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Abstract
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such nonstationary Markov models. The EFP framework relies on the turnpike theorem
which implies that the �nite-horizon solutions asymptotically converge to the in�nite-
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1 Introduction

Dynamic stochastic in�nite-horizon models are normally built on the assumption of a stationary
(time-homogeneous) environment, namely, it is assumed that the economy�s fundamentals such
as preferences, technologies and laws of motions for exogenous variables do not change over time.
In such models, optimal value and decision functions are also stationary, i.e., they depend only
on the economy�state but not on time.
However, actual economies evolve over time, experiencing population growth, technological

progress, trends in tastes and habits, policy regime changes, evolution of social and political
institutions, etc. Modeling time-dependent features requires the assumption that the parame-
ters of economic models systematically change over time. The resulting models are generally
nonstationary (time-inhomogeneous) in the sense that the optimal value and decision functions
depend on both state and time. To characterize a solution in such models, we need to construct
not just one optimal value and decision functions but an in�nitely long sequence (path) of such
functions, i.e. a separate set of functions for each period of time.1 Generally, this is a di¢ cult
task!
The literature distinguished a number of special cases in which nonstationary dynamic

economic models can be reformulated as stationary ones. Labor augmenting technological
progress is a well-known example of a deterministic trend that leads to balanced growth and
stationarity in the neoclassical growth model; see King et al. (1988).2 Time-homogeneous
Markov processes are also consistent with stationarity, for example, Markov regime switching
models (e.g., Davig and Leeper, 2007, 2009, Farmer et al., 2011 and Foerster et al., 2013)
and stochastic volatility models (e.g., Bloom, 2009, Fernández-Villaverde and Rubio-Ramírez,
2010, and Fernández-Villaverde et al. 2016). Finally, anticipated shocks of �xed horizon and
periodicity are also consistent with stationarity, including deterministic seasonals (e.g., Barsky
and Miron, 1989, Christiano and Todd, 2002, Hansen and Sargent, 1993, 2013) and news shocks
(Schmitt-Grohé and Uribe, 2012).
However, many interesting nonstationary models do not admit stationary representations.

In particular, deterministic trends typically lead to unbalanced growth, for example, investment-
speci�c technical change (see Krusell et al., 2000); capital-augmenting technological progress
(see Acemoglu, 2002, 2003); time trends in the volatility of output and labor-income shares (see
Mc Connel and Pérez-Quiros, 2000, and Karabarbounis and Neiman, 2014, respectively), etc.
Furthermore, anticipated parameter shifts also lead to time-dependent value and decision func-
tions; for example, anticipated accessions of new members to the European Union (e.g., Garmel
et al. 2008), presidential elections with predictable outcomes, credible policy announcements,
anticipated legislative changes.
In the paper, we focus on these and other generically nonstationary Markov models.3 We

propose a quantitative framework, called extended function path (EFP), which makes it possible
to construct a sequence of time-varying decision and value functions for time-inhomogeneous
Markov models. The condition that lies in the basis of our construction is the so-called turn-

1We can also think of these models as ones that contain "time" as an additional state variable.
2There are examples of balanced growth models that do not satisfy the restrictions in King et al. (1988) but

they are limited; see Maliar and Maliar (2004, 2011), Boppart and Krusell (2016) and Grossman et al. (2017).
3A Markov model can be nonstationary (i.e., have no stationary unconditional distribution) even if all the

parameters are time-invariant, for example, the unit root and explosive processes. We do not explicitly study
these kinds of nonstationarities but focus on time-inhomogeneity of the economic environment.
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pike theorem. This condition ensures that a solution to the �nite-horizon model provides an
arbitrarily close approximation to the in�nite-horizon solution if the time horizon is su¢ ciently
large.
The EFP framework has three steps: �rst, we assume that, in some remote period, the

economy becomes stationary and construct the usual stationary Markov solution. Second,
given the constructed terminal condition, we solve backward the Bellman or Euler equations
to construct a sequence of value and decision functions. Finally, we verify that the turnpike
property holds. Although our numerical examples are limited to problems with few state
variables, we implement EFP in a way that makes it tractable in large-scale applications.
Examples of the MATLAB code are provided.
For a simple optimal growth model, we can characterize the properties of the EFP solu-

tion analytically, including its existence, uniqueness and time-inhomogeneous Markov structure.
Moreover, we can prove a turnpike theorem that shows uniform convergence of the truncated
�nite-horizon economy to the corresponding in�nite-horizon economy. But for more complex
models, analytical characterizations are generally infeasible. In the paper, we advocate a nu-
merical approach to turnpike analysis, namely, we check that during a given number of periods,
the constructed �nite-horizon numerical approximation is insensitive to the speci�c terminal
condition and terminal date assumed. Such a "numerical" way of verifying the turnpike theorem
enlarges greatly a class of tractable nonstationary applications.
We illustrate the EFP methodology in the context of three examples.4 Our �rst example

is a stylized neoclassical growth model with labor-augmenting technological progress. Such a
model can be converted into a stationary one by detrending and solved by any conventional
solution method, but EFP makes it possible to solve the model, without detrending. Our
second example is an unbalanced growth model with capital-augmenting technological progress
which cannot be analyzed by conventional solution methods but which can be easily solved
by EFP. Our last example is a version of the new Keynesian model that features the forward
guidance puzzle, namely, future events have a nonvanishing impact on today�s economy no
matter how distant these events are. This example shows the limitations of the EFP analysis:
Even though the �nite-horizon solution can be constructed, it is not a valid approximation to
the in�nite-horizon solution if the turnpike theorem does not hold.
The idea of approximating in�nite-horizon solutions with �nite-horizon solutions is not new

to the literature but was introduced and developed in several contexts. First, the turnpike
analysis dates back to Dorfman et al. (1958), Brock (1971) and McKenzie (1976); see also Ner-
muth (1978) for a summary of the earlier literature and for generalizations of Brock�s (1971)
original results. In particular, there are turnpike theorems for models with time-dependent pref-
erences and technologies; see, e.g. Majumdar and Zilcha (1987), and Mitra and Nyarko (1991).
However, the turnpike literature in economics has focused exclusively on the existence results
and has never attempted to construct time-dependent solutions in practice.5 The main novelty
of our analysis is that we show how to e¤ectively combine the turnpike analysis with numerical

4A working paper version of Maliar et al. (2015) presents a collection of further examples and applications,
including growth models with news shocks, regime switches, stochastic volatility, deterministic trend in labor
shares and depreciation rates, seasonal �uctuations.

5In the optimal control theory, the turnpike analysis was used for numerical analysis of some applications; see
Anderson and Kokotovic (1987), Trélat and Zuazua (2015), as well as Zaslavski (2019) for a recent comprehensive
reference.
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techniques to analyze a challenging class of time-inhomogeneous Markov equilibrium problems
that are either not studied in the literature yet or studied under simplifying assumptions.
Furthermore, other solution methods in the literature construct �nite-horizon approxima-

tions to in�nite-horizon problems by (implicitly) relying on the turnpike property, in particular,
an extended path (EP) method of Fair and Taylor (1983).6 The key di¤erence between EP and
EFP is that the former constructs a path for variables under one speci�c realization of shocks
(by using certainty equivalence approximation), whereas the latter constructs a path for value
or decision functions (by using accurate numerical integration methods). As a result, EFP can
accurately solve those models in which the EP�s certainty equivalence approach is insu¢ ciently
accurate. Furthermore, a simulation of the EFP solutions is cheap unlike the simulation of the
EP solutions which requires recomputing the optimal path under each new sequence of shocks.
Finally, there is a literature that studies a transition between two aggregate steady states

in heterogeneous-agent economies by constructing a deterministic transition path for aggregate
quantities and prices; see, e.g., Conesa and Krueger (1999) and Krueger and Ludwig (2007).
The EFP analysis includes but is not equivalent to modeling transition from one steady state
to another, in particular, some of our applications do not have steady states (e.g., models with
deterministic trends and anticipated shocks do not generally have steady state).
The rest of the paper is as follows: In Section 2, we show analytically the turnpike theorem

for a nonstationary growth model. In Section 3, we introduce EFP and show how to verify
the turnpike theorem numerically. In Section 4, we assess the performance of EFP in a non-
stationary test model with a balanced growth path. In Section 5, we use EFP for analyzing
an unbalanced growth model with capital-augmenting technological progress. In Section 6, we
discuss the limitations of the EFP framework in the context of the stylized new Keynesian
model; �nally, in Section 7, we conclude.

2 Verifying the turnpike theorem analytically

We analyze a time-inhomogeneous stochastic growth model in which the parameters can change
over time. We show that such a model satis�es the turnpike theorem, speci�cally, the trajectory
of the �nite-horizon economy converges to that of the in�nite-horizon economy as the time
horizon increases.

6Other related path-solving methods are shooting methods, e.g., Lipton et al. (1980), Atolia and Bu¢ e
(2009 a,b), a continuous time analysis of Chen (1999); a parametric path method of Judd (2002); an EP method
built on Newton-style solver of Heer and Maußner (2010); a framework for analyzing time-dependent linear
rational expectation models of Cagliarini and Kulish (2013); a nonlinear predictive control method for value
function iteration of Grüne et al. (2013); re�nements of the EP method, e.g., Adjemian and Juillard (2013),
Krusell and Smith (2015), and Ajevskis (2017).
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2.1 Growth model with time-varying parameters

We consider a stylized stochastic growth model but allow for the case when preferences, tech-
nology and laws of motion for exogenous variables change over time,

max
fct;kt+1gTt=0

E0

"
TX
t=0

�tut (ct)

#
(1)

s.t. ct + kt+1 = (1� �) kt + ft (kt; zt) , (2)

zt+1 = 't (zt; �t+1) , (3)

where ct � 0 and kt+1 � 0 denote consumption and capital, respectively; initial condition
(k0; z0) is given; ut : R+ ! R, ft : R2+ ! R+ and 't : R2 ! R are time-inhomogeneous utility
function, production function and Markov process for exogenous variable zt, respectively; �t+1
is an i.i.d random variable; � 2 (0; 1) is a discount factor; � 2 (0; 1] is a depreciation rate; Et [�]
is an operator of expectation, conditional on a t-period information set; and T can be either
�nite or in�nite.

Exogenous variables. In the usual time-homogeneous (stationary) model, the functions
ut � u, ft � f and 't � ' are �xed, time invariant and known to the agent at t = 0. For
example, if f (kt; zt) = Aztk�t , the agent knows A and �. To construct a time-inhomogeneous
model in a parallel manner, we need to �x the sequence of ut, ft and 't and assume that it is
known to the agent at t = 0. That is, if ft (kt; zt) = Atztk

�t
t , we assume that the agent knows

fAt; �tg1t=0.
The time-inhomogeneous Markov framework allows us to model a variety of interesting time-

dependent scenarios. As an example, consider the technology level At. We can assume that At
can gradually change over time (drifts) or makes sudden jumps (shifts). These changes can be
either anticipated or not. In particular, we can have i) technological progress At = A0
t, where
A0 > 0 and 
 is the technology growth rate; ii) seasonal �uctuations At =

�
A;A;A;A; :::

	
,

where A; A are technology levels in the high and low seasons; iii) news shocks about future
levels of At; etc.
We can also consider time-dependent scenarios for the parameters of stochastic processes.

For example, consider the following process for zt in (3):

ln zt+1 = �t ln zt + �t�t+1; (4)

where �t > 0, j�tj � 1 and �t+1 � N (0; 1). The process (4) is Markov since the probabil-
ity distribution ln zt+1 � N (lnAt + �t ln zt; �

2
t ) depends only on the current state but not on

the history. However, if either the mean lnAt + �t ln zt or the variance �
2
t change over time,

then the transition probabilities of ln zt+1 also change over time, i.e., the Markov process is
time-inhomogeneous; see Appendix A1 for formal de�nitions.7 We can analyze similar time-
dependent scenarios for other parameters of the model, including the time-dependent policies.

7Mitra and Nyarko (1991) refer to a class of time-inhomogeneous Markov processes as semi-Markov processes
because of their similarity to Lévy�s (1954) generalization of the Markov renewal process for the case of random
arrival times; see Jansen and Manca (2006) for a review of applications of semi-Markov processes in statistics
and operation research.
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Endogenous variables and the optimal program. A feasible program is a pair of adapted
processes fct; kt+1gTt=0 such that, given initial condition (k0; z0) and any history hT = (�0; :::; �T ),
reaches a given terminal condition kT+1 at T and satis�es ct � 0, kt+1 � 0, (2) and (3) for
t = 1; :::; T . "Adapted" means that the agent does not know future stochastic shocks ��s
(although she does know the deterministic changes in ut, ft and 't for all t � 0).
A feasible program is called optimal if it gives higher expected lifetime utility (1) than any

other feasible program.
We make standard (strong) assumptions that ut and ft are twice continuously di¤erentiable,

strictly increasing, strictly quasi-concave and satisfy the Inada conditions for all t. Moreover,
we assume that lifetime utility (1) is bounded; see Appendix A2 for a formal description of our
assumptions.
The optimal program in the economy (1)�(3) can be characterized by Bellman equations,

Vt (kt; zt) = max
ct;kt+1

fut (ct) + �Et [Vt+1 (kt+1; zt+1)]g ; t = 0; 1; :::; T: (5)

Also, the interior optimal program satis�es the Euler equations,

u0t(ct) = �Et
�
u0t+1(ct+1)(1� � + f 0t+1 (kt+1; zt+1))

�
; t = 0; 1; :::; T . (6)

In our assumptions, we follow Majumdar and Zilcha (1987) and Mitra and Nyarko (1991),
except that we assume strict quasi-concavity of the utility and production functions that lead
to unique solutions.

2.2 Finite-horizon economy

We �rst consider a �nite-horizon model, T < 1. We know that �nite-horizon models are
solvable by backward induction from a given terminal condition. To solve such models, we do not
need stationarity: the models�parameters (e.g., discount factor, depreciation rate, persistence
and volatilities of shocks) can change in every period but backward iteration still works.

Theorem 1 (Existence and uniqueness of time-inhomogeneous Markov solution). Fix a partial
history hT = (�0; :::; �T ), initial condition (k0; z0) and a terminal condition given by a Markov
process KT (kT ; zT ) such that the set of feasible programs is not empty. Then, the optimal
program fct; kt+1gTt=0 exists, is unique and is given by a time�inhomogeneous Markov process.

Proof. The existence of the optimal program fct; kt+1gTt=0 under our assumptions is well known;
see, e.g., Theorem 3.1 of Mitra and Nyarko (1991). The uniqueness follows by strict quasi-
concavity of the utility and production functions. We are left to check the time-inhomogeneity
of the Markov process for the decision functions. We outline the proof by using the Euler
equation (6) but a parallel proof can be given via Bellman equation (5); see Majumdar and
Zilcha (1987, Theorem 1) for related analysis. Our proof is constructive and follows by backward
induction.
Given a T -period (terminal) capital functionKT , we de�ne the capital functionsKT�1; :::; K0

in previous periods to satisfy the sequence of the Euler equations. As a �rst step, we write the
Euler equation for period T � 1,

u0T�1(cT�1) = �ET�1 [u
0
T (cT )(1� � + f 0T (kT ; zT ))] , (7)
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where cT�1 and cT are related to kT and kT+1 in periods T and T � 1 by

cT�1 = (1� �) kT�1 + fT�1 (kT�1; zT�1)� kT , (8)

cT = (1� �) kT + fT (kT ; zT )� kT+1: (9)

By our assumptions, zT = 'T (zT�1; �) and kT+1 = KT (kT ; zT ) are Markov processes. Combin-
ing these assumptions with (7)�(9), we obtain a functional equation that de�nes kT for each
possible state (kT�1; zT�1), i.e, we obtain an implicitly de�ned function kT = KT�1 (kT�1; zT�1).
By proceeding iteratively backward, we construct a sequence of Markov time-dependent capi-
tal functions KT�1 (kT�1; zT�1) ; :::; K0 (k0; z0) that satisfy (7)�(9) for t = 0; :::; T � 1 and that
matches the terminal function KT (kT ; zT ). The resulting solution is a time-inhomogeneous
Markov process by construction. �

2.3 In�nite-horizon economy: stationary case

Let us now turn to the in�nite-horizon model with T = 1. The literature extensively focuses
on the stationary version of (1)�(3) in which preferences, technology and laws of motion for
exogenous variables are time homogeneous ut = u, ft = f and 't = ' for all t. This model has
a stationary Markov solution in which value function V (kt; zt) and decision functions kt+1 =
K (kt; zt), ct = C (kt; zt) are time invariant and Markov functions that satisfy the stationary
versions of the Bellman equation (5) and Euler equation (6), respectively, are

V (kt; zt) = max
ct;kt+1

fu (ct) + �Et [V (kt+1; zt+1)]g ; (10)

u0(ct) = �Et [u
0(ct+1)(1� � + f 0 (kt+1; zt+1))] . (11)

The numerical algorithms solve stationary in�nite-horizon models by �nding �xed point for the
value function V and policy function K such that if we substitute them in the right side of the
Bellman equation (10) and the Euler equation (11), respectively, we obtain the same functions
in the left side of these equations.
However, this solution procedure is not applicable to a time-inhomogeneous version of the

model (1)�(3). In such a model, we have di¤erent optimal Markov functions Vt, Kt and Ct in
each period, and no �xed point exists for such functions or such �xed points are not optimal.

2.4 In�nite-horizon economy: non-stationary case

An alternative we explore in the paper is to approximate an in�nite-horizon solution with
the corresponding �nite-horizon solution. Our analysis is related to the literature on turnpike
theorems.

2.4.1 Illustration of the turnpike theorem for a model with closed-form solution

Let us �rst illustrate the turnpike property for a version of the model (1)�(3) that admits a
closed-form solution. We speci�cally assume Cobb-Douglas utility and production functions,

ut (c) =
c1�� � 1
1� � ; and ft (k; z) = zk

�A1��t ; (12)
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where At and zt represent labor-augmenting technological progress and stochastic shock given,
respectively, by

At = A0

t
A and ln zt+1 = � ln zt + ��t+1 (13)

where 
A � 1, �t+1 � N (0; 1), � 2 (�1; 1) and � 2 (0;1).
We consider � = 1, which leads to a logarithmic utility function, ut (c) = ln c, and full

depreciation of capital, � = 1. The Bellman equation (5) becomes

Vt (kt) = max
kt+1

�
ln
�
ztk

�
t A

1��
t � kt+1

�
+ �Et [Vt+1 (kt+1)]

	
; t = 1; :::; T; (14)

where we assume VT+1 (kT+1) = 0 and hence, kT+1 = 0. It is well known that (14) admits a
closed-form solution,

kT =
��

1 + ��
zT�1k

�
T�1A

1��
T�1, kT�1 =

�� (1 + ��)

1 + �� (1 + ��)
zT�2k

�
T�2A

1��
T�2, etc. (15)

In Figure 1, we plot capital trajectories of the economies with �nite horizons of T = 15 and
T = 25, as well as of the economy with in�nite horizon T =1. We set the remaining parameters
at � = 0:99, � = 0:36, � = 0:95, � = 0:01 and 
A = 1:01.

Figure 1. Finite- and in�nite-horizon solutions in the growth model.

As we can see, if all three economies start with the same initial capital, they follow a
virtually identical path for a long time and diverge only in a close proximity to the terminal
date. Therefore, if we are interested in the behavior of in�nite-horizon non-stationary economy
during some initial number of periods � , we can accurately approximate the in�nite-horizon
solution by solving the �nite-horizon model. This is precisely what turnpike theorem means.
Figure 1 also helps us understand why this convergence result is called turnpike theorem.

Turnpike (highway) is often the fastest route between two points even if it is not the shortest
one. Speci�cally, if one drives to some remote destination (e.g., a small town), one typically
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tries to get on the turnpike as soon as possible, stays on the turnpike for as long as possible and
gets o¤ the turnpike as close as possible to the �nal destination. In the �gure, we see the same
behavior for the model if we interpret the in�nite- and �nite-horizon economies as an in�nite
turnpike and our actual �nite destination, respectively.8

2.4.2 A formal proof of the turnpike theorem for a general growth model

The turnpike property is not limited to our example with closed-form solution but holds for the
growth model (1)�(3) under general utility and production functions. Speci�cally, we can show
that if the time horizon T is su¢ ciently large, then the �nite-horizon solution

�
kT0 ; :::; k

T
T

�
will

be within an " range of the in�nite-horizon solution (k10 ; :::; k
1
T ) during the initial � periods.

Theorem 2 (Turnpike theorem). For any real number " > 0, any natural number � and
any Markov T�period terminal condition KT (kT ; zT ), there exists a threshold terminal date
T � ("; � ;KT ) such that for any T � T � ("; � ;KT ), we have��k1t � kTt �� < ", for all t � � , (16)

where k1t+1 = K
1
t (k

1
t ; zt) and k

T
t+1 = Kt

�
kTt ; zt

�
are the trajectories in the in�nite- and �nite-

horizon economies, respectively, under given initial condition (k0; z0) and partial history hT =
(�0; :::; �T ).

Proof. The proof is shown in Appendix A6, and it relies on three lemmas presented in Appen-
dices A3-A5. First, we construct a limit program of a �nite-horizon economy with a terminal
condition kT+1 = 0. Second, we prove the convergence of the optimal program of the T -period
stationary economy with an arbitrary terminal capital stock kT+1 = KT (kT ; zT ) to the limit-
ing program of the �nite-horizon economy with a zero terminal condition kT+1 = 0. Finally,
we show that the limit program of the �nite-horizon economy with zero terminal condition
kT+1 = 0 is also an optimal program for the in�nite-horizon nonstationary economy (1)�(3).
�

Remark 1: The above theorem is shown for a �xed history and can be viewed as a sensitivity
result. But our analysis can be extended to hold for any history using "almost sure" convergence
notion; see, e.g., Majumdar and Zilcha (1987) for such a generalization. The resulting turnpike
theorem will state that for all T � T � ("; � ;KT ), the constructed Markov time-inhomogeneous
approximation

�
kTt+1

	
is guaranteed to be within a given "-accuracy range of the true solution�

k1t+1
	
almost surely during the initial � periods for any history of shocks h1 = (�0; �1:::).

The �rst turnpike result dates back to Dorfman et al. (1958) who studied the e¢ cient programs
in the von Neumann model of capital accumulation. Their analysis shows that for a long time
period and for any initial and terminal conditions, the optimal solution to the model would

8We restrict attention to the so-called early turnpike theorem which shows that the initial-period decisions
functions are insensitive to speci�c terminal conditions used. There are also medium and late turnpike theorems
that focus respectively on the role of the initial and terminal conditions in the properties of the solution; see
McKenzie (1976) and Joshi (1997) for a discussion. We do not analyze other turnpike theorems since they are
not directly related to the proposed EFP solution framework.
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get into the phase of maximal von Neumann growth, i.e. the turnpike. However, the proof
of the argument they provided was only valid in a neighborhood of the steady state. The
subsequent economic literature provided more general global turnpike theorems; see Brock
(1971), McKenzie (1978), Nermuth (1978), Majumdar and Zilch (1987) and Mitra and Nyarko
(1991).9

However, the turnpike literature in economics has focused exclusively on the existence results
and has never attempted to construct time-dependent solutions in practice. The main novelty
of our analysis is that we show how to e¤ectively combine the turnpike analysis with numerical
techniques to analyze a challenging class of time-inhomogeneous Markov models that are either
not studied yet in the literature or studied under simplifying assumptions.

3 Verifying the turnpike theorem numerically: EFP frame-
work

For a simple optimal growth model, it was possible to prove the turnpike theorem analytically.
But such analytical proofs are infeasible for more complex and realistic models that are used
for applied work. An alternative we o¤er is to verify the turnpike theorem numerically, namely,
we introduce an extended function path (EFP) framework that makes it possible to construct
a time-inhomogeneous �nite-horizon solutions and to verify that such solutions converge to the
in�nite-horizon solutions as time horizon increases.

3.1 Markov models with time-varying fundamentals

We analyze two broad classes of nonstationary problems, namely, the optimal control problems
and the equilibrium problems. An optimal control time-inhomogeneous Markov problem is
characterized by the Bellman equation with a time-dependent value function,

Vt (xt; zt) = max
xt+1;yt

fRt (yt; xt; zt) + �Et [Vt+1 (xt+1; zt+1)]g ; t = 0; 1; :::; T; (17)

where T can be either in�nite or �nite; zt 2 Hz
t � Rdz , xt 2 Hx

t � Rdx and yt 2 H
y
t � Rdy are

vectors of exogenous state variables and endogenous state and control variables, respectively; a
return function Rt : H

y
t �Hx

t �Hz
t ! R is twice continuously di¤erentiable, strictly increasing,

strictly concave, bounded and satis�es the Inada conditions.
An equilibrium time-inhomogeneous Markov problem is characterized by a system of time-

dependent Euler and other model�s equations,

Et [Qt (xt; zt; yt; xt+1; zt+1; yt+1)] = 0; t = 0; 1; :::; T; (18)

9Additionally, the turnpike results are available in the literature that studies optimal control problems.
Anderson and Kokotovic (1987) show that a solution to a �nite time optimal control problem can be obtained
by piecing together solutions to in�nite-time problems. TrµZlat and Zuazua (2015) provide general turnpike
results that do not rely on any speci�c assumption on the dynamics of the problem. The recent work of
Zaslavski (2019) provides necessary and su¢ cient conditions for the turnpike property for a broad class of
discrete-time optimal control problems for continuous-time in�nite-dimensional optimal control problems.
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where Qt : Hx
t �Hz

t �H
y
t �Hx

t+1 �Hz
t+1 �H

y
t+1 ! HQ

t � RdQ is a vector-valued function. In
both (17) and (18), a solution satis�es a set of possibly time-dependent constraints:

Gt (xt; zt; yt; xt+1) = 0; t = 0; 1; :::; T; (19)

where Gt : Hx
t � Hz

t � H
y
t � Hx

t+1 ! RG is a vector-valued function that is continuously
di¤erentiable in xt, yt, xt+1; the set f(xt; xt+1) : Gt (xt; zt; yt; xt+1) = 0g is convex and compact.
The law of motion for exogenous state variables is given by time-inhomogeneous Markov process
zt+1 = Zt (zt; �t+1), where Zt : Hz

t �H�
t ! Hz

t+1 and �t 2 H�
t � Rd� is a vector of independently

and identically distributed disturbances. The set of constraints (19) can be generalized to
include inequality constraints and the corresponding Karush-Kuhn-Tucker conditions. Some
optimal control problems of type (17) can be represented in the form of equilibrium problems
of type (18) and vice versa but it is not always the case.

3.2 Turnpike property

We assume that the studied classes of economies satisfy the turnpike property, which we pos-
tulate by generalizing the turnpike theorem.

Turnpike property: For any real number " > 0, any natural number � and any Markov T -
period terminal condition XT (xT ; zT ), there exists a threshold terminal date T � ("; � ;XT ) such
that for any T � T � ("; � ;XT ), we have��x1t � xTt �� < ", for all t � � , (20)

where x1t+1 = X
1
t (k

1
t ; zt) and x

T
t+1 = Xt

�
kTt ; zt

�
are time-inhomogeneous Markov trajectories

of the in�nite- and �nite-horizon economies, respectively, under given initial condition (x0; z0)
and partial history hT = (�0; :::; �T ).

3.3 EFP framework

EFP aims to accurately approximate a sequence of time-dependent value and decision functions
during a given number of periods � by truncating the in�nite-horizon economy. Since EFP in
e¤ect solves a �nite-horizon model, it makes no di¤erence for the solution procedure whether
the parameters are constant or change in every period of time.
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Algorithm 1: Extended function path (EFP).

Step 1: Terminal condition. Choose T � � and construct time-invariant
Markov decision functions XT (x; z) � X (x; z).

Step 2: Backward iteration. Given the terminal condition XT � X,
iterate backward on the Bellman or Euler equations to construct a path of
time-inhomogeneous Markov decision functions (XT�1; :::; X0).

Step 3: Turnpike property. Verify that the initial � functions (X0; :::; X� )
are not sensitive to the choice of time horizon XT and terminal condition T by
analyzing di¤erent XT and T .

Use (X0; :::; X� ) as an approximate solution and discard the remaining T � �
functions (X�+1; :::; XT ).

What determines the accuracy of the EFP approximation? Let us denote the EFP �nite-horizon
solution by (bx0; :::; bx� ). Then, by a triangle inequality, the supnorm error bound on the EFP
approximation is given by:��x1t � bxTt �� � ��x1t � xTt ��+ ��xTt � bxTt �� , for all t � � , (21)

where x1t = Xt (x
1
t ; zt), x

T
t = Xt

�
xTt ; zt

�
and bxTt = bXt(bxTt ; zt) are the trajectories corresponding

to the in�nite- and �nite-horizon solutions and the EFP approximation, respectively. That is,
the EFP approximation error has two components: one is the error

��x1t � xTt �� that results from
replacing the in�nite-horizon problem with the �nite-horizon problem, and the other is the
error

��bxTt � xTt �� that arises because the �nite horizon solution itself is approximated numerically.
The former error depends on the choice of time-horizon and terminal condition, and it can be
made arbitrary small by extending the time horizon T , provided that the turnpike property
is satis�ed. The latter error depends on the accuracy of numerical techniques used by EFP,
such as interpolation, integration, solvers, etc. Since EFP relies on the same techniques as do
conventional global solution methods, the standard convergence results apply. For example,
Smolyak grids used in our analysis can approximate smooth functions with an arbitrary degree
of precision when the approximation level increases; see Judd et al. (2014). Below, we discuss
how speci�c implementation of Steps 1-3 a¤ects the accuracy and computational expense of the
EFP method.

Step 1: Terminal condition. In Step 1, we can choose any attainable Markov terminal
condition. In particular, we can assume that either the economy converges to a deterministic
steady state of some stationary model, or that it reaches a stationary solution with time-
invariant Markov value and decision functions, or that it approaches a balanced growth path.
To solve stationary or balanced growth models, we can use any conventional projection, per-
turbation and stochastic simulation methods; see Taylor and Uhlig (1990) and Judd (1998)
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for reviews of the earlier methods; and see Maliar and Maliar (2014) and Fernández-Villaverde
at al. (2016) for reviews of more recent literature. It is even possible to use a trivial (zero)
terminal condition by assuming that the life ends at T and by setting all variables to zero, so
Step 1 is always implementable. Under the turnpike theorem, a speci�c terminal condition used
has just a negligible e¤ect on the solution in the initial periods provided that the time horizon
is large enough. How large the time horizon should be for attaining some given accuracy level
does depend on the speci�c terminal condition used. To increase accuracy and to economize on
costs, we must construct a terminal condition that is as close as possible to the in�nite-horizon
solution at T ; in Sections 4 and 5, we explain the construction of the terminal condition in
numerical examples.

Step 2: Backward iteration. Conventional projection, perturbation and stochastic simu-
lation methods are designed for solving stationary problems and are not directly suitable for
analyzing nonstationary problems. However, the techniques used by these methods can be read-
ily employed as ingredients of EFP. In particular, to approximate value and decision functions,
we can use a variety of grids, integration rules, approximation methods, iteration schemes, etc.
Furthermore, to solve for a path, we can use any numerical procedure that can solve a system
of nonlinear equations, including Newton-style solvers, as well as Gauss-Siedel or Gauss-Jacobi
iteration methods. To make EFP tractable in large-scale models, we can use low-cost sparse,
simulated, cluster and epsilon-distinguishable-set grids; nonproduct monomial and simulation
based integration methods; derivative-free solvers; see Maliar and Maliar (2014) for a survey of
these techniques.
Step 2 is equivalent to conventional backward (time) iteration on the Bellman and Euler

equations, as is done in case of life-cycle models; see, e.g., Krueger and Kubler (2004) and
Hasanhodzic and Kotliko¤ (2013); see Ríos-Rull (1999) and Nishiyama and Smetters (2014)
for reviews of the literature on life-cycle economies.10 Time iteration requires the existence
of integrals in (17) and (18); see, e.g., Chapter 7 in Stachurski (2009) for a discussion of
integrability. Furthermore, optimal problem (17) must have a well de�ned maximum, while the
system in equilibrium problem (18) must be invertible with respect to the next-period state
variables xt+1. These are very mild restrictions that are satis�ed in virtually any model studied
in the related literature.
As a criteria of convergence, we can evaluate the decision functions on low-discrepancy grids

or simulated series, as is done for stationary economies; see, e.g., Maliar and Maliar (2014). The
di¤erence is that in the stationary case, we must check the convergence of just one time-invariant
decision function while in the nonstationary case, we must check the pointwise convergence of
the entire path (sequence) of such functions.

Step 3. Turnpike property. If we knew or could somehow guess the exact solution X1
T of

the in�nite-horizon model at T and use it as a terminal condition, the in�nite- and �nite-horizon
trajectories would coincide up to T . However, the in�nite-horizon solution is typically unknown
in any period (as this is a solution we are trying to �nd), so the right terminal condition is
also unknown. The turnpike property solves the problem of unknown terminal condition: no

10Time iteration is commonly used in the context of dynamic programing methods, as well as some Euler
equation methods, e.g., Coleman (1991), Mirman et al. (2008), Malin et al. (2011).
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matter what terminal condition XT we use, the �nite-horizon solution (X0; :::; X� ) provides an
accurate approximation to the in�nite-horizon solution (X1

0 ; :::; X
1
� ) during the given number

of periods � provided that the time horizon T is su¢ ciently large. However, this is only true if
the turnpike property holds, so Step 3 is a critical ingredient of the EFP analysis.
To test the turnpike property, we construct the EFP solution (X0; :::; X� ) under several

di¤erent T s and XT s; for each constructed solution (X0; :::; X� ), we simulate the economy�s
trajectories (xT0 ; :::x

T
� ) under di¤erent initial conditions (x0; z0) and di¤erent histories hT ; and

we evaluate the approximation errors or residuals in the model�s equations. Provided that the
approximation errors or residuals are small for all T s and XT s, we conclude that the EFP
solution converges to a unique limit, i.e., lim

T!1
(XT

0 ; :::X
T
� ) = (X

�
0 ; :::X

�
� ).

Does our test produce types I and II errors? The former type of errors is not possible: if
a model satis�es the turnpike theorem, our test will con�rm that the solution is insensitive
to a speci�c terminal condition and time horizon used. The latter type of errors is however
possible, i.e, we can erroneously conclude that turnpike theorem holds for some models for which
e¤ectively it does not. This is because EFP relies on the assumption that the in�nite-horizon
solution (x10 ; :::x

1
� ) is equivalent to the limit of the �nite-horizon solution (x

�
0; :::x

�
� ). However,

there are models in which this is not the case, in particular, dynamic games. For example, �nite-
horizon prisoners dilemma has a unique stage equilibrium but the in�nite-horizon game has a
continuous set of equilibria (folk theorems), and a similar kind of multiplicity is observed for
dynamic models with hyperbolic consumers; see Maliar and Maliar (2016) for a discussion. Our
test cannot detect this problem: by constructing the EFP solution under di¤erent T s and XT s,
we only check that the �nite-horizon solution has a well-de�ned unique limit lim

T!1
(xT0 ; :::x

T
� ) =

(x�0; :::x
�
� ) but we have no way to check that such a limit is equivalent to in�nite-horizon solution

(x10 ; :::x
1
� ).

3.4 An example: the EFP analysis of nonstationary growth model

We now use the EFP framework to revisit the optimal growth model studied in Section 2.
Below, we elaborate the implementation of Algorithm 1 for that speci�c model.
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Algorithm 1a: Extended function path (EFP) for the growth model.

Step 1: Terminal condition. Choose some T � � and assume that for t � T , the
economy becomes stationary, i.e., ut = u, ft = f and 't = ' for all t � T . Construct
a stationary Markov capital function K satisfying:
u0(c) = �E [u0(c0)(1� � + f 0 (k0; ' (z; �0)))]
c = (1� �) k + f (k; z)� k0
c0 = (1� �) k0 + f (k0; ' (z; �0))� k00
k0 = K (k; z) and k00 = K (k0; ' (z; �0)).

Step 2: Backward iteration. Construct a time-inhomogeneous path for capital
policy functions (K0; :::; KT ) that matches the terminal condition KT � K
and that satis�es for t = 0; :::T � 1:
u0t�1(ct�1) = �Et�1

�
u0t(ct)(1� � + f 0t

�
kt; 't�1 (zt�1; �t)

�
)
�

ct�1 = (1� �) kt�1 + ft�1 (kt�1; zt�1)� kt
ct = (1� �) kt + ft

�
kt; 't�1 (zt�1; �t)

�
� kt+1

kt = Kt�1 (kt�1; zt�1) and kt+1 = Kt

�
kt; 't�1 (zt�1; �t)

�
:

Step 3: Turnpike property. Draw a set of initial conditions (k0; z0) and histories
h� = (�0; :::; �� ) and use the EFP decision functions (K0; :::; K� ) to simulate the
economy�s trajectories (kT0 ; :::k

T
� ). Check that the trajectories converge to a unique

limit lim
T!1

(kT0 ; :::k
T
� ) = (k

�
0; :::k

�
� ) by constructing (K0; :::; KT ) under di¤erent T and KT .

Use (K0; :::; K� ) as an approximate solution to (17) or (18) and discard the
remaining T � � functions (K�+1; :::; KT ).

Parameterization. We consider the model (1), (2) parameterized by (13) and (12). For all
experiments, we �x � = 0:36, � = 5, � = 0:99, � = 0:025 and � = 0:95. The remaining
parameters are set in the benchmark case at �� = 0:03, 
A = 1:01 and T = 200 but we vary
these parameters across experiments.

Step 1: Markov terminal condition. In the studied example, nonstationarity comes from
the fact that the economy experiences the economic growth At = A0
tA. To implement Step 1,
we assume that the economic growth stops at T and that the economy becomes stationary, i.e.,
At = AT � A for all t � T . To solve the resulting Markov stationary model and construct KT ,
we use a conventional projection method based on Smolyak grids as in Judd et al. (2014); this
method is tractable in high-dimensional applications.

Step 2: Time-inhomogeneous Markov decision functions. In Step 2, we apply back-
ward iteration: given KT , we can use the Euler equation to compute KT�1 at T � 1; next, we
use KT�1 to compute KT�2; we proceed until the entire path (KT ; :::; K0) is constructed. In
Figure 2, we illustrate the resulting sequence of time-inhomogeneous Markov capital decision
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functions (a function path) produced by Algorithm 1a for the model (1)�(3) with exogenous
labor-augmenting technological progress (13).

Figure 2. Function path, produced by EFP, for a growth model with technological
progress.

As an example, we plot the capital functions for periods 1, 20 and 40 by setting the productivity
level equal to one z = 1 (i.e., k2 = K1 (k1; 1), k21 = K20 (k20; 1) and k41 = K40 (k40; 1)). In
Step 1 of the algorithm, we construct the capital function K40 by assuming that the economy
becomes stationary in period T = 40; in Step 2, we construct a path of the capital functions
(K0; :::K39) that matches the corresponding terminal function K40. The domain for capital and
the range of the constructed capital function grow at the rate of labor-augmenting technological
progress. In Appendix C, we also provide a three-dimensional plot of the capital functions.

Step 3: Numerical veri�cation of the turnpike property. Finally, in Step 3, we verify
the turnpike property, i.e., we check that the initial � decision functions (K0; :::; K� ) are not
sensitive to the choice of terminal condition KT and time horizon T . We implement the test
by constructing 100 simulations under random initial conditions (k0; z0) and histories hT =
(�0; :::; �T ). We consider two time horizons, T = 200 and T = 400 and two di¤erent terminal
conditions, one on the balanced-growth path and the other a solution to the stationary model.
The EFP solution proved to be remarkably robust and accurate during the initial periods under
all time horizons and terminal conditions considered, in particular, the approximation errors
during the �rst � = 50 periods do not exceed 10�6 = 0:0001%. In Section 4, we discuss these
accuracy results in details and we compare the EFP solution with those produced by other
methods for solving time-inhomogeneous models.
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Figure 3. Convergence of the optimal program of T -period
stationary economy.

Figure 3 illustrates the turnpike theorem with the graph. For a given initial condition (k0; z0)
and history of shocks hT = (�0; :::; �T ), it shows that the initial � decision functions (K0; :::; K� )
are not sebsitive to various terminal conditions (given by KL; KT , k0, k00 and K1

T ). The EFP
numerical solution in Figure 3 looks similar to the solution in Figure 1, which we derived
analytically. As predicted by the turnpike theorem, the �nite-horizon solution converges to
the in�nite-horizon solution under all terminal conditions considered, however, the convergence
is faster under terminal conditions k0 and k00, that are located relatively close to the true T -
period capital of the nonstationary economy fk1T g, than under a zero terminal condition that
is located farther away from the true solution. We observe that even though the choice of
speci�c terminal condition plays no role in asymptotic convergence established in the turnpike
literature, it can play a critical role in the accuracy and speed of numerical solution methods.
To attain the fastest possible convergence, we need to choose the terminal condition KT

T of the
�nite-horizon economy to be as close as possible to the T -period capital stock of the in�nite-
horizon nonstationary economy K1

T .

4 EFP versus EP and naive methods

In this section, we assess the quality of the EFP solutions in the optimal growth model (1)�(3)
with labor-augmenting technological progress and compare it to solutions produced by other
methods. We focus on the growth model that is consistent with balanced growth because in
this special case, the nonstationary model can be converted into a stationary model and can be
accurately solved by using conventional solution methods; this yields us a high-quality reference
solution for comparison.
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4.1 Four solution methods

We implement four alternative solution methods which we call exact, EFP, Fair and Taylor
and naive ones.

i). Exact solution method. We �rst convert the nonstationarity model into a stationary one
using the property of balanced growth; we then accurately solve the stationary model using a
Smolyak projection method in line with Krueger and Kubler (2004) and Judd et al. (2014); and
we �nally recover a solution to the original nonstationary model; see Appendix D for details.
The resulting numerical solution is very accurate, namely, the unit-free maximum residuals in
the model�s equations are of order 10�6 on a stochastic simulation of 10,000 observations. We
loosely refer to this numerical solution as exact, and we use it as a benchmark for comparison.

ii). EFP solution method. EFP constructs a time�inhomogeneous Markov solution to a nonsta-
tionary model without converting it into stationary�we follow the steps outlined in Algorithm
1a; see Appendix B for implementation details.

iii). Fair and Taylor (1983) solution method. Fair and Taylor�s (1983) method also solves
a nonstationary model directly, without converting it into stationary. It constructs a path for
the model�s variables (not functions!) under one given sequence of shocks by using the certainty
equivalence approach for approximating the expectation functions. The implementation of Fair
and Taylor�s (1983) method is described in Appendix C; for examples of applications of such
methods, see, e.g., Chen et al. (2006), Bodenstein et al. (2009), Coibionet al. (2011), Braun
and Körber (2011) and Hansen and Imrohoro¼glu (2013).

iv). Naive solution method. A naive method replaces a nonstationary model with a sequence
of stationary models and solves such models one by one, independently of one another. Similar
to EFP, the naive method constructs a path of decision functions for t = 0; :::; T but it di¤ers
from EFP in that it neglects the connections between the decision functions in di¤erent time
periods. A comparison of the EFP and naive solutions allows us to appreciate the importance
of anticipatory e¤ects.

The absence of steady state and the deterministic growth path. The studied growing
economy has no steady state. However, we can de�ne an analogue of steady state for the growing
economy as a solution to an otherwise identical deterministic economy in which the shocks are
shut down. We refer to such a solution as growth path, and we denote it by a superscript "�".
We use the growth path as a sequence of points around which the Smolyak grids are centered.
In particular, in Figures 2 and 4, the growth path is shown with a dashed line. In our balanced
growth model (12), the growth path can be constructed analytically. Namely, in the detrended

economy, the steady state capital is given by k�0 � A0
�

�A � � + ��

��

�1=(��1)
, and in the growing

economy, it evolves as k�t = k�0

t
A for t = 1; :::; T ; see Appendix D for details. Therefore, we

know the exact terminal condition (i.e., the one that coincide with the in�nite-horizon solution)
for our economy with growth is k�T+1 = k

�
0

T+1
A . To assess the role of the terminal condition,

we also use another terminal condition that is constructed by assuming that at T , the economy
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arrives to the steady state with no growth kssT+1 � AT+1
�
1� � + ��

��

�1=(��1)
.

To see how far is T -period steady state terminal condition kssT+1 from the exact growing one
k�T+1, we computed the ratio of the two terminal capital stocks,

k�T+1
kssT+1

=

�

�A � � + ��
1� � + ��

�1=(��1)
:

It turned out that this ratio is very di¤erent from one under the standard calibration, in
particular, with � = 1, it is 0:67 and with � = 3, it is 0:38. Thus, by assuming that the
economy arrives to the steady state at T , we can overstate the correct terminal capital stock
by several times! Using so inaccurate terminal condition requires us to considerably increase
the time horizon to make the EFP solutions su¢ ciently accurate solutions. So, instead of the
steady state, we �nd that it is better to use a terminal condition that leads to a convergence to
a nonvanishing growth path �we discuss how to construct such terminal condition in Section
5.

Software and hardware. For all simulations, we use the same initial condition and the same
sequence of productivity shocks for all methods considered. Our code is written in MATLAB
2018, and we use a desktop computer with Intel(R) Core(TM) i7-2600 CPU (3.40 GHz) with
RAM 12GB.

Comparison results. In the left panel of Figure 4, we plot the growing time-series solutions
for the four solution methods, as well as the (steady state) growth path for capital under one
speci�c realization of shocks. In the right panel, we display the time series solutions after
detrending the growth path.

Figure 4. Comparison of the solution methods for the test model with balanced
growth.
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As is evident from both panels, the EFP and exact solutions are visually indistinguishable
except of a small di¤erence at the end of time horizon �the last 10-15 periods. This di¤erence is
due to the use of di¤erent terminal conditions: in the former case, we assume that the economy
becomes stationary (i.e., stops growing) at T , whereas in the latter case, the growth continues
forever. If we use the exact solution at T as a terminal condition for the EFP, then the EFP
solution would be indistinguishable from the exact solution everywhere in the �gure. However,
Fair and Taylor�s (1983) and naive methods are far less accurate; they produce solutions that
are systematically lower than the exact solution everywhere in the �gure; and the naive solution
is the least accurate of all.

Verifying the turnpike theorem numerically. We next evaluate the accuracy of EFP, Fair
and Taylor (1983) and naive solutions by implementing the turnpike test outlined in Steps 3a-3c
of Algorithm 1a; see Section 3.4. Speci�cally, we �rst simulate each of the four solutions 100
times and we then compute the mean and maximum absolute di¤erences in log 10 units between
the exact solution and the remaining three solutions across 100 simulations for the intervals
[0; 50], [0; 100], [0; 150], [0; 175], and [0; 200]. These statistics show how fast the accuracy of
numerical solutions deteriorates, as we approach the terminal period. The accuracy results are
reported in Table 1, as well as the time needed for computing and simulating the solution of
length T 100 times (in seconds). We observe that in most implementations, the approximation
errors of EFP do not exceed 10�6 = 0:0001%, while the errors produced by Fair and Taylor�s
(1983) and naive methods can be as large as 10�1:13 � 7:4% and 10�0:89 � 12%. We discuss
these �ndings below.

4.2 EFP method

In Table 1, we provide the results under three alternative implementations of EFP that illustrate
how the properties of the EFP solutions depend on the choices of the terminal condition, KT ,
time horizon T and parameter � .

The role of the terminal condition: better terminal condition gives more accurate
solutions. The results in Table 1 show that if we use the balanced-growth terminal condition
that is equal to the in�nite-horizon solution at T , the EFP approximation is very accurate
everywhere independently of � and T , namely, the di¤erence between the exact and EFP
solutions is less than 10�6 = 0:0001%. In turn, if the terminal condition is given by a solution
to a T -period stationary model, the accuracy critically depends on the choice of � and T , and
deteriorates dramatically when the economy approaches the time horizon T , as predicted by
the turnpike theorem.
To study how the approximation errors in the tail of the solution depend on the time

horizon, terminal condition and model parameters, we also solved the model under T =
f200; 300; 400; 500g and � = f1=3; 1; 3g; these results are shown in Appendix E. We consider
two terminal conditions, one is a T -period stationary economy and the other is a zero-capital
assumption. When solving the model for T = 200, the maximum errors produced at � = 100 are
about one order of magnitude higher with zero terminal capital than with T -period stationary
terminal condition. As we increase T , the errors become smaller independently of the terminal
condition. For T = 300, the maximum approximation errors vary from 10�6 = 0:0001% to



Table 1: Comparison of four solution methods.

Fair-Taylor (1983) Naive EFP method EFP method
method, � = 1 method � = 1 � = 200

Terminal Steady Steady - Balanced T -period Balanced T -period
condition state state growth stationary growth stationary

T 200 400 200 200 200 400 200 200 400

Mean errors across t periods in log10 units
t 2 [0; 50] -1.60 -1.60 -1.36 -7.30 -6.97 -7.15 -7.23 -6.75 -7.01
t 2 [0; 100] -1.42 -1.42 -1.19 -7.06 -6.81 -6.98 -7.03 -6.19 -6.81
t 2 [0; 150] -1.34 -1.35 -1.11 -6.96 -6.73 -6.91 -6.94 -5.47 -6.73
t 2 [0; 175] -1.32 -1.32 -1.09 -6.93 -6.71 -6.89 -6.91 -5.09 -6.70
t 2 [0; 200] -1.30 -1.31 -1.07 -6.91 -6.69 -6.87 -6.90 -4.70 -6.68

Maximum errors across t periods in log10 units
t 2 [0; 50] -1.29 -1.29 -1.04 -6.83 -6.63 -6.81 -6.82 -6.01 -6.42
t 2 [0; 100] -1.18 -1.18 -0.92 -6.69 -6.42 -6.68 -6.68 -4.39 -5.99
t 2 [0; 150] -1.14 -1.14 -0.89 -6.66 -6.39 -6.67 -6.66 -2.89 -5.98
t 2 [0; 175] -1.14 -1.13 -0.89 -6.66 -6.40 -6.66 -6.66 -2.10 -5.98
t 2 [0; 200] -1.14 -1.13 -0.89 -6.66 -6.37 -6.66 -6.66 -1.45 -5.92

Running time, in seconds
Solution 1.2(+3) 6.1(+3) 28.9 216.5 8.6(+2) 1.9(+3) 104.9 99.1 225.9
Simulation - - 2.6 2.6 2.6 5.8 2.6 2.8 5.7
Total 1.2(+3) 6.1(+3) 31.5 219.2 8.6(+2) 1.9(+3) 107.6 101.9 231.6

Notes: "Mean errors" and "Maximum errors" are, respectively, mean and maximum unit-free absolute di¤erence

between the exact solution for capital and the solution delivered by a method in the column. The di¤erence

between the solutions is computed across 100 simulations.
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10�5 = 0:001%. Overall, EFP provides a su¢ ciently accurate solution for the �rst 100 periods
when we solve the model for T � 250.

The choice of � : a trade-o¤ between accuracy and cost. We analyze two di¤erent
values of � such as � = 1 and � = 200. Under � = 1, EFP constructs a path of function in the
same way as Fair and Taylor�s (1983) method constructs a path of variables. First, given KT ,
EFP solves for (KT�1; :::; K0), stores K0 and discards the rest. Next, given KT+1, EFP solves
for (KT ; :::; K1), stores K1 and discards the rest. It proceeds for � steps forward until the path
(K0; :::; K� ) is constructed.
As we see from the table, EFP method with � = 1 is very accurate independently of T and

a speci�c terminal condition used, namely, the EFP and exact solutions again di¤er by less
than 10�6 = 0:0001%. This result illustrates the implication of the turnpike theorem that the
e¤ect of any terminal condition on the very �rst element of the path � = 1 is negligible if the
time horizon T is su¢ ciently large.
A shortcoming of the version of EFP with � = 1 is its high computational expense: the

running time under T = 200 and T = 400 is about 20 and 30 minutes, respectively. The cost
is high because we need to recompute entirely a sequence of decision functions each time when
we extend the path by one period ahead. E¤ectively, we recompute the EFP solution T times,
and this is what makes it so is costly.

The choice of T : making EFP cheap. Our turnpike theorem suggests a cheaper version
of EFP in which we construct a longer path (i.e., we use � > 1) but we do it just once; the
results for this version of the EFP method are provided in the last three columns of Table 1.
For � = 200, the terminal condition plays a critical role in the accuracy of solutions near the
tail. Namely, if we use the terminal condition from the T -period stationary economy, and use
the time horizon T = 200, than the approximation errors near the tail reach 10�1:45 � 4%.
However, the approximation errors are dramatically reduced when the time horizon T in-

creases, as the last column of Table 1 shows. Namely, if we construct a path of length T = 400
but use only the �rst � = 200 decision functions and discard the remaining path, the solution
for the �rst � = 200 periods is almost as accurate as that produced under � = 1. This is true
even though the terminal condition from the T -period stationary economy is far away from the
exact terminal condition. Importantly, the construction of a longer path is relatively inexpen-
sive: the running time increases from about 2 minutes to 4 minutes when we increase the time
horizon from T = 200 to T = 400, respectively.

Sensitivity analysis. On the basis of the results in Table 1, we advocate a version of EFP
that constructs a su¢ ciently long path � > 1 by using T � � . We assess the accuracy and cost
of this preferred EFP version by using � = 200 and T = 400 under several alternative parame-
terizations for f�; ��; 
Ag such that � 2 f0:1; 1; 5; 10g, �� 2 f0:01; 0:03g and 
A 2 f1; 1:01; 1:05g.
As a terminal condition, we use decision rules produced by the T -period stationary economy.
These sensitivity results are provided in Table 2 of Appendix E.
The accuracy and cost of EFP in these experiments are similar to those reported in Table

1 for the benchmark parameterization. The di¤erence between the exact and EFP solutions
varies from 10�7 = 0:00001% to 10�6 = 0:0001% and the running time varies from 155 to
306 seconds. The exception is the model with a low degree of risk aversion � = 0:1 for which
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the running time increases to 842 seconds. (We �nd that with a low degree of risk aversion,
the convergence of EFP is more fragile, so that we had to use a larger degree of damping for
iteration, decreasing the speed of convergence).

4.3 Fair and Taylor�s (1983) method

As Table 1 shows, EFP dominates the EP method of Fair and Taylor method in both ac-
curacy and cost. Fair and Taylor�s (1983) method has relatively low accuracy (namely, its
approximation errors are 10�1:6 � 2:5%) because the certainty equivalence approach does not
produce su¢ ciently accurate approximation to conditional expectations under the given pa-
rameterization. We �nd that Fair and Taylor�s (1983) method is far more accurate with a
smaller variance of shocks and /or smaller degrees of nonlinearities, for example, under � = 1,
�� = 0:01, 
A = 1:01 and T = 200, the di¤erence between the exact solution and Fair and
Taylor�s (1983) solutions is around 0:1% (this experiment is not reported). A comparison of
T = 200 and T = 400 shows that the accuracy of Fair and Taylor�s (1983) method cannot be
improved by increasing the time horizon.
The high cost of Fair and Taylor�s (1983) method is explained by two factors. First, � = 1

is the only possible choice for Fair and Taylor�s (1983) method. To solve for variables of period
t = 0, this method assumes that productivity shocks are all zeros starting from period t = 1, so
that the path for t = 1; :::; T has no purpose other than helping to approximate the variables
of period t = 0. In contrast, EFP can use much longer �s as long as the resulting solution is
su¢ ciently accurate, which reduces the cost.
Second, for Fair and Taylor�s (1983) method, the cost of simulating the model is high because

the solution and simulation steps are combined together: in order to produce a new simulation,
it is necessary to entirely recompute the solution under a di¤erent sequence of shocks. In
contrast, the simulation cost is low for EFP: after we construct a path of decision functions
once, we can use the constructed functions to produce as many simulations as we need under
di¤erent sequences of shocks. For example, the time that Fair and Taylor�s (1983) method
needs for computing / simulating 100 solutions is about 30 minutes and 1 hour, respectively
(recall that the corresponding times for EFP method are 2 and 4 minutes, respectively).

4.4 Naive method: understanding the importance of anticipatory
e¤ects

For the naive method, we report the solution only for T = 200 since neither time horizon nor
terminal condition are relevant for this method. The performance of the naive method is poor:
the di¤erence between the exact and naive solutions can be as large as 10�0:89 � 12%. The naive
solution is so inaccurate because the naive method completely neglects anticipatory e¤ects. In
each time period t, this method computes a stationary solution by assuming that technology will
remain at the levels At = A0
tA and At+1 = A0


t+1
A forever, meanwhile the true nonstationary

economy continues to grow. Since the naive agent is "unaware" about the future permanent
productivity growth, the expectations of such an agent are systematically more pessimistic than
those of the agent who is aware of future productivity growth. It was pointed out by Cooley
et al. (1984) that naive-style solution methods are logically inconsistent and contradict to the
rational expectation paradigm: agents are unaware about a possibility of parameter changes
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when they solve their optimization problems, however, they are confronted with parameter
changes in simulations. Our analysis suggests that naive solutions are particularly inaccurate
in growing economies.
To gain intuition into why the accuracy of the naive method is low and how the expectation

about the future can a¤ect today�s economy, we perform an additional experiment. We specif-
ically consider a version of the model (1)�(3) with the production function ft (k; z) = ztk�t At,
in which the technology level At can take two values, A = 1 (low) and �A = 1:2 (high). We
consider a scenario when the economy starts with A at t = 0, switches to �A at t0 = 250 and
then switches back to A at t00 = 550 (for example, the U.K. joins the EU in 1973 and it exists
the EU in 2019). We show the technology pro�le in the upper panel of Figure 5.

Figure 5. EFP versus naive solutions in the model with parameter shifts.

We parameterize the model by using T = 900, � = 1, � = 0:36, � = 0:99, � = 0:025,
� = 0:95, � = 0:01. To make the anticipatory e¤ects more visible, we shut down the stochastic
shocks in simulation by setting zt = 1 for all t.
For a naive agent, regime switches are unexpected. The naive agent believes that the

economy will always be in a stationary solution with A until the �rst switch at t0 = 250, then
the agent believes that the economy will always be in a stationary solution with �A until the
second switch at t00 = 550 and �nally, the agent switches back to the �rst stationary solution
for the rest of the simulation.
In contrast, the EFP method constructs a solution of an informed agent who solves the

utility-maximization problem at t = 0 knowing the technology pro�le in Figure 5. Remarkably,
under the EFP solution, we observe a strong anticipatory e¤ect: about 50 periods before the
switch from A and �A takes place, the agent starts gradually increasing her consumption and
decreasing her capital stock in order to bring some part of the bene�ts from future technological
progress to present. When a technology switch actually occurs, it has only a minor e¤ect on
consumption. (The tendencies reverse when there is a switch from �A to A). Such consumption-
smoothing anticipatory e¤ects are entirely absent in the naive solution. Here, unexpected
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technology shocks lead to large jumps in consumption in the exact moment of technology
switches. The di¤erence in the solutions is quantitatively signi�cant under our empirically
plausible parameter choice.
Note that anticipated regime changes cannot be e¤ectively approximated by conventional

Markov switching models; see, e.g., Sims and Zha (2006), Davig and Leeper (2007, 2009),
Farmer et al. (2011), Foerster et al. (2013), etc. In that literature, regime changes come at
random and thus, the agents anticipate the possibility of regime change and not the change
itself. However, there is a recent literature on Markov chains with time-varying transition
probabilities that makes it possible to model the e¤ect of expectation on equilibrium quantities
and prices, see, e.g., Bianchi (2019) for a discussion and further references. Also, Schmitt-
Grohé and Uribe (2012) propose a perturbation-based approach that deals with anticipated
parameter shifts of a �xed time horizons (e.g., shocks that happen each fourth or eight periods)
in the context of stationary Markov models. In turn, EFP can handle any combination of
unanticipated and anticipated shocks of any periodicity and duration.

5 Using EFP to solve an unbalanced growth model

Real business cycle literature heavily relies on the assumption of labor-augmenting technological
progress leading to balanced growth. However, there are empirically relevant models in which
growth is unbalanced. For example, Acemoglu (2002) argues that technical change is not
always directed to the same �xed factors of production but to those factors of production
that give the largest improvement in the e¢ ciency of production.11 One implication of this
argument is that technical change can be directed to either capital or labor depending on
the economy�s state. Furthermore, Acemoglu (2003) explicitly incorporates capital-augmenting
technological progress into a deterministic model of endogenous technical change by allowing
for innovations in both capital and labor. Evidence in support of capital-augmenting technical
change is provided in, e.g., Klump et al. (2007), and León-Ledesma et al. (2015).12

Constant elasticity of substitution production function. In line with this literature, we
consider the stochastic growth model (1)�(3) with a constant elasticity of substitution (CES)
production function, and we allow for both labor- and capital-augmenting types of technological
progress

F (kt; `t) = [�(Ak;tkt)
v + (1� �)(A`;t`t)v]1=v ; (22)

where Ak;t = Ak;0

t
Ak
; A`;t = A`;0


t
A`
; v � 1; � 2 (0; 1); and 
Ak and 
A` are the rates of

capital and labour augmenting technological progresses, respectively. We assume that labor is
supplied inelastically and normalize it to one, `t = 1 for all t, and we denote the corresponding
production function by f(kt) � F (kt; 1). The Euler equation for the studied model is

u0(ct) = �Et

h
u0(ct+1)(1� � + �Avk;t+1(kt+1)v�1

�
�(Ak;t+1kt+1)

v + (1� �)Av`;t+1
�(1�v)=vi

: (23)

11Namely, endogenous technical change is biased toward a relatively more scarce factor when the elasticity
of substitution is low (because this factor is relatively more expensive); however, it is biased toward a relatively
more abundant factor when the elasticity of substitution is high (because technologies using such a factor have
a larger market).

12There are other empirically relevant types of technological progress that are inconsistent with balanced
growth, for example, investment-speci�c technological progress considered in Krusell et al. (2000).
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The above model is generically nonstationary, speci�cally, the growth rate of endogenous vari-
ables changes over time in an unbalanced manner even if we assume that Ak;t and A`;t grow at
constant growth rates.

A growth path for the economy with unbalanced growth. Our goal is to construct
an unbalanced growth path fk�t g

T+1
t=0 around which the sequence of EFP grids will be centered.

We shut down uncertainty by assuming that zt = 1 for all t. First, we construct a terminal
condition k�t+1 by assuming that all variables grow at the same rates at T and T � 1. For this
model, it is convenient to target the following two growth rates,

k�t+2
k�t+1

=
k�t+1
k�t

= 
k and
u0
�
c�t+1

�
u0 (c�t )

=
u0 (c�t )

u0
�
c�t�1

� = 
u: (24)

With this restriction, the Euler equation (23) written for T � 1 and T implies

1 = �
h

u(1� � + �Avk;t+1(
kk�t )v�1

�
�(Ak;t+1
kk

�
t )
v + (1� �)Av`;t+1

�(1�v)=vi
; (25)

1 = �
h

u(1� � + �Avk;t(k�t )v�1

�
�(Ak;tk

�
t )
v + (1� �)Av`;t

�(1�v)=vi
; (26)

where 
u is determined by the budget constraint (2):


u =
u0
h
(1� �) 
kk�t +

�
�(Ak;t+1
kk

�
t )
v + (1� �)Av`;t+1

�1=v � 
2kk�t i
u0
h
(1� �) k�t +

�
�(Ak;tk�t )

v + (1� �)Av`;t
�1=v � 
kk�t i : (27)

Therefore, we obtain a system of three equations (25)-(27) with three unknowns 
k, 
u and k
�
t ,

which we solve numerically. Once the solution is known, we �nd k�t+2 = 

2
kk
�
t and k

�
t+1 = 
kk

�
t ,

calculate c�t+1 from the budget constraint (2) and recover the rest of the growth path k
�
T�1; :::; k

�
0

by iterating backward on the Euler equation (23).

Results of numerical experiments For numerical experiments, we assume T = 260, � = 1,
� = 0:36, � = 0:99, � = 0:025, � = 0:95, �� = 0:01, v = �0:42; the last value is taken in line with
Antrás (2004) who estimated the elasticity of substitution between capital and labor to be in a
range of [0:641; 0:892] that corresponds to v 2 [�0:12;�0:56]. We solve two models: the model
with labor-augmenting progress parameterized byA`;0 = 1:1123, 
A` = 1:0015 andAk;0 = 
Ak =
1 and the model with capital-augmenting progress parameterized by Ak;0 = 1, 
Ak = 0:9867
and A`;0 = 
A` = 1. The parameters A`;0, 
A` , Ak;0, 
Ak for both models are chosen to
approximately match the capital stocks at t = 0 and t = 154 for the growth paths of capital, so
that the cumulative growth is the same for both models over the target period given by � = 154.
To this purpose, we �rst �x Ak;0 and 
Ak for the model with capital-augmenting technological
change, and we �nd the values of k0 and k154. Then, we solve a system of two nonlinear equations
(given by a closed-form solution for the model with labor-augmenting technical change) to �nd
the corresponding A`;0 and 
A` . The numerical cost of calculating solutions to the model
with labor-augmenting and capital-augmenting technical changes are about 1 and 12 minutes,
respectively. We implement the turnpike test by verifying that the simulated trajectories are
insensitive to the speci�c time horizon and terminal conditions assumed. Finally, we construct
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the unit-free residuals in the Euler equation (23), and we �nd that such residuals do not exceed
10�4 = 0:01% across 100 test simulations.
Figure 6 plots the time-series solutions of the models with labour and capital-augmenting

technological progresses, as well as the corresponding growth paths.

Figure 6. Time-series solution in the model with a CES production function.

The properties of the model with labor-augmenting technological progress are well known.
There is an exponential growth path with a constant growth rate and cyclical �uctuations
around the growth path. (In the �gure, the growth path in the model with labor-augmenting
technological progress is situated slightly below the linear growth path shown by a solid line).
In contrast, the model with capital-augmenting technological progress is not studied yet in
the literature in the presence of uncertainty (to the best of our knowledge). Here, we observe
a pronounced concave growth pattern indicating that the rate of return to capital decreases
as the economy grows (In the �gure, the growth path in the model with capital-augmenting
technological progress is situated above the linear growth path shown by a solid line). The
cyclical properties of both models look similar (provided that growth is detrended).

6 EFP limitations

We now discuss two limitations of the EFP framework related to the turnpike property and the
assumption of Markov structure of the model.

6.1 Turnpike theorem does not always hold

The key assumption behind the EFP analysis is the turnpike property that says that today�s
decisions are insensitive to events that happen in a distant future. However, not all economic
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models possess this property. Below, we show a version of the new Keynesian economy in which
anticipated future changes in the interest rate have immediate and unrealistically large e¤ects
on the current decisions, an implication which is known as a forward guidance puzzle; see, e.g.,
Del Negro et al. (2012), Carlstrom et al. (2015), McKay et. al (2016), Maliar and Taylor
(2018).

Consider a stylized new Keynesian framework developed in Woodford (2003) that consists of
an IS equation and Phillips curve given by

xt = Et [xt+1]� � (rt � Et [�t+1]� rnt ) ; (28)

�t = �Et [�t+1] + �xt; (29)

where xt, �t, rt and rnt are the output gap, in�ation, nominal interest rate and natural rate
of interest, respectively; � and � are the discount factor and the intertemporal elasticity of
substitution, respectively; � is the slope of the Phillips curve. Suppose that the monetary
policy is determined by the following rule

rt+j = Et+j [�t+j+1] + r
n
t+j + �t;t+j; (30)

where �t;t+j denotes a t+ j-period shock to the interest rate announced in period t, interpreted
as a forward-guidance shock; see Reifschneider and Williams (2000) for a general discussion on
monetary policy rules. By applying forward recursion to (28) and by imposing the transversality
condition lim

j!1
Et [xt+j] = 0, we obtain xt = ��

P1
j=0Et

�
rt+j � Et+j [�t+j+1]� rnt+j

�
which

together with (30) yields

xt = ��
1X
j=0

�t;t+j: (31)

This result implies that today�s shock �t;t to the interest rate has the same e¤ect as the shock
�t;t+j that happens j years from now. In Figure 7, we show two alternative anticipated future
interest rate shocks that happen in period 20 (we assume � = 0:99, � = 0:11 and � = 1).

Figure 7. Anticipated future interest-rate shocks in the new Keynesian model.

As we see, decisions in t = 0; 1; :::; 19 are dramatically a¤ected by anticipated future
interest-rate shocks in period t = 20 (such shocks can be viewed as variations in the terminal
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condition for the interest rate). This example illustrates the failure of numerical veri�cation of
the turnpike property in Step 3 of EFP. Speci�cally, we try out di¤erent terminal conditions
and di¤erent time horizons for the interest rate, and we observe they have a nonvanishing e¤ect
on the EFP approximation. We conclude that the turnpike property does not hold and that
the EFP methodology is not suitable for analyzing this particular version of the new Keynesian
model.13

6.2 Not all models are Markov

Another essential assumption of the EFP method is that exogenous variables follow although
time-inhomogeneous but still Markov process. If the process for exogenous variables is not
Markov, the probability distributions today depend not only on the current state but on the
entire historical path of the economy. Hence, the number of states grows exponentially over time
and the EFP method becomes intractable. The implications of Markov and history-dependent
models may di¤er dramatically. This fact can be seen by using the example of a new Keynesian
model with a zero lower bound on nominal interest rates.
Consider again the IS equation (28) and Phillips curve (29), and assume that the central

bank announces that it will peg the nominal interest at zero in some periods j and j + 1. If
the peg is �nite and the subsequent terminal condition is consistent with a unique equilibrium,
the entire path is uniquely determined; see, e.g., Carlstrom et al. (2015). However, if we
construct a Markov solution in which the interest rate is pegged in all states, then equilibrium
is indeterminate (this is equivalent to indeterminacy under a perpetual peg; see Galí, 2009).
While the EFP method is not applicable to history-dependent models, there are competing

methods that can work with such models. In particular, the EP method of Fair and Taylor
(1983) does not rely on the assumption of Markov process and can be used to construct history
dependent equilibria, however, its accuracy is limited by the certainty equivalence approach.
Adjemian and Juillard (2013) propose a stochastic extended path method that improves on
certainty equivalence approach of the baseline Fair and Taylor�s (1983) method. They con-
struct and analyze a tree of all possible future paths for exogenous state variables. Although
the number of tree branches and paths grows exponentially with the path length, the authors
propose a clever way of reducing the cost by restricting attention to paths that have the highest
probability of occurrence. However, the implementation of this method is nontrivial, in partic-
ular, in models with multiple state variables. Ajevskis (2017) proposes a method in which the
certainty equivalent solution a la Fair and Taylor (1983) is improved by incorporating higher
order perturbation terms. Furthermore, Krusell and Smith (2015) develop a related numeri-
cal method that combines perturbation of distributions and approximate aggregation in line
with Krusell and Smith (1998) to solve for a transition path in a multi-region climate change
model. Finally, another potentially useful method for analyzing nonstationary applications is
a nonlinear particle �lter; see, e.g., Fernández-Villaverde et al (2016) for a discussion of this
method.

13Nonetheless, the version of the model with the forward guidance puzzle is a very special and degenerate
case. Maliar and Taylor (2018) show that under empirically relevant parameterizations of the monetary policy
rules, new Keynesian models satisfy the turnpike property as well, so that the EFP method can be used.
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7 Conclusion

Conventional dynamic programming and Euler-equation methods are designed to solve sta-
tionary models by constructing time-invariant rules. In turn, path-solving methods, including
Fair and Taylor�s (1983) method, can solve nonstationary models by constructing a path for
variables. Our analysis combines these two classes of methods by constructing a path for rules.
As long as the model satis�es the turnpike property, the path for rules produced by EFP is
an accurate approximation of time-varying value and decision functions in the in�nite-horizon
nonstationary economy. For a simple optimal growth model, the turnpike property can be
established analytically but for more complex models, analytical characterizations may be in-
feasible. As an alternative, we propose to verify the turnpike property numerically by analyzing
the sensitivity of the �nal-horizon EFP solution to terminal conditions and terminal dates. Such
"numerical proofs" of turnpike theorems can extend greatly the class of tractable nonstationary
models and applications.
Our simple EFP framework has an important value-added in terms of applications that can

be analyzed quantitatively. Here are some examples: �rst, EFP can be applied to solve models
with any type of technological progresses (capital, Hicks neutral, investment-speci�c), as well
as any other parameter drifts (e.g., drifts in a depreciation rate, discount factor, utility-function
parameters, etc.). Second, EFP can handle any combination of unanticipated and anticipated
shocks of any periodicity and duration in a fully nonlinear manner including seasonal adjust-
ments. Third, EFP can be used to analyze models in which volatility has both stochastic and
deterministic components. Finally, the EFP framework provides a novel tool for policy analysis:
it allows to study time-dependent policies, complementing the mainstream of the literature that
focuses on state-dependent policies. In the time-dependent case, a policy maker commits to
adopt a new policy on a certain date, independently of the economy�s state (e.g., forward guid-
ance about raising the interest rate on a certain future date), whereas in the state-dependent
case, a policy maker commits to adopt a new policy when the economy reaches a certain state,
independently of the date (e.g., to raise the interest rate when certain economic conditions are
met); see Maliar and Taylor (2018) for related forward-guidance policy experiments. Both of
these cases are empirically relevant and can be of interest in empirical analysis.
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Appendix A. Turnpike theorem with Markov terminal
condition

In this section, we introduce notation, provide several relevant de�nitions about random processes
and elaborate the proof of Theorem 2 (turnpike theorem) formulated in Section 3. The turn-
pike literature normally assumes a zero terminal capital for the �nite-horizon economy, which
is a convenient assumption for showing asymptotic convergence results. However, in applica-
tions, it is more e¤ective to choose a terminal condition which is as close as possible to the
in�nite-horizon solution at T . This choice will make the �nite-horizon approximation closer
to the in�nite-horizon solution. (In fact, if we guess the "exact" terminal condition on the
in�nite-horizon path, then the in�nite- and �nite-horizon trajectories would coincide). Hence,
we show our own version of the turnpike theorem for the model (1)�(3) which holds for an ar-
bitrary Markov terminal condition of the type kT+1 = KT (kT ; zT ), which extends the turnpike
literature that focus on a zero terminal condition kT+1 = 0.
Appendices A1 and A2 contain notations, de�nitions and preliminaries. The proof of The-

orem 2 relies on three lemmas presented in Appendices A3-A5. In Appendix A3, we construct
a limit program of a �nite-horizon economy with a terminal condition kT+1 = 0; this construc-
tion is standard in the turnpike analysis, see Majumdar and Zilcha (1987), Mitra and Nyarko
(1991), Joshi (1997), and it is shown for the sake of completeness. In Appendix A4, we prove
a new result about convergence of the optimal program of the T -period stationary economy
with an arbitrary terminal capital stock kT+1 = KT (kT ; zT ) to the limiting program of the
�nite-horizon economy with a zero terminal condition kT+1 = 0. In Appendix A5, we show
that the limit program of the �nite-horizon economy with a zero terminal condition kT+1 = 0 is
also an optimal program for the in�nite-horizon nonstationary economy; in the proof, we also
follow the previous turnpike literature. Finally, in Appendix A6, we combine the results of Ap-
pendices A3-A5 to establish the claim of Theorem 2. Thus, our main theoretical contribution
is contained in Appendix A4.

Appendix A1. Notation and de�nitions

Our exposition relies on standard measure theory notation; see, e.g., Stokey and Lucas with
Prescott (1989), Santos (1999) and Stachurski (2009). Time is discrete and in�nite, t = 0; 1; :::.
Let (
;F ; P ) be a probability space:
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a) 
 = �1t=0
t is a space of sequences � � (�0; �1:::) such that �t 2 
t for all t, where 
t
is a compact metric space endowed with the Borel ���eld Et. Here, 
t is the set of all
possible states of the environment at t and �t 2 
t is the state of the environment at t.

b) F is the ��algebra on 
 generated by cylinder sets of the form �1�=0A� , where A� 2 E�
for all � and A� = 
� for all but �nitely many � .

c) P is the probability measure on (
;F).

We denote by fFtg a �ltration on 
, where Ft is a sub ���eld of F induced by a partial
history up of environment ht = (�0; :::; �t) 2 �t�=0
� up to period t, i.e., Ft is generated by
cylinder sets of the form �t�=0A� , where A� 2 E� for all � � t and A� = 
� for � > t. In
particular, we have that F0 is the course ���eld f0;
g, and that F1 = F . Furthermore,
if 
 consists of either �nite or countable states, � is called a discrete state process or chain;
otherwise, it is called a continuous state process. Our analysis focuses on continuous state
processes, however, can be generalized to chains with minor modi�cations.
We provide some de�nitions that will be useful for characterizing random processes; these

de�nitions are standard and closely follow Stokey and Lucas with Prescott (1989, Ch. 8.2).

De�nition A1. (Stochastic process). A stochastic process on (
;F ; P ) is an increasing se-
quence of ��algebras F1 � F2 � ::: � F ; a measurable space (Z;Z); and a sequence of functions
zt : 
! Z for t � 0 such that each zt is Ft measurable.

Stationarity or time-homogeneity is an assumption that is commonly used in economic litera-
ture.

De�nition A2. (Stationary process). A stochastic process z on (
;F ; P ) is called stationary
if the unconditional probability measure, given by

Pt+1;:::;t+n (C) = P (f� 2 
 : [zt+1 (�) ; :::; zt+n (�)] 2 Cg) ; (32)

is independent of t for all C 2 Zn, t � 0 and n � 1.

A related notion is stationary (time-homogeneous) transition probabilities. Let us denote by
Pt+1;:::;t+n (Cjzt = zt; :::; z0 = z0) the probability of the event f� 2 
 : [zt+1 (�) ; :::; zt+n (�)] 2 Cg,
given that the event f� 2 
 : zt = zt (�) ; :::; z0 = z0 (�)g occurs.

De�nition A3. (Stationary transition probabilities). A stochastic process z on (
;F ; P ) is
said to have stationary transition probabilities if the conditional probabilities

Pt+1;:::;t+n (Cjzt = zt; :::; z0 = z0) (33)

are independent of t for all C 2 Zn, � 2 
, t � 0 and n � 1.

The assumption of stationary transition probabilities (33) implies stationarity (32) if the cor-
responding unconditional probability measures exist. However, a process can be nonstationary
even if transition probabilities are stationary, for example, a unit root process or explosive
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process is nonstationary; see Stokey and Lucas with Prescott (1989, Ch 8.2) for a related
discussion.
In general, Pt+1;:::;t+n (C) and Pt+1;:::;t+n (Cj�) depend on the entire history of the events up

to t (i.e., the stochastic process zt is measurable with respect to the sub ���eld Ft). However,
history-dependent processes are di¢ cult to analyze. The literature distinguishes some special
cases in which the dependence on history has relatively simple and tractable form. A well-known
case is a class of Markov processes.

De�nition A4. (Time-inhomogeneous Markov process). A stochastic process z on (
;F ; P )
is (�rst-order) Markov if

Pt+1;:::;t+n (Cjzt = zt; :::; z0 = z0) = Pt+1;:::;t+n (Cjzt = zt) , (34)

for all C 2 Zn, t � 0 and n � 1.

The key property of a Markov process is that it is memoryless, namely, all past history (zt; :::; z0)
is irrelevant for determining the future realizations except of the most recent past zt. Note that
the above de�nition does not require the Markov process to be time-homogeneous: it allows
the functions Pt+1;:::;t+n (�) to depend on time, as required by our analysis. Finally, if transition
probabilities Pt+1;:::;t+n (Cjzt = zt) are independent of t for any n � 1, then the Markov process
is time-homogeneous. If in addition, there is an unconditional probability measure (32), the
resulting Markov process is stationary.

De�nition A5. (Stationary Markov process). A stochastic process z on (
;F ; P ) is called
stationary Markov if the unconditional probability measure, given by

Pt+1;:::;t+n (C) = P (f� 2 
 : zt+1 (�) 2 Cg) ; (35)

is independent of t for all C 2 Zn, t � 0 and n � 1.

Thus, time�homogeneous Markov process is stationary if it has time-homogeneous unconditional
probability distribution.

Appendix A2. In�nite-horizon economy

We consider an in�nite-horizon nonstationary stochastic growth model in which preferences,
technology and laws of motion for exogenous variables change over time. The representative
agent solves

max
fct;kt+1g1t=0

E0

" 1X
t=0

�tut (ct)

#
(36)

s.t. ct + kt+1 = (1� �) kt + ft (kt; zt) , (37)

zt+1 = 't (zt; �t+1) , (38)

where ct � 0 and kt � 0 denote consumption and capital, respectively; initial condition (k0; z0)
is given; ut : R+ ! R and ft : R2+ ! R+ and 't : R2 ! R are possibly time-dependent utility
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function, production functions and law of motion for exogenous variable zt, respectively; the
sequence of ut, ft and 't for t � 0 is known to the agent in period t = 0; �t+1 is i.i.d; � 2 (0; 1)
is the discount factor; � 2 [0; 1] is the depreciation rate; and Et [�] is an operator of expectation,
conditional on a t-period information set.
We make standard assumptions about the utility and production functions that ensure the

existence, uniqueness and interiority of a solution. Concerning the utility function ut, we assume
that for each t � 0:

Assumption 1. (Utility function). a) ut is twice continuously di¤erentiable on R+; b) u0t > 0,
i.e., ut is strictly increasing on R+, where u0t � @ut

@c
; c) u00t < 0, i.e., ut is strictly concave on R+,

where u00t � @2ut
@c2
; and d) ut satis�es the Inada conditions lim

c!0
u0t (c) = +1 and lim

c!1
u0t (c) = 0.

Concerning the production function ft, we assume that for each t � 0:

Assumption 2. (Production function). a) ft is twice continuously di¤erentiable on R2+, b)
f 0t (k; z) > 0 for all k 2 R+ and z 2 R+, where f 0t � @ft

@k
, c) f 00t (k; z) � 0 for all k 2 R+

and z 2 R+, where f 00t � @2ft
@k2
; and d) ft satis�es the Inada conditions lim

k!0
f 0t (k; z) = +1 and

lim
k!1

f 0t (k; z) = 0 for all z 2 R+.

We need one more assumption. Let us de�ne a pure capital accumulation process
�
kmaxt+1

	1
t=0

by assuming ct = 0 for all t in (37) which for each history ht = (z0; :::; zt), leads to

kmaxt+1 = ft (k
max
t ; zt) , (39)

where kmax0 � k0. We impose an additional joint boundedness restriction on preferences and
technology by using the constructed process (39):

Assumption 3. (Objective function). E0
�P1

t=0 �
tut
�
kmaxt+1

��
<1.

This assumption insures that the objective function (36) is bounded so that its maximum
exists. In particular, Assumption 3 holds either (i) when ut is bounded from above for all t,
i.e., ut (c) <1 for any c � 0 or (ii) when ft is bounded from above for all t, i.e., ft (k; zt) <1
for any k � 0 and zt 2 Zt. However, it also holds for economies with nonvanishing growth and
unbounded utility and production functions as long as ut

�
kmaxt+1

�
does not grow too fast so that

the product �tut
�
kmaxt+1

�
still declines at a su¢ ciently high rate and the objective function (36)

converges to a �nite limit.

De�nition A6. (Feasible program). A feasible program for the economy (36)�(38) is a pair of
adapted (t-measurable) processes fct; kt+1g1t=0 such that given initial condition k0, they satisfy
ct � 0, kt+1 � 0 and (37) for each possible history h1 = (�0; �1:::).

We denote by =1 a set of all feasible programs from given initial capital k0. We next introduce
the concept of solution to the model.

De�nition A7. (Optimal program). A feasible program
�
c1t ; k

1
t+1

	1
t=0
2 =1 is called optimal
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if

E0

" 1X
t=0

�t fut (c1t )� ut (ct)g
#
� 0 (40)

for every feasible process fct; kt+1g1t=0 2 =1.

Stochastic models with time-dependent fundamentals are studied in Majumdar and Zilcha
(1987), Mitra and Nyarko (1991) and Joshi (1997), among others. The existence results for this
class of models have been established in the literature for a general measurable stochastic envi-
ronment without imposing the restriction of Markov process (38). In particular, this literature
shows that, under Assumptions 1-3, there exists an optimal program

�
c1t ; k

1
t+1

	1
t=0
2 =1 in the

economy (36)�(38), and it is both interior and unique; see Theorem 4.1 in Mitra and Nyarko
(1991) and see Theorem 7 in Majumdar and Zilcha (1987). The results of this literature apply
to us as well.

Appendix A3. Limit program of �nite-horizon economy with a zero
terminal capital

In this section, we consider a �nite-horizon version of the economy (36)�(38) with a given
terminal condition for capital kT+1 = �. Speci�cally, we assume that the agent solves

max
fct;kt+1gTt=0

E0

"
TX
t=0

�tut (ct)

#
(41)

s.t. (37), (38), (42)

where initial condition (k0; z0) and terminal condition kT+1 = � are given. We �rst de�ne
feasible programs for the �nite-horizon economy.

De�nition A8. (Feasible programs in the �nite-horizon economy). A feasible program in the
�nite-horizon economy is a pair of adapted (i.e., Ft measurable for all t) processes fct; kt+1gTt=0
such that given initial condition k0 and any partial history hT = (�0; :::; �T ), they reach a given
terminal condition kT+1 = � at T , satisfy ct � 0, kt+1 � 0 and (37), (38) for all t = 1; :::T .

In this section, we focus on a �nite-horizon economy that reaches a zero terminal condition,
kT+1 = 0, at T . We denote by =T;0 a set of all �nite-horizon feasible programs from given initial
capital k0 and any partial history hT � (�0; :::; �T ) that attain given kT+1 = 0 at T . We next
introduce the concept of solution for the �nite-horizon model.

De�nition A9. (Optimal program in the �nite-horizon model). A feasible �nite-horizon pro-

gram
n
cT;0t ; kT;0t+1

oT
t=0
2 =T;0 is called optimal if

E0

"
TX
t=0

�t
n
ut(c

T;0
t )� ut (ct)

o#
� 0 (A1)

for every feasible process fct; kt+1gTt=0 2 =T;0.
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The existence result for the �nite-horizon version of the economy (41), (42) with a zero terminal
condition is established in the literature. Namely, under Assumptions A1-A3, there exists an

optimal program
n
cT;0t ; kT;0t+1

oT
t=0
2 =T;0 and it is both interior and unique. The existence of the

optimal program can be shown by using either a Bellman equation approach (see Mitra and
Nyarko (1991), Theorem 3.1) or an Euler equation approach (see Majumdar and Zilcha (1987),
Theorems 1 and 2).

We next show that under terminal condition kT;0T+1 = kT+1 = 0, the optimal program in the
�nite-horizon economy (41), (42) has a well-de�ned limit.

Lemma 1. A �nite-horizon optimal program
n
cT;0t ; kT;0t+1

oT
t=0

2 =T;0 with a zero terminal con-
dition kT;0T+1 = 0 converges to a limit program

�
climt ; k

lim
t+1

	1
t=0

when T !1, i.e.,

klimt+1 � lim
T!1

kT;0t+1 and climt � lim
T!1

cT;0t , for t = 0; 1; ::: (A2)

Proof. The existence of the limit program follows by three arguments (for any history):
i) Extending time horizon from T to T + 1 increases T -period capital of the �nite-horizon

optimal program, i.e., kT+1;0T+1 > kT;0T+1. To see this, note that the model with time horizon T
has zero (terminal) capital kT;0T+1 = 0 at T . When time horizon is extended from T to T + 1,
the model has zero (terminal) capital kT+1;0T+2 = 0 at T + 1 but it has strictly positive capital
kT+1;0T+1 > 0 at T ; this follows by the Inada conditions�Assumption 1d.
ii) The optimal program for the �nite-horizon economy has the following property of monotonic-

ity with respect to the terminal condition: if
�
c0t; k

0
t+1

	T
t=0

and
�
c00t ; k

00
t+1

	T
t=0

are two optimal
programs for the �nite-horizon economy with terminal conditions �0 < �00, then the respective
optimal capital choices have the same ranking in each period, i.e., k0t � k00t for all t = 1; :::T . This
monotonicity result follows by either Bellman equation programming techniques (see Mitra and
Nyarko (1991, Theorem 3.2 and Corollary 3.3)) or Euler equation programming techniques (see
Majumdar and Zilcha (1987, Theorem 3)) or lattice programming techniques (see Hopenhayn
and Prescott (1992)); see also Joshi (1997, Theorem 1) for generalizations of these results to

nonconvex economies. Hence, the stochastic process
n
kT;0t+1

oT
t=0
shifts up (weakly) in a pointwise

manner when T increases to T + 1, i.e., kT+1;0t+1 � kT;0t+1 for t � 0.
iii) By construction, the capital program from the optimal program

n
cT;0t+1; k

T;0
t+1

oT
t=0
is bounded

from above by the capital accumulation process
�
0; kmaxt+1

	T
t=0
de�ned in (39), i.e., kT;0t+1 � kmaxt+1 <

1 for t � 0. A sequence that is bounded and monotone is known to have a well-de�ned limit.
�

Appendix A4. Limit program of the T -period stationary economy

We now show that the optimal program of the T -period stationary economy, introduced in
Section 4, converges to the same limit program (A2) as the optimal program of the �nite-horizon
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economy (41), (42) with a zero terminal condition. We denote by =T;� a set of all feasible �nite-
horizon programs that attains a terminal condition � 6= 0 of the T -period stationary economy.
(We assume the same initial capital (k0; z0) and the same partial history hT � (�0; :::; �T ) as
those �xed for the �nite-horizon economy (41), (42)).

Lemma 2. The optimal program of the T -period stationary economy
n
cT;�t ; kT;�t+1

oT
t=0

2 =T;�

converges to a unique limit program
�
climt ; k

lim
t+1

	1
t=0

2 =1 de�ned in (A2) as T ! 1 i.e., for
all t � 0

klimt+1 � lim
T!1

kT;�t+1 and climt � lim
T!1

cT;�t : (A3)

Proof. The proof of the lemma follows by six arguments (for any history).
i). Observe that, by Assumptions 1 and 2, the optimal program of the T -period stationary

economy has a positive capital stock kT;�t+1 > 0 at T (since the terminal capital is generated
by the capital decision function of a stationary version of the model), while for the optimal

program
n
cT;0t ; kT;0t+1

oT
t=0
2 =T;0 of the �nite-horizon economy, it is zero by de�nition, kT;0T+1 = 0.

ii). The property of monotonicity with respect to terminal condition implies that if kT;�T+1 >
kT;0T+1, then k

T;�
t+1 � k

T;0
t+1 for all t = 1; :::; T ; see our discussion in ii). of the proof to Lemma 1.

iii). Let us �x some � 2 f1; :::; Tg. We show that up to period � , the optimal programn
cT;�t ; kT;�t+1

o�
t=0

does not give higher expected utility than
n
cT;0t ; kT;0t+1

o�
t=0
, i.e.,

E0

"
�X
t=0

�t
n
ut

�
cT;�t

�
� ut(cT;0t )

o#
� 0: (A4)

Toward contradiction, assume that it does, i.e.,

E0

"
�X
t=0

�t
n
ut

�
cT;�t

�
� ut(cT;0t )

o#
> 0. (A5)

Then, consider a new process
�
c0t; k

0
t+1

	�
t=0
that follows

n
cT;�t ; kT;�t+1

oT
t=0
2 =T;� up to period ��1

and that drops down at � to match kT;0�+1 of the �nite-horizon program
n
cT;�t ; kT;�t+1

oT
t=0

2 =T;0,

i.e.,
�
c0t; k

0
t+1

	�
t=0

�
n
cT;�t ; kT;�t+1

o��1
t=0

[
n
cT� + k

T
�+1 � k

T;0
�+1; k

T;0
�+1

o
. By monotonicity ii). we have

kT�+1 � k
T;0
�+1 � 0, so that

E0

"
�X
t=0

�t
n
ut (c

0
t)� ut

�
cT;�t

�o#
=

= E0

h
��
n
ut

�
cT� + k

T
�+1 � k

T;0
�+1

�
� ut

�
cT�
�oi

� 0; (A6)

where the last inequality follows by Assumption 1b of strictly increasing ut.

iv). By construction
�
c0t; k

0
t+1

	�
t=0

and
n
cT;0t ; kT;0t+1

o�
t=0

reach the same capital kT;0�+1 at � . Let

us extend the program
�
c0t; k

0
t+1

	�
t=0
to T by assuming that it follows the process

n
cT;0t ; kT;0t+1

oT
t=0
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from the period � + 1 up to T , i.e.,
�
c0t; k

0
t+1

	T
t=�+1

�
n
cT;0t ; kT;0t+1

oT
t=�+1

. Then, we have

E0

"
TX
t=0

�t
n
ut (c

0
t)� ut(c

T;0
t )
o#

= E0

"
�X
t=0

�t
n
ut (c

0
t)� ut(c

T;0
t )
o#

� E0

"
�X
t=0

�t
n
ut

�
cT;�t

�
� ut

�
cT;0t

�o#
> 0; (A7)

where the last two inequalities follow by result (A6) and assumption (A5), respectively. Thus,
we obtain a contradiction: The constructed program

�
c0t; k

0
t+1

	T
t=0

2 =T;0 is feasible in the
�nite-horizon economy with a zero terminal condition, k0T+1 = 0, and it gives strictly higher

expected utility than the optimal program
n
cT;0t ; kT;0t+1

oT
t=0
2 =T;0 in that economy.

v). Holding � �xed, we compute the limit of (A4) by letting T go to in�nity:

lim
T!1

E0

"
�X
t=0

�t
n
ut

�
cT;�t

�
� ut(cT;0t )

o#
=

lim
T!1

E0

"
�X
t=0

�tut

�
cT;�t

�#
� E0

"
�X
t=0

�tut
�
climt
�#
� 0: (A8)

vi). The last inequality implies that for any � � 1, the limit program
�
climt ; k

lim
t+1

	1
t=0

2 =1

of the �nite-horizon economy
n
cT;0t ; kT;0t+1

oT
t=0

2 =T;0 with a zero terminal condition kT;0T = 0

gives at least as high expected utility as the optimal limit program
n
cT;�t ; kT;�t+1

oT
t=0
2 =T;� of the

T -period stationary economy. Since Assumptions 1 and 2 imply that the optimal program is
unique, we conclude that

�
climt ; k

lim
t+1

	1
t=0
2 =1 de�ned in (A2) is a unique limit of the optimal

program
n
cT;�t ; kT;�t+1

oT
t=0
2 =T;� of the T -period stationary economy. �

Appendix A5. Convergence of the �nite-horizon economy to the
in�nite-horizon economy

We now show a connection between the optimal programs of the �nite-horizon and in�nite-
horizon economies. Namely, we show that the �nite-horizon economy (41), (42) with a zero
terminal condition kT;0T+1 = 0 converges to the nonstationary in�nite-horizon economy (36)�(38)
as T !1 provided that we �x the same initial condition k0 and partial history hT = (�0; :::; �T )
for both economies.

Lemma 3. The limit program
�
climt ; k

lim
t+1

	1
t=0

is a unique optimal program
�
c1t ; k

1
t+1

	1
t=0
2 =1

in the in�nite-horizon nonstationary economy (36)�(38).
Proof. We prove this lemma by contradiction. We use the arguments that are similar to those
used in the proof of Lemma 2.
i). Toward contradiction, assume that

�
climt ; k

lim
t+1

	1
t=0

is not an optimal program of the
in�nite-horizon economy

�
c1t ; k

1
t+1

	1
t=0
2 =1. By de�nition of limit, there exists a real number
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" > 0 and a subsequence of natural numbers fT1; T2; :::g � f0; 1; :::g such that
�
c1t ; k

1
t+1

	1
t=0
2

=1 gives strictly higher expected utility than the limit program of the �nite-horizon economy�
climt ; k

lim
t+1

	1
t=0
, i.e.,

E0

"
TnX
t=0

�t
�
ut (c

1
t )� ut(climt )

	#
> " for all Tn 2 fT1; T2; :::g . (A9)

ii). Let us �x some Tn 2 fT1; T2; :::g and consider any �nite T � Tn. Assumptions 1
and 2 imply that k1T+1 > 0 while k

T;0
T+1 = 0 by de�nition of the �nite-horizon economy with a

zero terminal condition. The monotonicity of the optimal program with respect to a terminal
condition implies that if k1T+1 > k

T;0
T+1, then k

1
t+1 � k

T;0
t+1 for all t = 1; :::; T ; see our discussion in

ii). of the proof of Lemma 1.
iii). Following the arguments in iii). of the proof of Lemma 2, we can show that up to period

Tn, the optimal program
�
c1t ; k

1
t+1

	Tn
t=0
does not give higher expected utility than

n
cT;0t ; kT;0t+1

oTn
t=0
,

i.e.,

E0

"
TnX
t=0

�t
n
ut (c

1
t )� ut(c

T;0
t )
o#

� 0 for all Tn. (A10)

iv). Holding Tn �xed, we compute the limit of (A10) by letting T go to in�nity:

lim
T!1

E0

"
TnX
t=0

�t
n
ut (c

1
t )� ut(c

T;0
t )
o#

= E0

"
TnX
t=0

�tut (c
1
t )� �tut

�
climt
�#
� 0 for all Tn. (A11)

However, result (A11) contradicts to our assumption in (A9).
v). We conclude that for any subsequence fT1; T2; :::g � f0; 1; :::g, we have

E0

"
TnX
t=0

�t
�
ut (c

1
t )� ut(climt )

	#
� 0 for all Tn. (A12)

However, under Assumptions 1 and 2, the optimal program
�
c1t ; k

1
t+1

	1
t=0
2 =1 is unique, and

hence, it must be that
�
c1t ; k

1
t+1

	1
t=0

coincides with
�
climt ; k

lim
t+1

	1
t=0

for all t � 0. �

Appendix A6. Proof of the turnpike theorem

We now combine the results of Lemmas 1-3 together into a turnpike-style theorem to show the
convergence of the optimal program of the T -period stationary economy to that of the in�nite-
horizon nonstationary economy. To be speci�c, Lemma 1 shows that the optimal program of

the �nite-horizon economy with a zero terminal condition
n
cT;0t ; kT;0t+1

oT
t=0

2 =T;0 converges to
the limit program

�
climt ; k

lim
t+1

	1
t=0
. Lemma 2 shows that the optimal program of the T -period

stationary economy
n
cT;�t ; kT;�t+1

oT
t=0

also converges to the same limit program
�
climt ; k

lim
t+1

	1
t=0
.
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Finally, Lemma 3 shows that the limit program of the �nite-horizon economies
�
climt ; k

lim
t+1

	1
t=0

is optimal in the nonstationary in�nite-horizon economy. Then, it must be the case that the

limit optimal program of the T -period stationary economy
n
cT;�t ; kT;�t+1

oT
t=0

is optimal in the

in�nite-horizon nonstationary economy. This argument is formalized below.

Proof of Theorem 2 (turnpike theorem). The proof follows by de�nition of limit and Lemmas
1-3. Let us �x a real number " > 0 and a natural number � such that 1 � � <1 and consider
a possible partial history hT = (�0; :::; �T ).

i). Lemma 1 shows that
n
cT;0t ; kT;0t+1

oT
t=0
2 =T;0 converges to a limit program

�
climt ; k

lim
t+1

	1
t=0
as

T !1. Then, de�nition of limit implies that there exists T1 (hT ) > 0 such that
���kT;0t+1 � klimt+1��� <

"
3
for t = 0; :::; � .
ii). Lemma 2 implies that the �nite-horizon problem of the T -period stationary economyn

cT;�t ; kT;�t+1

oT
t=0

also converges to limit program
�
climt ; k

lim
t+1

	1
t=0

as T ! 1. Then, there exists

T2 (hT ) > 0 such that
���klimt+1 � kT;�t+1��� < "

3
for t = 0; :::; � .

iii). Lemma 3 implies the program
n
cT;0t ; kT;0t+1

oT
t=0

2 =T;0 converges to the in�nite-horizon

optimal program
�
c1t ; k

1
t+1

	1
t=0
as T !1. Then, there exists T3 (hT ) > 0 such that

���kT;0t+1 � k1t+1��� <
"
3
for t = 0; :::; � .
iv). Then, the triangular inequality implies���kT;�t+1 � k1t+1��� = ���kT;�t+1 � klimt+1 + klimt+1 � kT;0t+1 + kT;0t+1 � k1t+1���

�
���kT;�t+1 � klimt+1���+ ���klimt+1 � kT;0t+1���+ ���kT;0t+1 � k1t+1��� < "

3
+
"

3
+
"

3
= ",

for T (hT ) � max fT1 (hT ) ; T2 (hT ) ; T3 (hT )g.
v). Finally, consider all possible partial histories fhTg and de�ne T �

�
"; � ; xTT

�
� max

fhT g
T (hT ).

By construction, for any T > T �
�
"; � ; xTT

�
, the inequality (16) holds. �

Remark A1. Our proof of the turnpike theorem addresses a technical issue that does not arise
in the literature that focuses on �nite-horizon economies with a zero terminal condition; see, e.g.,
Majumdar and Zilcha (1987), Mitra and Nyarko (1991) and Joshi (1997). Their construction
relies on the fact that the optimal program of the �nite-horizon economy is always pointwise
below the optimal program of the in�nite-horizon economy, i.e., kT;�t+1 � k1t+1, for t = 1; :::; � ,
and it gives strictly higher expected utility up to T than does the in�nite-horizon optimal
program (because excess capital can be consumed at terminal period T ). This argument does
not directly applies to our T -period stationary economy: our �nite-horizon program can be
either below or above the in�nite-horizon program depending on a speci�c T -period terminal
condition. Our proof addresses this issue by constructing in Lemma 2 a separate limit program
for the T -period stationary economy.

45



Appendix B. Implementation of EFP for growth model

In this section, we describe the implementation of the EFP method used to produce the nu-
merical results in the main text.
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Algorithm 1a (implementation):Extended function path (EFP) for the growth model.

The goal of EFP.
EFP is aimed at approximating a solution of a nonstationary model during the �rst � periods,

i.e., it �nds approximating functions
� bK0; :::; bK�� such that bKt � Kt for t = 1; :::� , where

Kt and bKt are a t-period true capital function and its parametric approximation, respectively.
Step 0. Initialization.
a. Choose time horizon T � � for constructing T -period stationary economy.
b. Construct a deterministic path fz�t g

T
t=0 for exogenous state variable fztg

T
t=0 satisfying

z�t+1 = 't (z
�
t ; Et [�t+1]) for t = 0; ::; T .

c. Construct a deterministic path fk�t g
T
t=0 for endogenous state variable fktg

T
t=0 satisfying

u0t(c
�
t ) = �u

0
t(c

�
t+1)(1� � + f 0t+1

�
k�t+1; z

�
t+1

�
).

c�t + k
�
t+1 = (1� �) k�t + ft (k�t ; z�t ) for t = 0; ::; T .

d. For t = 0; :::; T :
Construct a grid f(km;t; zm;t)gMm=1 centered at (k�t ; z�t ).
Choose integration nodes, �j;t, and weights, !j;t for j = 1; :::; J .
Construct future shocks z0m;j;t = 't (zm;t; �j;t).

e. Write a t-period discretized system of the optimality conditions:

i). u0t(cm;t) = �
JP
j=1

!j;t

h
u0t(c

0
m;j;t)

n
1� � + ft+1

�
k0m;t; z

0
m;j;t

�oi
ii). cm;t + k

0
m;t = (1� �) km;t + ft (km;t; zm;t)

iii). c0m;j;t + k
00
m;j;t = (1� �) k0m;t + ft+1

�
k0m;t; z

0
m;j;t

�
iv). k0m;t = bKt (km;t; zm;t) and k00m;j;t = bKt+1 �k0m;t; z0m;j;t� :

d. Assume that the model becomes stationary at T .

Step 1: Terminal condition.
Find bKT = bKT+1 that approximately solves the system i).-iv). on the grid for the T -period
stationary economy fT+1 = fT , uT+1 = uT , 'T+1 = 'T .

Step 2: Backward induction:

a. Construct the function path
� bK0; :::; bKT�1; bKT� that approximately solves the system i).-iv)

for each t = 0; :::; T and that matches the given terminal function bKT constructed in Step 1.
Step 3: Turnpike property.
a. Simulate the process bK0 and use a subset of simulated points as initial conditions (k0; z0).
For each initial condition, draw a history h� = (�0; :::; �� ). Use the decision functions

� bK0; :::; bK��
to simulate the economy�s trajectories (kT0 ; :::k

T
� ). Check that the trajectories converge to

a unique limit lim
T!1

(kT0 ; :::k
T
� ) = (k

�
0; :::k

�
� ) by constructing (K0; :::;KT ) under di¤erent T and KT .

The EFP solution:

Use
� bK0; :::; bK�� as an approximation to (K0; :::;K� ) and discard the remaining T � � functions.
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The EFP method is more expensive than conventional solution methods for stationary
models because decision functions must be constructed not just once but for T periods. We
implement EFP in the way that keeps its cost relatively low: First, to approximate decision
functions, we use a version of the Smolyak (sparse) grid technique. Speci�cally, we use a
version of the Smolyak method that combines a Smolyak grid with ordinary polynomials for
approximating functions o¤ the grid. This method is described in Maliar et al. (2011) who �nd
it to be su¢ ciently accurate in the context of a similar growth model, namely, unit-free residuals
in the model�s equations do not exceed 0.01% on a stochastic simulation of 10,000 observations).
For this version of the Smolyak method, the polynomial coe¢ cients are overdetermined, for
example, in a 2-dimensional case, we have 13 points in a second-level Smolyak grid, and we have
only six coe¢ cients in second-degree ordinary polynomial. Hence, we identify the coe¢ cients
using a least-squares regression; we use an SVD decomposition, to enhance numerical stability;
see Judd et al. (2011) for a discussion of this and other numerically stable approximation
methods. We do not construct the Smolyak grid within a hypercube normalized to [�1; 1]2, like
do Smolyak methods that rely on Chebyshev polynomials used in, e.g., Krueger and Kubler
(2004), Malin et al. (2011) and Judd et al. (2014). Instead, we construct a sequence of
Smolyak grids around actual steady state and thus, the hypercube, in which the Smolyak grid
is constructed, grows over time as shown in Figures 1 and 8.
Second, to approximate expectation functions, we use Gauss-Hermite quadrature rule with

10 integration nodes. However, a comparison analysis in Judd et al. (2011) shows that for mod-
els with smooth decision functions like ours, the number of integration nodes plays only a minor
role in the properties of the solution, for example, the results will be the same up to six digits of
precision if instead of ten integration nodes we use just two nodes or a simple linear monomial
rule (a two-node Gauss-Hermite quadrature rule is equivalent to a linear monomial integration
rule for the two-dimensional case). However, simulation-based Monte-Carlo-style integration
methods produce very inaccurate approximations for integrals and are not considered in this
paper; see Judd et al. (2011) for discussion.
Third, to solve for the coe¢ cients of decision functions, we use a simple derivative-free �xed-

point iteration method in line with Gauss-Jacobi iteration. Let us re-write the Euler equation
i). constructed in the initialization step of the algorithm by pre-multiplying both sides by
t-period capital

bk0m;t = � JX
j=1

�j;t

�
u0t(c

0
m;j;t)

u0t(cm;t)

�
1� � + ft+1

�
k0m;tk

�
t+1; z

0
m;j;tz

�
t+1

�	�
k0m;t: (43)

We use di¤erent notation, k0m;t and bk0m;t, for t-period capital in the left and right side of (43),
respectively, in order to describe our �xed-point iteration method. Namely, we substitute k0m;t
in the right side of (43) and in the constraints ii). and iii). in the initialization step to compute
cm;t and c0m;j;t, respectively, and we obtain a new set of values of the capital function on the

grid bk0m;t in the left side. We iterate on these steps until convergence.
Our approximation functions bKt are ordinary polynomial functions characterized by a time-

dependent vector of parameters bt, i.e., bKt = bK (�; bt). So, operationally, the iteration is
performed not on the grid values k0m;t and bk0m;t but on the coe¢ cients of the approximation
functions. The iteration procedure di¤ers in Steps 1 and 2.
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In Step 1, we construct a solution to T -period stationary economy. For iteration i, we �x
some initial vector of coe¢ cients b, compute k0m;T+1 = bK (km;T ; zm;T ; b), �nd cm;T and c0m;j;T
to satisfy constraints ii) and iii), respectively and �nd bk0m;T+1 from the Euler equation i). We

run a regression of bk0m;T+1 on bK (km;T ; zm;T ; �) in order to re-estimate the coe¢ cients bb and we
compute the coe¢ cients for iteration i+1 as a weighted average, i.e., b(i+1) = (1� �) b(i)+ �bb(i),
where � 2 (0; 1) is a damping parameter (typically, � = 0:05). We use partial updating instead
of full updating � = 1 because �xed-point iteration can be numerically unstable and using
partial updating enhances numerical stability; see Maliar et al. (2011). This kind of �xed-point
iterations are used by numerical methods that solve for equilibrium in conventional stationary
Markov economies; see e.g., Judd et al. (2011, 2014).
In Step 2, we iterate on the path for the polynomial coe¢ cients using Gauss-Jacobi style

iterations in line with Fair and Taylor (1983). Speci�cally, on iteration j, we take a path for

the coe¢ cients vectors
n
b
(j)
1 ; :::; b

(j)
T

o
, compute the corresponding path for capital quantities

using k0m;t = bKt

�
km;t; zm;t; b

(j)
t

�
, and �nd a path for consumption quantities cm;t and c0m;j;t from

constraints ii) and iii), respectively, for t = 0; :::; T . Substitute these quantities in the right side
of a sequence of Euler equations for t = 0; :::; T to obtain a new path for capital quantities in
the left side of the Euler equation bk0m;t for t = 0; :::; T � 1. Run T � 1 regressions of bk0m;t on
polynomial functional forms bKt (km;t; zm;t; bt) for t = 0; :::; T � 1 to construct a new path for
the coe¢ cients

nbb(j)0 ; :::;bb(j)T�1o. Compute the path of the coe¢ cients for iteration j + 1 as a
weighted average, i.e., b(j+1)t = (1� �) b(j)t + �bb(j)t , t = 0; :::; T � 1, where � 2 (0; 1) is a damping
parameter which we again typically set at � = 0:05. (Observe that this iteration procedure
changes all the coe¢ cients on the path except of the last one b(j)T � b, which is a given terminal
conditions that we computed in Step 1 from the T -period stationary economy).
In fact, the problem of constructing a path for function coe¢ cients is similar to the problem

of constructing a path for variables: in both cases, we need to solve a large system of nonlinear
equations. The di¤erence is that under EFP, the arguments of this system are not variables but
parameters of the approximating functions. Instead of Gauss-Jacobi style iteration on path,
we can use Gauss-Siedel �xed-point iteration (shooting), Newton-style solvers or any other
technique that can solve a system of nonlinear equations; see Lipton et al. (1980), Atolia and
Bu¢ e (2009a,b), Heer and Maußner (2010), and Grüne et al. (2013) for examples of such
techniques.
Let us now �nally provide an additional illustration to the solution shown in Section 3.4.

Speci�cally, in Figure 2, we plot a two-dimensional sequence of capital decision functions under
�xed productivity level z = 1, while here we provide a three-dimensional plot of the same
decision function for adding the productivity level. We again illustrate the capital functions
for periods 1, 20 and 40, (i.e., k2 = K1 (k1; z1), k21 = K20 (k20; z20) and k41 = K40 (k40; z40))
which we approximate using Smolyak (sparse) grids. In Step 1 of the algorithm, we construct
the capital function K40 by assuming that the economy becomes stationary in period T = 40;
and in Step 2, we construct a path of the capital functions that (K1; :::K39) that matches the
corresponding terminal function K40. The Smolyak grids are shown by stars in the horizontal
kt � zt plane. The domain for capital (on which Smolyak grids are constructed) and the range
of the constructed capital function grow at the rate of labor-augmenting technological progress.
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Figure 8. Function path, produced by EFP, for a growth model with technological progress.

Appendix C. Path-solving methods for nonstationary mod-
els

We �rst describe the shooting method of Lipton et al. (1980) for a nonstationary determin-
istic economy, and we then elaborate the extended path (EP) of Fair and Taylor (1983) for a
nonstationary economy with uncertainty.

Shooting methods. To illustrate the class of shooting methods, let us substitute ct and ct+1
from (37) into the Euler equation of (36)�(38) to obtain a second-order di¤erence equation,

u0t((1� �) kt + ft (kt; zt)� kt+1)
= �Et

�
u0t+1((1� �) kt+1 + ft+1 (kt+1; zt+1)� kt+2)(1� � + f 0t+1 (kt+1; zt+1))

�
. (44)

Initial condition (k0; z0) is given. Let us abstract from uncertainty by assuming that zt = 1
for all t, choose a su¢ ciently large T and �x some terminal condition kT+1 (typically, the
literature assumes that the economy arrives in the steady state kT+1 = k�).14 To approximate
the optimal path, we must solve numerically a system of T nonlinear equations (44) with respect
to T unknowns fk1; :::; kTg. It is possible to solve the system (44) by using a Newton-style or
any other numerical solver. However, a more e¢ cient alternative could be numerical methods
that exploit the recursive structure of the system (44) such as shooting methods (Gauss-Siedel
iteration). There are two types of shooting methods: a forward shooting and a backward
shooting. A typical forward shooting method expresses kt+2 in terms of kt and kt+1 using (44)

14The turnpike theorem implies that in initial � periods, the optimal path is insensitive to a speci�c terminal
condition used if � � T .
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and constructs a forward path (k1; :::; kT+1); it iterates on k1 until the path reaches a given
terminal condition kT+1 = k�. In turn, a typical reverse shooting method expresses kt in terms
of kt+1 and kt+2 and constructs a backward path fkT ; :::; k0g; it iterates on kT until the path
reaches a given initial condition k0. A shortcoming of shooting methods is that they tend to
produce explosive paths, in particular, forward shooting methods; see Atolia and Bu¢ e (2009
a, b) for a careful discussion and possible treatments of this problem.

Fair and Taylor (1984) method. The EP method of Fair and Taylor (1983) allows us to
solve nonstationary economic models with uncertainty by approximating expectation functions
under the assumption of certainty equivalence. To see how this method works, consider the sys-
tem (44) with uncertainty and as an example, assume that zt+1 follows a possibly nonstationary
Markov process ln (zt+1) = �t ln (zt)+�t�t+1, where the sequences (�0; �1; :::) and (�0; �1; :::) are
deterministically given at t = 0 and �t+1 � N (0; 1). Again, let us choose a su¢ ciently large T
and �x some terminal condition such as kT+1 = k�, so that the turnpike argument applies. Fair
and Taylor (1983) propose to construct a solution path to (44) by setting all future innovations
to their expected values, �1 = �2 = ::: = 0. This produces a path on which technology evolves
as ln (zt+1) = �t ln (zt) gradually converging to z

� = 1 and the models�s variables gradually con-
verge to the steady state. Note that only the �rst entry k1 of the constructed path (k1; :::; kT ) is
meaningful; the remaining entries (k2; :::; kT ) are obtained under a supplementary assumption
of zero future innovations and they are only needed to accurately construct k1. Thus, k1 is
stored and the rest of the sequence is discarded. By applying the same procedure to next state
(k1; z1), we produce k2, and so on until the path of desired length � is constructed.
However, certainty equivalence approximation of Fair and Taylor (1983) has its limitations.

It is exact for linear and linearized models, and it can be su¢ ciently accurate for models that
are close to linear; see Cagnon and Taylor (1990), and Love (2010). However, it becomes highly
inaccurate when either volatility and/or the degrees of nonlinearity increase; see our accuracy
evaluations in Section 4.
Another novelty of the EP method relative to shooting methods is that it iterates on the

economy�s path at once using Gauss-Jacobi iteration. This type of iteration is more stable than
Gauss-Siedel and allows us to avoid explosive behavior. To be speci�c, it guesses the economy�s
path (k1; :::; kT+1), substitute the quantities for t = 1; :::T + 1 it in the right side of T Euler
equations (44), respectively, and obtains a new path (k0; :::; kT ) in the left side of (44); and it
iterates on the path until the convergence is achieved. Finally, Fair and Taylor (1983) propose
a simple procedure for determining T that insures that a speci�c terminal condition used does
not a¤ect the quality of approximation, namely, they suggested to increase T (i.e., extend the
path) until the solution in the initial period(s) becomes insensitive to further increases in T .
We now elaborate the description of the version of Fair and Taylor�s (1983) method used

to produce the results in the main text. We use a slightly di¤erent representation of the
optimality conditions of the model (36)�(38) (we assume � = 1 and u (c) = ln (c) for expository
convenience). The Euler equation and budget constraint, respectively, are:

1

ct
= �Et

�
1

ct+1
(1� � + zt+1f 0(kt+1))

�
;

ct + kt+1 = (1� �) kt + ztf (kt) :
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We combine the above two conditions to get

kt+1 = ztf (kt)�
�
Et

�
�zt+1f

0(kt+1))

zt+1f (kt+1)� kt+2

���1
�

ztf (kt)�
zet+1f (kt+1)� kt+2
�zet+1f

0(kt+1))
; (45)

where the path for zet+1is constructed under the certainty equivalence assumption that �t+1 = 0
for all t � 0. Under the conventional AR(1) process for productivity levels (3), this means that
ln zet+1 = � ln z

e
t for all t � 0, or equivalently zet+1 = (zet )

�, where ze0 = z0. To solve for the path
of variables, we use derivative-free iteration in line with Gauss-Jacobi method as in Fair and
Taylor (1983):

Algorithm 2. Extended path (EP) framework by Fair and Taylor (1983).

The goal of EP framework of Fair and Taylor (1983).
EFP is aimed at approximating a path for variables satisfying the model�s equations during

the �rst � periods, i.e., it �nds bk0; :::;bk� such that 


kt � bkt


 < " for
t = 1; :::� , where " > 0 is target accuracy, k�k is an absolute value, and kt and bkt are the t-period
true capital stocks and their approximation, respectively.

Step 0: Initialization.
a. Fix t = 0 period state (k0; z0).
b. Choose time horizon T � � and terminal condition bkT+1.
c. Construct and �x

�
zet+1

	
t=0;:::;T

such that zet+1 = (z
e
t )
� for all t, where ze0 = z0.

d. Guess an equilibrium path
nbk(1)t o

t=1;:::;T 0
for iteration j = 1.

e. Write a t-period system of the optimality conditions in the form:bkt+1 = zet f �bkt�� zet+1f(bkt+1)�bkt+2
�zet+1f

0(bkt+1)) ;
where bk0 = k0.

Step 1: Solving for a path using Gauss-Jacobi method.

a. Substitute a path
nbk(j)t o

t=1;:::;T 0
into the right side of (45) to �nd

bk(j+1)t+1 = zet f
�bk(j)t �� zet+1f

�bk(j)t+1��bk(j)t+2
�zet+1f

0(bk(j)t+1)) , t = 1; :::; T

b. End iteration if the convergence is achieved
���bk(j+1)t+1 � bk(j)t+1��� < tolerance level.

Otherwise, increase j by 1 and repeat Step 1.

The EP solution:
Use the �rst entry bk1 of the constructed path bk1; :::;bkT as an approximation
to the true solution k1 n period t = 0 and discard the remaining k2; :::; kT values.

In terms of our notations, Fair and Taylor (1983) use � = 1, i.e., they keep only the �rst

element bk1 from the constructed path �bk1; :::;bkT� and disregard the rest of the path; then, they
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draw a next period shock z1 and solve for a new path
�bk1; :::;bkT+1� starting from bk1 and ending

in a given bkT+1 and store bk2, again disregarding the rest of the path; and they advance forward
until the path of the given length � is constructed. T is chosen so that its further extensions
do not a¤ect the solution in the initial period of the path. For instance, to �nd a solution bk1,
Fair and Taylor (1983) solve the model several times under T + 1; T + 2; T + 3; ::: and check
that bk1 remains the same (up to a given degree of precision).
As is typical for �xed-point-iteration style methods, Gauss-Jacobi iteration may fail to

converge. To deal with this issue, Fair and Taylor (1983) use damping, namely, they update
the path over iteration only by a small amount k(j+1)t+1 = �k

(j+1)
t+1 + (1� �) k(j)t+1 where � 2 (0; 1)

is a small number close to zero (e.g., 0.01).
Steps 1a and 1b of Fair and Taylor�s (1983) method are called Type I and Type II iterations

and are analogous to Step 2 of the EFP method when the sequence of the decision functions is
constructed. The extension of path is called Type III iteration and gives the name to Fair and
Taylor (1983) method.
In our examples, we implement Fair and Taylor�s (1983) method using a conventional New-

ton style numerical solver instead of Gauss-Jacobi iteration; a similar implementation is used
in Heer and Maußner (2010). The cost of Fair and Taylor�s (1983) method can depend consid-
erably on a speci�c solver used and can be very high (as we need to solve a system of equations
with hundreds of unknowns numerically). In our simple examples, a Newton-style solver was
su¢ ciently fast and reliable. In more complicated models, we are typically unable to derive
closed-form laws of motion for the state variables, and derivative-free �xed-point iteration ad-
vocated in Fair and Taylor (1983) can be a better alternative.

Appendix D. Solving the test model using the associated
stationary model

We consider model (36)�(38) parameterized by (13) and (12). We �rst convert the nonstationary
with labor-augmenting technological progress into a stationary model using the standard change
of variables bct = ct=At and bkt = kt=At. This leads us to the following model

max
fbkt+1;bctg

t=0;:::;1

E0

1X
t=0

(��)t
bc1��t

1� � (46)

s.t. bct + 
Abkt+1 = (1� �)bkt + ztbk�t ; (47)

ln zt+1 = �t ln zt + �t�t+1; �t+1 � N (0; 1) ; (48)

where �� � �
1��A . We solve this stationary model by using the same version of the Smolyak
method that is used within EFP to �nd a solution to T -period stationary economy.
After a solution to the stationary model (46)�(48) is constructed, a solution for nonstation-

ary variables can be recovered by using an inverse transformation ct = bctAt and kt = bktAt.
For the sake of our comparison, we also need to recover the path of nonstationary deci-

sion functions in terms of their parameters. Let us show how this can be done under poly-
nomial approximation of decision functions. Let us assume that a capital policy function
of the stationary model is approximated by complete polynomial of degree L, namely, k̂t+1 =
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PL
l=0

Pl
m=0 bm+ (l�1)(l+2)

2
+1
k̂mt z

l�m
t , where bi is a polynomial coe¢ cient, i = 0; :::; L+

(L�1)(L+2)
2

+1.

Given that the stationary and nonstationary solutions are related by k̂t+1 = kt+1=
�
A0


t+1
A

�
, we

have

kt+1 = A0

t+1
A k̂t+1 = A0


t+1
A

LX
l=0

lX
m=0

b
m+

(l�1)(l+2)
2

+1
k̂mt z

l�m
t =

A0

LX
l=0

lX
m=0


A
1�(m�1)tb

m+
(l�1)(l+2)

2
+1
kmt z

l�m
t : (49)

For example, for �rst-degree polynomial L = 1, we construct the coe¢ cients vector of the
nonstationary model by premultiplying the coe¢ cient vector b � (b0; b1; b2) of the stationary
model by a vector

�
A0


t+1
A ; A0
A; A0


t+1
A

�>
, which yields bt+1 �

�
b0A0


t+1
A ; b1A0
A; b2A0


t+1
A

�
,

t = 0; :::; T , where T is time horizon (length of simulation in the solution procedure). Note that
a similar relation will hold even if the growth rate 
A is time variable.

Appendix E. Sensitivity results for the model with labor-
augmenting technological progress

In this appendix, we provide sensitivity results for the model with labor-augmenting techno-
logical progress. Table 2 contains the results on accuracy and cost of the version of the EFP
method studied in Section 5. We use � = 200 and T = 400 and consider several alternative
parameterizations for f�; ��; 
Ag.
Figure E.1 plots a maximum unit-free absolute di¤erence between the exact solution for

capital and the solution delivered by the EFP at � = 100. The di¤erence between the solutions
is computed across 1,000 simulations. We use T = f200; 300; 400; 500g, � = f1=3; 1; 3g and
decision rules produced by the T -period stationary economy and zero capital assumption as
terminal conditions.

Figure 9. Sensitivity analysis for the EFP method.



Table 2: Sensitivity analysis for the EFP method.

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Models 6 Model 7
� 5 5 5 5 0.1 1 10
�� 0.03 0.03 0.03 0.01 0.01 0.01 0.01

A 1.01 1.00 1.05 1.01 1.01 1.01 1.01

Mean errors across t periods in log10 units
t 2 [0; 50] -7.01 -6.67 -7.34 -7.03 -7.03 -6.61 -7.30
t 2 [0; 100] -6.82 -6.44 -7.25 -6.84 6.92 -6.48 -7.08
t 2 [0; 150] -6.73 -6.33 -7.22 -6.76 -6.89 -6.43 -6.98
t 2 [0; 175] -6.70 -6.29 -7.22 -6.74 -6.87 -6.41 -6.95
t 2 [0; 200] -6.68 -6.26 -7.21 -6.72 -6.87 -6.37 -6.93

Maximum errors across t periods in log10 units
t 2 [0; 50] -6.42 -6.31 -7.13 -6.66 -6.08 -6.24 -6.81
t 2 [0; 100] -5.99 -6.12 -7.05 -6.54 -5.97 -6.18 -6.36
t 2 [0; 150] -5.98 -6.04 -7.05 -6.52 -5.97 -6.18 -6.35
t 2 [0; 175] -5.98 -6.01 -7.05 -6.52 -5.97 -6.13 -6.33
t 2 [0; 200] -5.92 -5.99 -7.05 -6.51 -5.96 -5.88 -6.24

Running time, in seconds
Solution 225.9 150.0 193.0 216.98 836.5 300.7 245.9
Simulation 5.6 5.7 5.8 5.66 5.6 5.6 5.7
Total 231.6 155.7 198.8 222.64 842.1 306.3 251.6

Notes: "Mean errors" and "Maximum errors" are, respectively, mean and maximum unit-free absolute di¤erence

between the exact solution for capital and the solution delivered by EFP under the parameterization in the

column. The di¤erence between the solutions is computed across 100 simulations. The time horizon is T=400,

and the terminal condition is constructed by using the T-period stationary economy in all experiments.
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