
simulation experiment in which the Canadian economy experiences three shocks to the ROW variables
(Section 4.1). However, we modify the model�s assumption by replacing the linear closing condition (35)
that ensures stationarity in our baseline model with a similar closing condition in an exponential form, as
is used in Schmitt-Grohé and Uribe (2003):

�ft = &
h
exp

�
�bf � bft

�
� 1
i
: (37)

Recall that under the linear closing condition in Figure 4, all three solutions looked very similar.
However, the solutions in Figure 10 look very di¤erent after we change the closing condition to (37). Now,
the risk premium has a faster and sharper increase and decline because of the changes in the foreign bonds.
The change in risk premium dynamics a¤ects the exchange rate via the uncovered interest rate parity
condition (31) (it pre-multiplies the foreign interest rate). In turn, the exchange rate a¤ects the prices of
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Figure 10: Responses of linear perturbation, quadratic perturbation and alternative quadratic solutions to
ROW shocks

two out of four inputs in the production function, which eventually impacts the real marginal cost and
in�ation.

Why are the nonlinearities of the closing condition manifested in bToTEM? The linear closing condition
(35) does not have second-order terms by construction and its linearization is equal to the condition

itself �ft = &
�
�bf � bft

�
. In contrast, the exponential closing condition (37) does have high-order terms,

speci�cally, �ft � &
�
�bf � bft

�
+ 1

2 &
�
�bf � bft

�2
. Such high-order terms account for a visibly large di¤erence

between the linear and nonlinear perturbation solutions in Figure 10.
The importance of stationarity condition in the bToTEM model is surprising, given a well-known result

of Schmitt-Grohé and Uribe (2003) that a speci�c closing condition used does not signi�cantly a¤ect the
implications of open-economy models. However, we shall recall that their analysis focuses exclusively
on linearized solutions. Under linearization, the exponential closing condition (37) is given by �ft �
&
�
�bf � bft

�
, i.e., it coincides exactly with the linear closing condition (35). Thus, the analysis of Schmitt-

Grohé and Uribe (2003) would treat the two alternative closing conditions as identical and would not reveal
the importance of high-order e¤ects associated with the closing condition as our nonlinear analysis does.

Our analysis does not provide a theoretical stand on what a particular speci�cation of the closing
condition to choose. However, we �nd an important practical consideration: the closing condition in
exponential form used in Schmitt-Grohé and Uribe (2003) tend to produce explosive simulation, while our
linear closing condition leads to numerically-stable simulation. Again, the di¤erence between these two
closing conditions only matters for simulation of nonlinear solutions.

5.3 The solution-domain e¤ect and the ELB irrelevance

In Figure 4, bToTEM simulation predicts nearly the same magnitude and duration of the ELB episode
with and without the ELB constraint. The inclusion of such constraint does not signi�cantly a¤ect the
variables other than interest rate. Furthermore, local (perturbation) and global solutions look very sim-
ilar. Taken together, these results imply that the domain e¤ect iii) is modest. That it, the global DL
solution constructed to be accurate on a large domain including the ELB area turned out to be similar to
the perturbation solutions constructed in a single steady-state point by neglecting ELB. In that speci�c
experiment, the Bank of Canada would not be terribly wrong if it just used a plain �rst-order perturbation
method for analyzing their ToTEM model, either ignoring ELB entirely or chopping o¤ the interest rate at
the ELB level in simulation. In the remainder of this section, we explore reasons for the ELB irrelevance
in our analysis.

The �ndings of the literature on the importance of ELB are mixed. Let us recall the �ndings of
the related literature. Several papers �nd that ELB is quantitatively important in the context of stylized
new Keynesian models with Calvo pricing. In particular, Maliar and Maliar (2015) argue that �rst- and
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second-order perturbation solutions understate the severity and duration of the ELB crisis. Fernández-
Villaverde et al. (2015) show that in the periods of binding ELB, the nonlinearities start playing an
important role, a¤ecting the expected duration of spells, �scal multipliers, as well as the trade-o¤ between
spells and drops in consumption. Aruoba et al. (2018) show that nonlinearities in their new Keynesian
model can explain the di¤erential experience of the U.S. and Japan by allowing for nonfundamental shocks
(sunspots). Furthermore, in the model with Rotemberg pricing, Boneva et al. (2016) �nd that linearization
considerably distorts interactions between ELB and the agents�decision rules, in particular, those for labor
supply; see also Gust et al. (2012) for related evidence from estimation of a nonlinear new Keynesian
model.

However, there is also literature that �nds that the ELB constraint is quantitatively unimportant. In
particular, Christiano et al. (2016) study a stable-under-learning rational expectation equilibrium in a
simple nonlinear model with Calvo pricing; they �nd that a linearized model inherits the key properties of
the nonlinear model for �scal policy at ELB, predicting similar government spending multipliers and output
drops. Furthermore, Eggertsson and Singh (2016) derive a closed-form nonlinear solution to a simple, two-
equation new Keynesian model; they report negligible di¤erences between the exact and linearized solutions
when they look at the e¤ects of �scal policy at ELB.

Irrelevance of ELB without room for unconventional policy. A recent paper of Debortoli et al.
(2019) coined the term irrelevance of the ELB hypothesis to refer to the case when the impact of ELB on the
economy is insigni�cant. However, the irrelevance in Debortoli et al. (2019) has a di¤erent meaning than
the one in our analysis. They argue that ELB was not a relevant constraint since monetary policymakers
engaged in unconventional monetary policies (forward guidance, quantitative easing, balance-sheet policies,
negative interest rates) to overcome the limitations posed by ELB. In contrast to Debortoli et al. (2019),
we obtain the ELB irrelevance result without room for unconventional monetary policy. Our irrelevance
result does not mean that the Great Recession was unimportant in Canada but suggests that the recession
dynamics was not overwhelmingly ampli�ed by a binding the ELB constraint.12

A minor role of ELB in the bToTEM risky steady state. Our baseline economy with 2 percent
in�ation target matches well the ELB statistics of Canadian economy as captured by ToTEM (see Dorich
et al., 2018). To be speci�c, the probability of reaching ELB in bToTEM is about 8 percent and the average
duration of ELB episodes is 5 quarters. Such a signi�cant probability of reaching ELB a¤ects the average
interest rate, but we �nd that the e¤ect of ELB on the �rst moments of the other key model variables is
very small. A typical stochastic simulation with and without ELB is shown in Figure 11.
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Figure 11: Simulated series

We �nd that the di¤erence between the unconditional means of the interest rate in the models with
12Debortoli et al. (2019) mention that their irrelevance result could be captured by specifying the Taylor rule to smooth

on a notional interest rate, rather than on the observed interest rate, and then imposing ZLB. We ran additional experiments
and we found that the introduction of the notional interest rate indeed makes ELB even less important in our analysis (these
results are not reported).
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and without ELB is 5.5 basis points, while the corresponding di¤erence in in�ation is only 0.4 basis points.
Such di¤erence is also documented by Hills et al. (2016) in the context of their estimation of de�ationary
bias in the U.S. economy. It means that in a nonlinear model, the central bank does not get the same
in�ation rate as it targets by the Taylor rule. However, Hills et al. (2016) report far more substantial
de�ationary bias due to ELB than we do, speci�cally, they �nd the di¤erence between the risky steady
states of in�ation in the models with and without ELB to be 18 basis points.

Why is there so large di¤erence between the estimates of Hills et al. (2016) and those in the present
paper? Hills et al. (2016) argue that a critical ingredient for their result is the assumption of the optimizing
price setters that are forward looking and that take into account a tail risk in the future marginal costs.
In contrast, the presence of rule-of-thumb price setters in bToTEM diminishes the contribution of future
marginal costs to the pricing decision (the rule-of-thumb agents were introduced in ToTEM to address the
forward guidance puzzle). This is precisely the feature that accounts for the minor role of ELB in the
quantitative implications of the bToTEM model.

6 Conclusion

This paper tells a tale of the Canadian the ELB experience during the Great Recession. We demonstrate
that a direct impact on the foreign trade was a quantitatively important transmission channel through
which the contagion of the Great Recession spread to Canada from the rest of the world. There is a
popular saying �When the U.S. sneezes, Canada catches a cold�. But this time it went the other way
around: it was the U.S. that caught the (subprime crisis) cold, and it was Canada that sneezed.

Our tale builds around a carefully designed bToTEM model, which is meticulously calibrated to re-
produce the key observations on the Canadian economy, as well as the impulse responses of ToTEM.
The bToTEM model is capable of generating a realistic ELB episode under the rest-of-the-world shocks
calibrated from the full-scale ToTEM model.

Large-scale central banking models like ToTEM and bToTEM are routinely used for policy experiments
but their analysis is limited to linear approximations. Our novel DL algorithm combines supervised and
unsupervised learning in a way that enables us to construct an accurate global fully nonlinear solution to
a central banking model with the degrees of nonlinearities and the size of the state space that have not
been studied before.

What is the value added of deep learning for telling the Canadian ELB tale? It is fair to say that we
could have discovered and simulated the ELB contagion mechanism by using exclusively linearization-based
methods. But we would not know how reliable our linear solution is, and we would miss some dramatic
e¤ects of nonlinearities on the predictions of the bToTEM model. In particular, we would overlook the
uncertainty e¤ect that makes the steady states of linear and nonlinear models to di¤er and that accounts
for observed qualitative di¤erences in the transitional dynamics of the two models. Furthermore, we would
miss the nonlinearity e¤ects associated with the closing condition. On the other hand, the nonlinearity
associated with ELB turned out to be of a lesser importance than we expected.

The bToTEM model constructed in the paper is a useful alternative model to the Bank of Canada.
While the full-scale ToTEM is not yet feasible for global nonlinear methods, bToTEM can be solved
nonlinearly and its accuracy can be assessed. In addition to the Bank of Canada, our deep learning analysis
can be useful to all users of large-scale models, including researchers, central banks and government agencies
who can bene�t from our methodology of calibrating, solving, and simulating large-scale macroeconomic
models, as well as designing nontrivial policy experiments within such models.
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A Derivation of the optimality conditions

In this appendix, we elaborate the derivation of the optimality conditions.

A.1 Production of �nal goods

First stage of production The Lagrangian of the problem is
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The optimal quantities satisfy the following conditions, with an augmented discount factor as in ToTEM:
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where Qt is the Lagrange multiplier on the law of motion of capital (3). Introducing real prices by
pzt = P zt =Pt, wt = Wt=Pt, pit = P it =Pt, p

com
t = P comt =Pt, pmt = Pmt =Pt, and qt = Qt=Pt, where Pt is the

price of �nal good, the conditions can be written as
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Second stage of production The �rst-order condition associated with the problem (9)-(10) is
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where the real marginal cost is
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The aggregate price introduced by (7) satis�es the following condition:
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Combining (A.18) with the optimal price setting (A.15), we get
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Relation between the �rst and second stages of production Introducing the following price index
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A.2 Commodities

The Lagrangian of the problem is the following:
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The resulting partial adjustment equation for the commodity-producing �rm is as follows:
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or expressed in real prices
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A.3 Imports

Similarly to (A.13), the �rst-order optimality condition associated with the problem of optimizing forward-
looking importers is the following:
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The condition (A.23) can be written as
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and where st and p
mf
t are the real exchange rate and the real foreign price of imports introduced by st =

etP
f
t =Pt and p
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t = Pmft =P ft , respectively. The aggregate import price satis�es the following condition:
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Combining (A.27) with (A.24), we get
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A.4 Households

The maximization of the lifetime utility (16) subject to the budget constraint (17) with respect to con-
sumption and bond holdings yields the following �rst-order condition:
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where �t is the marginal utility of consumption, which is given by

�t = (Ct � �Ct�1)
�1
� exp

�
� (1� �)
� (1 + �)

Z 1

0
(Lht)

�+1
� dh

�
�ct : (A.30)

The no-arbitrage condition on holdings of domestic and foreign bonds would imply the following interest
rate parity:
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which is further augmented as in ToTEM to improve business cycle properties of the model as follows:
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The condition can be expressed in terms of real exchange rate st = etP
f
t =Pt as follows:
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A.5 Wage setting

The �rst-order optimality condition associated with the problem (21)-(22) is
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where the marginal rate of substitution between consumption and labor is introduced as follows:
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Using the demand (22), we write the optimality condition (A.33) as
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Introducing w�t =W
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t =Pt, the condition (A.34) can be stated as
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The aggregate wage de�ned by (19) satis�es the following condition:
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Combining (A.38) with price settings of the optimizing labor unions (A.35), we get
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The marginal utility of consumption (A.30) can be expressed employing (18) as follows:
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B List of model variables

In Table B.1, we list 49 endogenous model variables. When solving the models, the variables are taken
either in levels or in logarithms as stated in the table.

Variable Symbol In logarithms
labour input Lt yes
capital input Kt yes
investment It yes
commodities used domestically COMd

t yes
import Mt yes
capital utilization ut no
capital depreciation dt no
gross production of intermediate good Zgt yes
net production of intermediate good Znt yes
total production Zt yes
consumption Ct yes
marginal utility of consumption �t yes
nominal interest rate Rt no
in�ation �t yes
consumption Phillips curve term F1t yes
consumption Phillips curve term F2t yes
price dispersion �t yes
real marginal cost rmct yes
in�ation target ��t yes
real price of intermediate good pzt yes
real price of import pmt yes
foreign price of import pmft yes
real exchange rate st yes
imported good in�ation �mt yes
imports Phillips curve term Fm1t yes
imports Phillips curve term Fm2t yes
wage in�ation �wt yes
wage Phillips curve term Fw1t yes
wage Phillips curve term Fw2t yes
wage dispersion �wt yes
real wage wt yes
optimal wage w�t yes
real price of commodities pcomt yes
marginal product of capital MPKt yes
interest rate on capital Rkt no
real price of investment pit yes
Tobin�s Q qt yes
price of non-commodity export pxzt yes
interest premium on foreign bonds �ft no
non-commodity export Xnc

t yes
export of commodities Xcom

t yes
total commodities produced COMt yes
�nal goods used in commodity production Zcomt yes
GDP Yt yes
potential GDP �Yt yes
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GDP de�ator pyt yes
holdings of foreign bonds in real terms bft no
auxiliary expectation term exit no
auxiliary expectation term excomt no

Table B.1: A list of endogenous model variables

In Table B.2, we list 6 exogenous model variables. Interest rate shocks are in levels, the other shocks
are in logarithms.

Variable Symbol In logarithms
interest rate shock process �rt no
productivity At yes
consumption demand shock process �ct yes
foreign activity measure Zft yes
foreign-currency price of commodities pcomft yes
foreign real interest rate rft no

Table B.2: A list of exogenous model variables
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C List of model equations

The bToTEM model consists of 49 equations and 49 endogenous variables, as well as 6 exogenous autocor-
relative shock processes. Here we summarize all model equations.
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�Price dispersion (11), (A.20)
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� Open economy

�New-Keynesian Phillips curve for imported goods (A.25), (A.26), (A.28)
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� Market clearing conditions (32), (33), (34)
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D bToTEM parameters

The calibrated values of the parameters for the bToTEM model are summarized in the following two tables.

Parameter Symbol Value Source
Rates
�real interest rate �r 1.0076 ToTEM
�discount factor � 0.9925 ToTEM
�in�ation target �� 1.005 ToTEM
�nominal interest rate �R 1.0126 ToTEM
�ELB on the nominal interest rate Relb 1.0076 �xed
Output production
�CES elasticity of substitution � 0.5 ToTEM
�CES labor share parameter �l 0.249 calibrated
�CES capital share parameter �k 0.575 calibrated
�CES commodity share parameter �com 0.0015 calibrated
�CES import share parameter �m 0.0287 calibrated
�investment adjustment cost �i 20 calibrated
��xed depreciation rate d0 0.0054 ToTEM
�variable depreciation rate �d 0.0261 ToTEM
�depreciation semielasticity � 4.0931 calibrated
�real investment price �i 1.2698 ToTEM
�real noncommodity export price �x 1.143 ToTEM
�labor productivity �A 100 normalization
Price setting parameters for consumption
�probability of indexation � 0.75 ToTEM
�RT indexation to past in�ation  0.0576 ToTEM
�RT share ! 0.4819 ToTEM
�elasticity of substitution of consumption goods " 11 ToTEM
�Leontief technology parameter sm 0.6 ToTEM
Price setting parameters for imports
�probability of indexation �m 0.8635 ToTEM
�RT indexation to past in�ation m 0.7358 ToTEM
�RT share !m 0.3 ToTEM
�elasticity of substitution of imports "m 4.4
Price setting parameters for wages
�probability of indexation �w 0.5901 ToTEM
�RT indexation to past in�ation w 0.1087 ToTEM
�RT share !w 0.6896 ToTEM
�elasticity of substitution of labor service "w 1.5 ToTEM
Household utility
�consumption habit � 0.9396 ToTEM
�consumption elasticity of substitution � 0.8775 ToTEM
�wage elasticity of labor supply � 0.0704 ToTEM
Monetary policy
�interest rate persistence parameter �r 0.83 ToTEM
�interest rate response to in�ation gap �� 4.12 ToTEM
�interest rate response to output gap �y 0.4 ToTEM
Other
�capital premium �k 0.0674 calibrated
�exchange rate persistence parameter { 0.1585 ToTEM
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�foreign commodity price �pcomf 1.6591 ToTEM
�foreign import price �pmf 1.294 ToTEM
�risk premium response to debt & 0.0083 calibrated
�export scale factor f 18.3113 calibrated
�foreign demand elasticity � 0.4 calibrated
�elasticity in commodity production sz 0.8 calibrated
�land F 0.1559 calibrated
�share of other components of output �z 0.7651 calibrated
�share of other components of GDP �y 0.311 calibrated
�adjustment cost in commodity production �com 16 calibrated
�persistence of potential GDP 'z 0.75 calibrated

Table D.1: Calibrated parameters in endogenous model�s equations

In Table D.1, we summarize the parameters in the endogenous equations of the model and in Table D.2,
we collect the parameters of the exogenous processes for shocks.

Parameter Symbol Value Source
Shock persistence
�persistence of interest rate shock 'r 0.25 ToTEM
�persistence of productivity shock 'a 0.9 �xed
�persistence of consumption demand shock 'c 0 �xed
�persistence of foreign output shock 'zf 0.9 �xed
�persistence of foreign commodity price shock 'comf 0.87 calibrated
�persistence of foreign interest rate shock 'rf 0.88 calibrated
Shock volatility
�standard deviation of interest rate shock �r 0.0006 calibrated
�standard deviation of productivity shock �a 0.0067 calibrated
�standard deviation of consumption demand shock �c 0.0001 �xed
�standard deviation of foreign output shock �zf 0.0085 calibrated
�standard deviation of foreign commodity price shock �comf 0.0796 calibrated
�standard deviation of foreign interest rate shock �rf 0.0020 calibrated

Table D.2: Calibrated parameters in exogenous model�s equations
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E A comparison of bToTEM to ToTEM

There are three aspects in which bToTEM is simpli�ed relatively to ToTEM.13 First, the full-scale ToTEM
model consists of �ve distinct production sectors, namely, those for producing consumption goods and
services, investment goods, government goods, noncommodity export goods, commodities, and it also has
a separate economic model of the rest of the world (ROW). The �rst four of ToTEM�s production sectors
have identical production technology and constraints, and only di¤er in the values of parameters. In the
bToTEM model, in place of the four sectors we assume just one production sector, which is identical in
structure to the consumption goods and services sector of the ToTEM model, and we introduce linear
technologies for transforming the output of this sector into other types of output corresponding to the
remaining ToTEM�s sectors.

Second, there are three types of households in ToTEM that di¤er in their saving opportunities. In
turn, in bToTEM we assume just one type of household. Like in ToTEM, the bToTEM�s households
supply di¤erentiated labor services in exchange for sticky wages. Under our assumptions, Phillips curves
in bToTEM are identical to those in ToTEM; the di¤erence is that bToTEM has three Phillips curves,
while ToTEM has eight Phillips curves.

Finally, in ToTEM, the ROW sector is represented as a separate new Keynesian model with its own pro-
duction sector, while in bToTEM the ROW sector is modeled by using appropriately calibrated exogenous
processes for foreign variables.

The ToTEMmodel is analyzed by the Bank of Canada with the help of a �rst-order perturbation method
that is implemented by using IRIS software.14 To compare our bToTEM with ToTEM, we construct a
similar �rst-order perturbation solution to bToTEM.15 We also include in the comparison the impulse
response functions for LENS, which is another model of Canadian economy used the Bank of Canada.
LENS is not a general-equilibrium model, i.e., it is not derived from microfoundations like ToTEM and
bToTEM. It is a large-scale macroeconometric model composed of a set of equations whose coe¢ cients
are estimated from the data and are �xed for some period of time.16 The inclusion of LENS into the
comparison allows us to present the di¤erence between bToTEM and ToTEM relative to the di¤erence
between two di¤erent central-bank models of the same economy.

10 20 30 40
-0.5

0

0.5

1
Interest Rate

10 20 30 40
-0.1

-0.05

0
Inflation

10 20 30 40
-2

-1

0

1
Real Exchange Rate

10 20 30 40
-0.4

-0.2

0

0.2
Output

bToTEM ToTEM LENS

Figure E.1: Impulse response functions: interest rate shock

In Figures E.1�E.3, we plot impulse responses to three domestic shocks in the bToTEM model, namely,
an interest rate shock, a consumption demand shock, and a permanent productivity shock, respectively.17

13The version of ToTEM we work with, known also as TOTEM II, builds on the original ToTEM model in Murchison and
Renisson (2006); see also Binette et al. (2004) for an earlier simpli�ed version of the original ToTEM model.
14This software is available at http://www.iris-toolbox.com; see Bene� et al. (2015) for its description. See also Laséen

and Svensson (2011), Guerrieri and Iacoviello (2015) and Holden (2016) for related methods.
15We also used Dynare software and we veri�ed that IRIS and Dynare produce indistinguishable numerical solutions to

bToTEM. Dynare software is available at http://www.dynare.org; see Adjemian et al. (2011) for the documentation.
16 See Gervais and Gosselin (2014) for a technical report about the LENS model.
17Both, the ToTEM and LENS models, include more sources of uncertainty than the bToTEM model does, namely, 52

shocks in ToTEM and 98 shocks in LENS.
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Figure E.2: Impulse response functions: consumption demand shock
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Figure E.3: Impulse response functions: permanent productivity shock

In the �gures, we report the response functions of four key model�s variables: the nominal short-term
interest rate, the rate of in�ation for consumption goods and services, the real e¤ective exchange rate, and
the output gap. The responses are shown in percentage deviations from the steady state, except for the
interest rate and the in�ation rate, which are both shown in deviations from the steady state and expressed
in annualized terms.

The responses we observe are typical for new Keynesian models. In Figure E.1, a contractionary
monetary policy shock leads to a decline in output through a decline in consumption. The uncovered
interest rate parity results in appreciation of the domestic currency. A reduction in the real marginal costs
implies a lower price of consumption goods, and hence, lower in�ation. In Figure E.2, a negative shock
to the discount factor increases consumption and decreases output. The interest rate that is determined
by the Taylor rule increases, and the real exchange rate appreciates. In Figure E.3, a permanent increase
in productivity gives room for a higher potential output. The actual output gradually increases. Facing
a negative output gap, the central bank lowers the interest rate according to the Taylor rule. As actual
output reaches the new steady state level, the output gap closes, and the interest rate is back to the
neutral rate. A lower interest rate leads to depreciation of the domestic currency because of the interest
rate parity. Permanently higher productivity reduces input prices, leading to lower real marginal costs that
are re�ected in temporary lower in�ation.

In Figures E.4�E.6, we plot impulse responses to three ROW shocks. In Figure E.4, an increase in the
world commodity price leads to an increase in commodity exports as well as to an initial increase in the
production costs as commodities are used in the domestic production. An initial increase of in�ation is
followed in bToTEM by a decline due to an appreciation of domestic currency and a decrease in the price
of imports. In Figure E.5, an increase in the ROW activity measure leads to an increase in noncommodity
exports. In turn, it leads to an increase in output and in�ation. In Figure E.6, an increase in the ROW
interest rate results in a deep depreciation of domestic currency that leads to an increase in exports. An
initial increase in output and the interest rate is followed by a decline in consumption that accounts for
the following decline in output.

Our main �nding is that our bToTEMmodel replicates the key properties of the full-scale ToTEMmodel
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Figure E.4: Impulse response functions: ROW commodity price shock
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Figure E.5: Impulse response functions: ROW demand shock

remarkably well. Since ToTEM allows for multiple interest rates, di¤erent good prices, �scal policies, etc., it
has a richer structure than bToTEM. However, the variables that are the same in both models are described
by essentially the same equations and therefore, have similar dynamics. One noticeable exception is the
dynamics of in�ation in response to a consumption demand shock; see Figure 2. In bToTEM, in�ation
reacts less on the impact, but decreases more slowly than in the other two models. To understand this
di¤erence between the two models, let us consider a linearized version of the Phillips curve, which is the
same in bToTEM and ToTEM,

�̂t = (1� �) !~�
�1
�̂t�1 + ��~�

�1
E [�̂t+1] + ~� ^rmct + "

p
t ; (E.1)

where rmct is the real marginal cost; "
p
t is a weighted average of the in�ation target, the markup, and

their expectations, all in deviations from the steady state; �, , ! are the price stickiness parameters
de�ned in Section 2.1; and ~� and ~� are the parameters de�ned by equations ~� = � + ! (1� �) (1 + ��)
and ~� = (1� !) (1� �) (1� ��) ~��1 (see equations (1.20)�(1.22) in Dorich et al., 2013). We observe that
the di¤erence in in�ation dynamics is entirely attributed to the di¤erence in the real marginal cost. In
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Figure E.6: Impulse response functions: ROW interest rate shock
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ToTEM, a consumption demand shock triggers a reallocation of inputs into the consumption production
sector from the other four sectors. In the presence of adjustment costs, the reallocation raises the real
marginal cost. In contrast, in bToTEM, there is one production sector and there are no input adjustment
costs. Therefore, the responses and decays of the real marginal cost are less pronounced.

We also observe that the impulse responses of the ToTEM and bToTEM models are generally closer to
one another than those produced by the ToTEM and LENS models, the two models of the Bank of Canada.
This result is not surprising given that the bToTEM model is a scaled-down version of the ToTEM model,
while LENS is a macroeconometric model constructed in a di¤erent way. Consequently, our comparison
results indicate that bToTEM provides an adequate framework for projection and policy analysis of the
Canadian economy and that it can be used as a complement to the two models of the Bank of Canada.
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F Accuracy evaluation

Maximum residual Average residual
Local Local Global Local Local Global

1st order 2nd order DL 1st order 2nd order DL
Lt -2.16 -2.72 -3.60 -2.89 -3.83 -4.65
Kt -3.60 -4.04 -4.67 -4.34 -5.30 -5.99
It -3.01 -3.38 -3.52 -4.42 -4.50 -4.84
COMd

t -2.17 -2.47 -3.68 -2.92 -3.65 -4.43
Mt -2.16 -2.94 -3.60 -2.89 -4.05 -4.65
ut -2.65 -3.20 -3.89 -3.36 -4.43 -5.16
dt -2.10 -2.58 -3.37 -2.78 -3.82 -4.64
Zgt -2.29 -3.03 -3.87 -3.05 -4.13 -4.92
Znt -2.29 -3.03 -3.87 -3.05 -4.13 -4.92
Zt -2.29 -3.04 -3.87 -3.06 -4.12 -4.94
Ct -3.19 -3.11 -4.01 -3.95 -4.23 -5.11
Yt -2.58 -3.17 -3.96 -3.24 -3.96 -4.96
�t -4.41 -3.84 -4.14 -5.15 -4.92 -4.57
rmct -2.91 -3.15 -4.04 -3.56 -4.30 -5.04
�t -4.44 -4.86 -5.38 -5.22 -5.32 -6.22
�mt -2.48 -2.70 -3.99 -3.60 -3.76 -5.00
pmt -2.48 -2.73 -4.13 -3.60 -3.78 -4.58
Rt -3.82 -3.91 -4.27 -4.51 -4.90 -4.74
pzt -2.45 -2.70 -3.56 -3.10 -3.83 -4.57
wt -4.13 -4.45 -4.15 -4.81 -5.38 -4.56
pcomt -2.40 -1.98 -3.05 -3.39 -3.15 -3.97
MPKt -2.24 -2.91 -3.34 -3.02 -4.10 -4.53
Rkt -2.88 -3.14 -4.27 -4.14 -4.46 -4.74
�ft -3.57 -2.44 -4.62 -4.65 -3.51 -5.62
bft -2.02 -2.27 -3.05 -3.05 -3.09 -3.98
Xnc
t -2.80 -2.38 -3.45 -3.79 -3.55 -4.37

Xcom
t -1.76 -2.29 -3.18 -2.51 -3.07 -4.41

COMt -2.28 -2.54 -3.40 -3.21 -3.28 -4.77
Zcomt -2.64 -2.37 -3.40 -3.25 -3.43 -4.67
�wt -3.95 -3.96 -4.61 -4.89 -5.03 -5.81
w�t -3.19 -3.10 -3.71 -3.97 -4.19 -4.48
�wt -1.44 -2.22 -3.47 -2.52 -3.46 -4.94
F1t -3.33 -1.71 -2.83 -3.79 -2.92 -3.89
F2t -3.41 -1.73 -2.91 -3.84 -2.94 -3.74
Fw1t -1.92 -1.54 -2.37 -2.68 -2.67 -3.60
Fw2t -3.11 -1.95 -2.95 -4.00 -3.16 -4.15
Fm1t -2.40 -1.48 -2.63 -2.61 -2.73 -3.87
Fm2t -2.46 -1.61 -3.05 -2.96 -2.83 -3.91
qt -2.47 -2.69 -2.91 -3.89 -4.14 -4.16
�t -2.32 -1.78 -2.72 -3.59 -3.02 -3.87
st -2.40 -1.98 -3.05 -3.39 -3.15 -3.97
Average -2.75 -2.76 -3.62 -3.58 -3.86 -4.63
Max -1.44 -1.48 -2.37 -2.51 -2.67 -3.60

Table F.1: Experiment 1. Residuals in the model�s equations on the impulse-response path, log10 units
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We assess the accuracy of solution by constructing unit-free residuals in the model�s equations on the
simulated paths obtained in our experiments. Our choice of points for accuracy evaluation di¤ers from the
two conventional choices in the literature, which are a �xed set of points in a multidimensional hypercube
(or hypersphere) and a set of points produced by stochastic simulation; see Kollmann et al. (2011). We
choose to focus on the path in the experiments because it is precisely the goal of central bankers to attain
a high accuracy of solutions in their policy-relevant experiments (rather than on some hypothetical set of
points).

For accuracy evaluation, we use a monomial integration rule with 2N2+1 nodes, which is more accurate
than monomial rule 2N used in the solution procedure, where N = 6 is the number of the stochastic shocks;
see Judd et al. (2011a) for a detailed description of these integration formulas.

The approximation errors reported in the table are computed over 40 quarters of the �rst experiment
with a negative foreign demand shock. The unit-free residual in each model�s equation is expressed in
terms of the variable reported in the table: such a residual re�ects the di¤erence between the value of that
variable produced by the decision function of the corresponding solution method and the value implied
by an accurate evaluation of the corresponding model equation, in which case the residuals are loosely
interpreted as approximation errors in the corresponding variables.

The resulting unit free residuals in the model�s equations are reported in log 10 units. These accuracy
units allow for a simple interpretation, namely, ��2�means the size of approximation errors of 10�2 = 1
percent while ��2:5�means approximation errors between 10�2 and 10�3, more precisely, we have 10�2:5 �
0:3 percent. The average residuals for the �rst- and second-degree plain perturbation methods, and the
second-degree global method are �3:20, �3:45, and �4:11, respectively, and the maximum residuals are
�1:43, �1:44, and �2:09, respectively.
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G The ELB scenario with mixed foreign and domestic shocks
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Figure G.1: Responses of linear and quadratic perturbation solutions in the mixed scenario
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H Robustness exercises

We conduct three robustness exercises as follows. In the �rst exercise, we exclude all rule-of-thumb �rms
and unions by setting !, !w, and !m to zero. In the second exercise, we exclude the augmentation from the
UIP condition by setting { to zero. In these two exercises, the dynamic parameter changes have no e¤ect
on the deterministic steady state. In the third exercise, we assume that in the second stage of production
each �rm produces the di¤erentiated �nal good, Zit from the intermediate good, Znit and the manufactured
inputs, Zmiit according to the following Cobb-Douglas technology

Zit =

�
Znit

1� sm

�1��m �Zmiit
sm

��m
(H.1)

Then, the real marginal cost is

rmct =

�
(1� sm)pzt
1� �m

�1��m � sm
�m

��m
; (H.2)

and the aggregated goods in the two stages of production are related as follows:

Znt = (1� sm)1��m
�
sm (1� �m)
�mpzt

��m
�tZt; (H.3)

where �t is the price dispersion. We calibrate parameters �m and sm to obtain the same deterministic
steady state as in the baseline model. The values are �m = 0:66 and sm = 0:7168.

Following the decline of foreign demand in our �rst experiment, the dynamics of model variables in the
three robustness exercises are shown in Figure H.1.
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Figure H.1: Responses of quadratic perturbation solutions to ROW shocks

Our robustness exercises go beyond simple variation in the parameters but involve nontrivial changes
in the model�s assumptions. Thus, we do not construct fully nonlinear DL solutions for our robustness
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experiments but restrict our attention to �rst- and second-order perturbation solutions. Such solutions are
easies to construct and experiment with and they are su¢ cient for deriving useful intuition about the role
of the key assumptions in the model�s predictions.
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