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1 Introduction

Macroeconomic models are generally built on the assumption of continuous-set choices. For example, an
agent can distribute wealth in any proportion between consumption and savings or she can distribute time
endowment in any proportion between work and leisure. But certain economic choices are discrete: the
agent can either buy a house or not, be either employed or not, retire or not, etc. The previous literature
emphasizes the importance of discrete nature of choices for explaining certain economic phenomena, in-
cluding indivisibility of labor (Hansen (1985), Rogerson (1988), Chang and Kim (2007), Prescott, Rogerson
and Wallentius (2009), Chang, Kim, Kwon and Rogerson (2019)), retirement (Iskhakov, Jørgensen, Rust
and Schjerning (2017)), sovereign default (Arellano (2008), Chatterjee, Corbae, Nakajima and Ŕıos-Rull
(2007)). However, the progress in modeling discrete choices is still limited, in part, because they are more
challenging to analyze numerically than continuous-set choices.

In the present paper, we introduce a deep learning classification (DLC) method that can be used to solve
dynamic economic models with continuous-discrete choices. Our analysis relies on the same techniques that
led to ground breaking application in data science (e.g., image and speech recognition). As an illustration,
let us consider an image-recognition problem in which a machine classifies images into, let’s say, cats, dogs
and sheep. We parameterize the probabilities of the three classes with a deep (multilayer) neural network
to which we apply a softmax function – a generalization of a logistic (sigmoid) function for the multiclass
problems. We feed into the machine a collection of images; and we train the machine to maximize the
likelihood function (equivalently, to minimize the cross-entropy loss) to ensure a correct classification; see
Goodfellow, Bengio and Courville (2016) for a survey of classification techniques in data science.

Let us now show how the same idea can be used to study equilibrium in a heterogeneous-agent model
with indivisible labor choice. An agent wants to be employed if her wage is higher than a certain reservation
wage but wages are not known until all agents fix their employment choices (because wages depend on
aggregate labor). To construct a solution to this fixed point problem, we assume that an agent assesses
a probability that her wage will be higher than her reservation wage and chooses to be employed if this
probability is larger than 1/2. We parameterize the state-contingent probability function with a deep neural
network. Once the probability functions are fixed for all agents, we can compute wages and ”validate” the
agents’ decisions, namely, we can check if the agents would have made the same labor choices if wages were
known at the moment of their choices. We then train the machine to maximize the likelihood function
that matches ex-ante and ex-post labor choices for all heterogenous agents.

The proposed DLC method can be generalized to include any finite number of discrete choices (not
just two). As an illustration, we extend our economy to include three employment states, namely, un-
employment, part-time employment and full-time employment. In that case, we parameterize the three
probability functions corresponding to unemployed, part-time employed and full-time employed by deep
neural networks, and we train the machine to predict these states by maximizing the likelihood function
for the softmax regression instead of the logistic regression.

As an illustration of the DLC method, we solve a version of Krusell and Smith’s (1998) model in which
the agents face indivisible labor choices. In fact, the studied model is computationally challenging even in
the absence of discrete choice. It features heterogeneous agents, incomplete markets and borrowing con-
straints. The state space includes thousands of state variables of heterogenous agents and is prohibitively
large. To make the model tractable, Krusell and Smith (1998) approximated the state space of each agent
by her own state variables and one or few aggregate moments of the wealth distribution – this reduces
the state space to 5-6 state variables; see Den Haan (2010) for a review of other methods for reducing the
state space. A distinctive feature of our DLC method is that it does not rely on moments or other reduced
representations of the state space but works with the actual state space consisting of all individual and
aggregate state variables – we let the deep neural network to choose how to condense large sets of the state
variables into much smaller sets of features. Our TensorFlow code is tractable in models with thousands
of state variables.

Our model builds on important contributions of Chang and Kim (2007) and Chang et al. (2019). The
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former paper extends Krusell and Smith’s (1998) analysis to include indivisible labor choice by constructing
value functions of employed and unemployed agents. This approach reduces the discrete choice problem to
the analysis of two continuous-choice value functions. The latter paper offers a more simple and tractable
way of modeling indivisibile-labor choice by discretizing the first-order conditions of the associated divisible
labor model, namely, the agent decides on how many hours to work but if the chosen hours fall below a
certain level, the agent becomes unemployed. In turn, this approach reduces the model with discrete
choices to a familiar setup with continuous labor choices and occasionally binding constraints. The main
novelty of our analysis is that we approximate discrete choices of agents by using classification techniques
instead of relying on continuous choice representations. That is, we construct decision functions that tell
us when the agent switches from one discrete choice to another, conditional on the economy’s state.

We compare the predictions of the heterogeneous-agent models with indivisible labor with those of the
corresponding divisible labor model, as well as the representative-agent model. We find that the introduc-
tion of indivisible labor helps us correct some shortcomings of the divisible labor model, in particular, on
labor markets. One improvement we observe is that the volatility of labor increases relatively to the output;
in that respect, we are similar to the indivisible labor framework of Rogerson (1994) and Hansen (1993).
Another improvement is a reduction in the correlation between labor and wages which is excessively high
in the representative-agent model with divisible labor; this implication is an outcome of both the assump-
tions of indivisible labor and heterogeneous agents. As for distributional implications, the predictions of
our heterogeneous-agent model with indivisible labor are similar to those of the models studied by Chang
and Kim (2007) and Chang et al. (2019). First, the assumption of indivisible labor increases the degrees
of inequality, helping to bring the model closer to the data. Furthermore, unlike in the divisible labor
model, the degrees of income and wealth inequalities in the indivisible labor economics are less sensitive
to variations in the coefficient of risk aversion. Overall, we conclude that the assumption of indivisible
labor alone is not sufficient to produce empirically relevant degrees of income and wealth inequality in the
model.

Our DLC method is related to recent papers on deep learning, including Duarte (2018), Villa and
Valaitis (2019), Fernández-Villaverde, Hurtado, and Nuño (2019), Azinović, Luca and Scheidegger (2019),
Lepetyuk, Maliar and Maliar (2020) and especially, Maliar, Maliar and Winant (2018, 2019). However, this
literature does not analyze models with discrete choices, which is the main subject of the present paper.
From the other side, there are numerous methods in econometrics for estimating discrete-choice models
but these methods are limited to statistical applications; see Train (2009) for a review. One method that
is designed to deal with discrete choices in dynamic environment is an endogenous grid method with taste
shocks by Iskhakov et al. (2017); see also Iskhakov and Keane (2020) for an application of this method
for estimating a partial equilibrium model with discrete labour supply on Australian data. In the context
of Carroll’s (2005) analysis, these papers suggest to apply logistic smoothing to the kinks by transferring
the problem into the choice probability space via the taste shocks. The main conceptual difference of our
analysis from those papers is that we do not attempt to smooth the kinks but try to accurately approximate
such kinks by using the-state-of-the-art deep learning classification method.

The rest of the paper is as follows: In Section 2, we set up the Krusell and Smith (1998) model with
divisible labor choice; in Section 3, we solve the model with indivisible labor choice; in Section 4, we analyze
the model with full- and part-time employment; in Section 5, we compare the aggregate and distributional
predictions of divisible and indivisible labor models; and finally, in Section 6, we conclude.

2 Krusell-Smith model with divisible labor choice

We start by considering a version of the Krusell-Smith (1998) model in which labor choice is divisible.
Such a model will be useful as a basis for constructing the indivisible labor model.

Consumer side. The economy consists of a set of heterogeneous agents i = 1, ..., ` that are identical
in fundamentals, but differ in dimensions of productivity and capital holdings. The agents experience
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idiosyncratic productivity shocks and the economy experiences aggregate shock. Each agent i solve

max
{cit,kit+1,n

i
t}∞t=0

E0

[ ∞∑
t=0

βtu
(
cit, 1− n

i
t

)]
(1)

s.t. cit + kit+1 = Rtk
i
t +Wtz

i
tn
i
t, (2)

ln zit+1 = ρz ln zit + σzε
i
t with εit ∼ N (0, 1) , (3)

kit+1 ≥ k, (4)

where cit, n
i
t, k

i
t and zit are consumption, leisure, labor, capital and agent’s productivity; β ∈ (0, 1);

ρz ∈ (−1, 1) and σz ≥ 0; and initial condition
(
ki0, z

i
0

)
is given. The capital choice is restricted by

a borrowing limit k ≤ 0, and the total time endowment is normalized to one so that the term 1− nit
represents leisure.

Production side. The production side of the economy is described by a Cobb-Douglas production
function exp (zt) k

α−1
t h1−α

t , where kt =
∑`

i=1 k
i
t is aggregate capital, ht =

∑`
i=1 z

i
tn
i
t is aggregate efficiency

labor, and zt is an aggregate productivity shock following

ln zt+1 = ρ ln zt + σεt with εt ∼ N (0, 1) , (5)

where ρ ∈ (−1, 1) and σ ≥ 0. The interest rate Rt and wage Wt are given by

Rt = 1− d+ exp (zt)αk
α−1
t h1−α

t and Wt = exp (zt) (1− α) kαt h
−α
t , (6)

where d ∈ (0, 1].

Intertemporal choice. The Kuhn-Tucker condition of the agent’s problem (1)–(4) with respect to
capital is

µitδ
i
t = 0, (7)

where µit ≥ 0 is the Lagrange multiplier associated with the borrowing constraint (4) and δit ≡ kit+1−k ≥ 0
is the distance to the borrowing limit, satisfying the Euler equation,

µit ≡ u1

(
cit, n

i
t

)
− βEt

[
u1

(
cit+1, n

i

t+1

)
Rt

]
, (8)

where u1 denotes a first-order partial derivative of function u with respect to the first argument. Whenever
δit ≥ 0, the agent is not at the borrowing limit kit > k, so the Euler equation must hold with equality leading
to µit = 0, and whenever the Euler equation does not hold with equality, it must be that the agent is at
the borrowing constraint δit = 0.

Intratemporal choice. We assume that the utility function in (1) takes the form

u (c, n) =
c1−γ − 1

1− γ
+B

(1− n)1−η − 1

1− η
, (9)

where γ, η ≥ 0. The labor choice is characterized by a FOC of (1)–(4) with respect to labor, which under
the utility function (9) is

nit = 1−

[
c−γi Wt exp

(
zit
)

B

]−1/η

, (10)

where the labor choice is perfectly divisible, i.e., the agent can choose any nit ∈ [0, 1] .
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Deep learning solution procedure. The state space includes the state variables of all agents, as well as

aggregate productivity, (
{
kit, z

i
t

}`
i=1

, zt) which is 2`+1 state variables in total; for example, with ` = 1, 000
heterogeneous agents, the state space has 2, 001 state variables. To deal with so large number of state
variables, we rely on a combination of techniques introduced in Maliar et al. (2018, 2019), including i)
stochastic simulation that allows us to restrict attention to the ergodic set in which the solution ”lives”;
ii) multilayer neural networks that perform model reduction and help deal with multicollinearity; iii) a
(batch) stochastic gradient descent method that reduces the number of function evaluations by operating
on random grids; iv) a Fischer-Burmeister function that effectively approximates the kink; v) and most
importantly, ”all-in-one expectation operator” that allows us to approximate high-dimensional integrals
with just 2 random draws on each iteration. The key contribution of the present paper is to show how the
above techniques can be adapted to the analysis of models with discrete-continuous dynamic choices.

We solve for two decision functions in terms of state variables, namely, the labor choice nit and the

fraction of wealth wit ≡ Rtkit +Wtz
i
tn
i
t that goes to consumption

cit
wit

,{
nit,

cit
wit

}
= σ

(
ζ0 + ϕ

(
kit, z

i
t,
{
kit, z

i
t

}`
i=1

, zt; θ
))

, (11)

where ϕ (·) is a multilayer neural network parameterized by a vector of coefficients θ (weights and biases),

σ (x) = 1
1+e−x is a sigmoid function which ensures that both

cit
wit

and nit are bounded to be in an interval

[0, 1], and ζ0 is a constant term.1 We train the machine by using a stochastic gradient descent method until
approximation (11) satisfies all model’s equations (2)–(10). Since the agents are identical in fundamentals,
the resulting two 2` + 1–dimensional decision functions are sufficient to characterize the choices of all `
heterogeneous agents.

Two remarkable properties of deep learning help us deal with the curse of dimensionality: First, the
neural network performs the model reduction: it extracts information from thousands of state variables in
the input layer and condenses it into a much smaller number of features in the hidden layer, (for example,
to 64 features), and those features are used as the state variables for producing the decision variables in
the output layer. Second, the deep neural network can learn to ignore collinear variables, in particular,
the individual state variables kit, z

i
t appear in approximation (11) both as the state variables of agent i

and as a part of the distribution but such perfect multicollinearity does not create numerical problems.
Further computational details are elaborated in Appendix A. In the main text, we focus on a numerical
construction of labor choice, which is the main interest of the present paper.

To approximate the labor decision function, we proceed in three steps:

� Generating an employment decision: we obtain nit from the assumed neural-network function
of state variables.

� Verifying the employment decision: we find ht =
∑`

i=1 z
i
tn
i
t and Wt from (6), and we use (10)

to find n̂it.

� Training the machine: we train the machine with respect to θ with the aim of reducing a distance
between nit and n̂it by using a least-squares type of criterion min

θ

∑`
i=1

(
nit − n̂it

)2
.

Later in the paper, we will see how these steps can be implemented in the economy with indivisible
labor.

Numerical results for the divisible labor model. For numerical analysis, we assume α = 0.36,
d = 0.08, β = 0.96; ρ = 0.9; σ = 0.1; ρz = 0.9; σz = 0.21; and k = 0. We perform training using the

1 In addition, we also paramterize and approximate the Lagrange multiplier µit associated with the borrowing constraint.
This is needed for making stochastic gradient unbiased; see Maliar et al. (2018, 2019) for more details.
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ADAM stochastic gradient descent method with the batch size of 100 and the learning rate of 0.001. We
fix the number of iterations (which is also a simulation length) to be K = 100, 000. In Figure 1, we show
the solution with ` = 300 heterogeneous agents under γ = 1 and η = 1.

Figure 1: Divisible labor model under γ = 1 and η = 1.

In the top row, we show the individual decision rules as a function of capital. We see that next-period
capital kit+1 and consumption cit increase in the current capital kit, while labor nit is decreasing meaning
that the agent chooses to enjoy more leisure 1 − nit. The seven lines in each graph correspond to seven
different productivity states representing a mean ± 1, 2 and 3 standard deviations; they show that kit+1, c

i
t

and nit are all increasing with productivity zit. We observe a soft kink in the consumption function in the
area where the agent reaches the borrowing limit.

In the bottom row, we show simulated series for 5 agents over time (we do not show all agents to
avoid the clutter). As expected, fluctuations in individual capital of agents are significantly larger than
the fluctuations in their consumption and labor. In the bottom row, we also show simulation for the
corresponding aggregate variables kt+1, ct and nt. The volatility of the aggregate variables (see the thick
lines) is typical for the real business cycle models and is considerably lower than that of the individual
variables. We will quantify the business cycle and distributive properties of the model in Section 5 after
we present the version of the model with indivisible labor.

Finally, we comment on two alternative solution methods that we could have used instead and that
could have simplified finding equilibrium. First, we could have approximated numerically just one labor
decision function instead of both consumption and labor choices. This point was emphasized in Maliar
and Maliar (2005), who argue that given nit, we can find ht, Wt and hence, cit, in a closed form, while given
cit, we need a numerical procedure to construct ht, Wt and nit – hence, it is better to parameterize nit than
cit in a similar model. Second, we could have solved for one individual decision function (for example, cit)
and one aggregate variable (for example, Wt) in terms of state variables since we can find nit in a closed
form, given cit and Wt. We do not follow these approaches because they do not carry over to the model
with indivisible labor.

3 Deep learning classification (DLC) method: logistic regression

In the divisible-labor case, the optimal labor choice must satisfy FOC (10), so the agent chooses labor by
considering just the current period variables. However, the same is not true for the indivisible labor model
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in which the agent chooses to be employed or unemployed depending on which of the two choices leads to a
higher continuation value. Chang and Kim (2007) use this approach to analyze Krusell and Smith (1998)
model with indivisible labor by constructing separate value functions for employed and unemployed agents.
This approach reduces the problem of approximating a discrete labor choice to that of approximating two
continuous-choice value functions.

Prescott et al. (2009) proposes a different approach for modeling indivisibility of labor by considering
intensive and extensive margins and by analyzing a ”discretized” version of the FOC (10); in turn, Chang
et al. (2019) implement this approach in the context of Krusell and Smith (1998) model. Specifically,
these papers assume that the agent’s labor choice is divisible and is characterized by the divisible-labor
FOC (10) as long as it is above a given threshold nf but the labor choice is zero (i.e., the agent becomes
unemployed) whenever it falls below nf . Thus, the labor supply has a ”kink” at the threshold level nf ,

nit =

 1−
[
c−γi Wt exp(zit)

B

]−1/η

≥ nf ,

0 otherwise.

(12)

In turn, this approach reduces the problem of constructing discrete-labor choice to the problem of approx-
imating continuous-labor choice with occasionally binding constraints. Our main novelty is that we show
how to approximate the discrete labor choice without relying on continuous choice representations. The
decision functions we construct show the moment when the agent switches from one discrete choice to
another, contingent on state.

To introduce our DLC method, we borrow from Prescott et al. (2009) and Chang et al. (2019) the idea
of discretizing the FOCs of the divisible labor model, however, we go a step further and make the labor
choice entirely indivisible by assuming that nit can take just two values 0 (unemployed) and 1 (employed):

nit =

 1 if 1−
[
c−γi Wt exp(zit)

B

]−1/η

≥ nf ,

0 otherwise.

(13)

There are two complications we face in the model with indivisible labor choice compared to that with di-
visible labor choice: First, not only labor but also consumption ci jumps when an agent switches between
the employed and unemployed states (this is because in equilibrium, the employed agent accepts a con-
sumption cut to enjoy more leisure in the unemployed state). Second, the aggregate wage Wt is unknown
in the moment when the agent decides on the employment because it depends on the labor choices of all
heterogeneous agents ht =

∑`
i=1 z

i
tn
i
t via (6) (that is, the individual labor choices must satisfy the market

clearing condition (6)). We will deal with these complications by using logistic regression – a popular
machine-learning technique for classification.

Generating an employment decision: Let us parameterize the employment decision boundary by
a deep learning neural network with

x
(
sit; θ

)
= 0, (14)

where sit ≡
({
kit, z

i
t

}`
i=1

, zt

)
is the agent’s state, and θ is a vector of coefficients (weights and biases)

of the neural network. On the boundary x
(
si; θ

)
= 0, the agent is indifferent between being employed

and unemployed. When x
(
si; θ

)
≥ 0 and x

(
si; θ

)
< 0, the agent chooses to be employed ni = 1 and

unemployed ni = 0, respectively (for the rest of the section, we omit the time subscript for expositional
convenience).

We characterize the decision boundary in terms of employment probability by using logistic function.
Specifically, we assume that the agent chooses to become employed with the probability p, which means
that the probability of being unemployed is 1− p. The probabilities are related to the decision boundary
(14) with a sigmoid (logistic) function

ln
p

1− p
= x

(
si; θ

)
⇒ p =

1

1 + e−x
≡ p

(
si; θ

)
, (15)
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The sigmoid function has the properties of cumulative density function, namely, if x→∞, then p→ 1;
if x → −∞, then p → 0; and if x = 0, then p = 1

2 . The latter threshold value corresponds to zero of
decision boundary (14) and separates the employed and unemployed choices.2 We assume that the agent
chooses the employment status that corresponds to the larger probability, i.e., if p

(
si; θ

)
≥ 1

2 , then the
agent chooses ni = 1; and otherwise, she chooses ni = 0.

Verifying the employment decision: Once the labor choices of all agents are fixed, we compute
ht =

∑`
i=1 z

i
tn
i and Wt from (6) and we find the employed choices n̂it satisfying the discretized FOC (13).

Now the agents can check if the choices ni implied by their probability function p
(
si; θ

)
coincide with the

choices n̂i that are implied by the discretized FOC (13).
Training the machine: Generally, ni and n̂i are not the same so we need a numerical procedure

that brings them close to each other. That is, we need to find the value of θ such that if n̂i = 1, then
p
(
si; θ

)
→ 1, and if n̂i = 0, then p

(
si; θ

)
→ 0. Note that this objective function can be summarized

with a single expression (p)n̂ (1− p)1−n̂ (because n̂ = 1 implies (p)1 (1− p)0 = p and n̂ = 0 implies
(p)0 (1− p)1 = 1 − p). Using this expression, we can form a likelihood function to be maximized with
respect to θ

lnL (θ) = ln
∏̀
i=1

(
p
(
si; θ

))n̂i (
1− p

(
si; θ

))1−n̂i
=

∑̀
i=1

[
n̂i ln

(
p
(
si; θ

))
+
(
1− n̂i

)
ln
(
1− p

(
si; θ

))]
. (16)

The goal of training is to find a probability function p
(
si; θ

)
that satisfies the fixed-point property such

that the values of ni induced by p
(
si; θ

)
coincide with the values of n̂i implied by the discretized FOC

(13) for each possible state. In effect, the procedures for solving for divisible and indivisible labor are
similar except that we parameterize the probability of employment instead of the labor supply and that
we maximize the likelihood function instead of the least-squares criterion.3 Thus, the way in which we
model discrete labor choice is the same as the one used for the canonical classification problem in machine
learning.4

The solution to the model with discrete labor choice produced by the DLC method is illustrated in
Figure 2. The decision rules in the top row are qualitatively similar to those in the divisible labor model,
however, the changes in labor happen in discrete jumps and they induce the corresponding discrete jumps
in the consumption and capital choices (as before seven lines correspond to seven individual productivity
levels). The exact moment when the agent switches from the employed to unemployed states depends on
the productivity level. More productive agents remain employed for much larger capital levels than low
productive agents.

The simulated series for the individual capital and consumption in Figure 2 are similar to those in the
divisible labor model in Figure 1, while labor fluctuates between the employed and unemployed states in
discrete jumps. Finally, the fluctuations in aggregate series are again typical for the real business cycle

2Note that if we parameterize the probability function with a neural network directly instead of the sigmoid function, the
resulting probability function can be outside the interval [0, 1] .

3One can be tempted to minimize the least-squares style criteria
∑̀
i=1

(
nit − n̂it

)2
instead of maximizing the likelihood function

but that would not lead to efficient training (as the cost function will have many local minima due to the assumption of a
sigmoid function).

4For example, suppose we want to classify the tumors into malignant and benign, denoted by ni = 1 and ni = 0, respectively,
conditional on the number of tests si such as the tumor size, the blood test and the age and gender of the patient. Then, we
parameterize the decision boundary (14), construct the probability function (15) and maximize the likelihood function (16)
with respect to θ on the set of data points

{
si
}

for which it is known whether the tumor is malignant or benign (analogue of
our condition (13)). After training, the machine produces the probabilities for new patients that their tumors are malignant or
benign conditional on their tests. Again, a successful training implies that p is close to either zero or one and those probabilities
lead to correct inferences about tumor malignancy.
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Figure 2: Indivisible labor model under γ = 1 and η = 1.

models except that we can observe that aggregate labor changes in small discrete increments which are a
consequence of discrete jumps in individual labor.

Iskhakov et al. (2017) introduce another method for solving dynamic models with discrete-continuous
choices, namely, an endogenous grid method with taste shocks, so it is interesting to compare our analysis
to theirs. There are three main differences: First, our DLC method is designed to approximate sharp
kinks in policy functions like those shown in the figure, while Iskhakov et al. (2017) suggest to smooth the
kinks by introducing supplementary preference shocks which transform the discrete-choice problem into
the choice probability space. Second, in our application, our discrete-choice decisions depend only on the
economy’s state, while in their application, such decisions depend both on state and time, namely, the
agent has to decide which time period to retire. The presence of time among the argument of the choice
function feature creates ”secondary” discrete shocks that propagate across time domain; such secondary
shocks are absent in our application. Finally, the problems that we solve have much larger dimensionality
than those studied in Iskhakov et al. (2017), but their application in more challenging in another respect:
they estimate the model’s parameters which requires solving the model a large number of times. It would
be interesting to see how our DLC method performs in the context of their application but this lies beyond
the scope of the present paper.

4 DLC method for multiclass problems: softmax regression

We next extend the Krusell-Smith (1998) model to include a possibility of part-time employment, which
is another case emphasized by Chang et al. (2019). However, we again differ from their analysis in that
we do not assume intensive and extensive margins but consider a discrete choice between three different
employment states. Specifically, the agent chooses full-time employment, nit = 1, whenever her labor
choices implied by the FOC of divisible labor model (10) is above a threshold nf ; she chooses part-time
employment, nit = 1

2 , whenever it belongs to the interval [np, nf ]; and she chooses unemployment whenever
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it falls below the part-time employment threshold np, i.e.,

nit =


1 if 1−

[
c−γi Wt exp(zit)

B

]−1/η

≥ nf ,

1
2 if 1−

[
c−γi Wt exp(zit)

B

]−1/η

∈ [np, nf ] ,

0 otherwise.

(17)

To introduce the DLC method, we again assume that the agent learns the equilibrium by making employ-
ment choices with some probabilities without knowing the aggregate wage and by verifying optimality of
these decisions ex-post.

Generating an employment decision: The key assumption of multiclass classification analysis is the
hypothesis of an independence of irrelevance alternatives which postulates that the agent’s choice between
two alternatives is independent of the presence of other alternatives.5 In our model, that means that
the choice of the agent between full- and part-time employment is unaffected by the alternative of being
unemployment (i.e, the choices between full-time employment and unemployment and between part-time
employment and unemployment). This leads us to pairwise comparisons. There are three of them but we
need to consider just two since the third one follows by a normalization of the probabilities to one. In
particular, we assume

ln
Pr
(
ni = 1

)
Pr (ni = 0)

= ϕ
(
si, θ1

)
and ln

Pr
(
ni = 1

2

)
Pr (ni = 0)

= ϕ
(
si, θ2

)
,

where ϕ
(
si, θ1

)
and ϕ

(
si, θ2

)
are neural networks that represent decision boundaries between the choices

of 1 and 0 and of 1
2 and 0, respectively (we again omit the time subscript). By taking into account that

the probabilities must add up to one, we obtain

Pr
(
ni = 1

)
=

1

∆
eϕ(si,θ1), Pr

(
ni =

1

2

)
=

1

∆
eϕ(si,θ2), Pr

(
ni = 0

)
=

1

∆
,

where ∆ ≡ eϕ(si,θ1) + eϕ(si,θ2) + 1 is a numerair that normalizes the probabilities to one.
The advantage of the above representation is that one can approximate three probability functions by

using only two neural networks. However, for numerical computations, we will use another representation
that treats all probabilities symmetrically and requires three probability functions – the so-called softmax
function – to satisfy

Pr
(
ni = nj

)
=

eϕ(si,θj)

eϕ(si,θ1) + eϕ(si,θ2) + eϕ(si,θ3)
, (18)

where nj ∈
{

1, 1
2 , 0
}

. The softmax probabilities are not uniquely defined in the sense that if we multiply
the numerator and denominator by the same number, we get the same probabilities. To make employment
decisions, we fix θ1, θ2 and θ3, and compute the corresponding probability (18) for each given agent si,
and we choose the employment status nj for which the probability Pr

(
ni = nj

)
is the largest of three.

Verifying the employment decision: Compute ht =
∑`

i=1 z
i
tn
i and Wt from (6) and find the

employment choice n̂it satisfying the optimality condition (17). Thus, the agents can check if the choices
they made by using the assumed probabilities ni coincide with the choices n̂i implied by the discretized
FOC (17).

Training the machine: We form three likelihood functions Lj , j = 1, 2, 3 that correspond to three

5 It is easy to find real-life situations in which this assumption is violated, for example, the voting preferences between two
politicians can be affected by the presence or absence of another politician as an alternative.
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outcomes nj ∈
{

1, 1
2 , 0
}

:

lnLj (θ1, θ2, θ3) =
∑̀
i=1

Iij ln

(
eϕ(si,θj)

eϕ(si,θ1) + eϕ(si,θ2) + eϕ(si,θ3)

)

+
(
1− Iij

)
ln

(
1− eϕ(si,θj)

eϕ(si,θ1) + eϕ(si,θ2) + eϕ(si,θ3)

)
, (19)

where Iij is an indicator function such that Iij = 1 if outcome j occurs. We train the model to maximize

these three likelihood functions.6

The DLC training procedure is essentially the same as for the model with just employed and unemployed
agents: First, assume θ1, θ2 and θ3, compute the corresponding probability (18), choose nit ∈

{
0, 1

2 , 1
}

depending on which probability is the largest. Second, compute ht =
∑`

i=1 z
i
tn
i
t and Wt from (6), find

the employed choices n̂it satisfying the discretized FOC (17). Finally, train the machine to maximize
the likelihood functions (19) with respect to θ1, θ2 and θ3. Ideally, the outcome of training is the three
probability functions (18) that satisfy the fixed-point property such that the values of nit induced by these
probabilities coincide with the values n̂it implied by the discretized FOC (17) for each possible state.

The numerical solution to the model with three employment states produced by the DLC method is
shown in Figure 3.

Figure 3: Model with full- and part-time employment under γ = 1 and η = 1.

The decision rules in the top row now experience two jumps instead of one (as in Figure 2) which
correspond to switches between the full and partial employment, and the partial employment and unem-
ployment (for each of the seven productivity levels). Switches occur later for more productive agents than
for less productive agents. This is because the opportunity cost of leisure is higher for more productive
agents.

The simulated series for the individual capital and consumption in the bottom row are similar to those
in the previous figure but the individual labor switches in two discrete steps between full employment,

6 In machine learning, a likelihood function with a negative sign is referred to as a ”cross entropy loss” because of a
connection with information theory. Thus, maximizing the likelihood function is equivalent to minimizing the cross-entropy
loss.
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partial employment and unemployment. Finally, in the bottom row, we show the fluctuations of the
aggregate variables (see the thick lines) where we can distinguish how discrete changes in individual labor
are transformed into discrete changes in aggregate labor.

We should finally remark that to solve the model with three employment states, it would be possible
to use just one probability function similar to the one we used in the model with two probability states
p
(
si; θ

)
. We just need to split it into three intervals

[
0, pp

]
,
[
pp, pf

]
and

[
pf , 1

]
that lead to the labor

choices in the corresponding intervals [0, np], [np, nf ] and [nf , 1]. However, this approach is not always
working well in practice, and it is not applicable to more general non-monotone classification problems.7

In contrast, the softmax function approach we describe here is general, flexible and can be used to solve a
variety of classification problems with any number of possible outcome.

5 Assessing the role of heterogeneity and labor choice

We discuss the aggregate and distributional implications of indivisible labor choice in Sections 5.1 and 5.2,
respectively.

5.1 Aggregate implications

In Table 1, we provide selected business cycle statistics for the studied divisible- and indivisible-labor
economies, as well as for the associated representative-agent model with divisible labor.

Table 1. Selected business cycle statistics.

RA HA Divisible labor HA Indivisible labor HA Full/Part time

η =1
5 η = 1 η = 5 η =1

5 η = 1 η = 5 η =1
5 η = 1 η = 5 η =1

5 η = 1 η = 5

std(y) 0.046 0.044 0.035 0.045 0.033 0.043 0.037 0.040 0.031 0.034 0.039 0.036
std(c)
std(y) 0.784 0.872 0.922 0.725 0.898 0.860 0.880 0.903 0.856 0.913 0.862 0.858
std(n)
std(y) 0.318 0.153 0.044 0.648 0.616 0.143 0.931 0.627 0.078 1.044 0.654 0.225
std(h)
std(y) 0.318 0.153 0.044 0.769 0.389 0.100 0.685 0.402 0.032 0.761 0.439 0.134
std(i)
std(y) 2.081 1.751 1.668 1.527 1.875 1.721 2.089 1.794 1.830 2.164 1.866 1.729
std(y/n)
std(y) 0.789 0.885 0.960 0.935 1.071 0.953 1.055 1.021 1.002 1.091 0.972 0.975

corr(c, y) 0.931 0.953 0.951 0.778 0.876 0.942 0.829 0.911 0.926 0.807 0.895 0.940

corr(n, y) 0.754 0.783 0.897 0.419 0.193 0.387 0.410 0.283 0.008 0.433 0.369 0.223

corr(h, y) 0.754 0.783 0.897 0.647 0.377 0.425 0.457 0.321 0.014 0.461 0.367 0.244

corr(i, y) 0.897 0.877 0.836 0.951 0.817 0.886 0.805 0.826 0.866 0.772 0.849 0.886

corr( yn , n) 0.964 0.994 1.000 0.779 0.824 0.990 0.584 0.805 0.997 0.500 0.778 0.974

Note: The statistics are computed across 100 simulations, each of which is length 1,000 periods;

RA and HA refer to representative- and heterogeneous-agent models.

The business cycle statistics of all studied economies are typical for the real business cycle models.
The volatility of output is somewhat higher than that in the US economy because the individual shocks
contribute to the volatility of aggregate variables. To adjust for this effect, we report the ratio of volatilities
of other variables relative to that of output.

It is well known that the representative-agent divisible-labor model is capable of accounting for stylized
features of consumption-saving behavior over the US business cycle, however, has difficulties in reproducing
the labor market statistics. In particular, it underpredicts the volatility of labor and overpredicts the
correlation between labor and output and that between the labor and wage.

7For example, we cannot assign numerical values to classify musicians, artists and writers.
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Concerning the first problem, the seminal works of Rogerson (1994) and Hansen (1993) had shown
that the introduction of indivisible labor helps increase the volatility of labor. Under the assumption of
complete markets, agents trade employment insurances, and the economy behaves as if the utility is linear
in labor, which magnifies labor fluctuations compared to the economy where agents are risk averse with
respect to labor choice. Chang et al. (2019) consider the model with intensive and extensive margins and
find that this effect is quantitatively important, namely, the volatility of labor ranges between 30% and
60% of the output. Our analysis for the models with indivisible labor led to similar predictions for the
benchmark case η = 1, however for η = 5, the volatility is excessively low; Chang et al. (2019) do not get
so low volatility because they do not consider so high degrees of risk aversion, as we do.

Concerning excessively high correlation of labor variables, we can see in the table that the assumption
of indivisible labor reduces the correlation corr(n, y) from 0.7–0.8 to 0.4–0.2 relative to the representative-
agent model. A similar reduction is observed for the correlation between efficiency labor and output. The
reduction in correlation is due to the assumption of heterogeneity: in the representative-agent economy,
a higher wage induces higher labor efforts, whereas in the heterogeneous-agent model, the efforts depend
also on the individual productivity and the level of wealth which can offset some of the wage effect; see
Maliar and Maliar (2003) for a related discussion.

5.2 Distributional implications

In Table 2, we summarize the distributional statistics produced by the heterogeneous-agent models.

Table 2. Distributional implications of the studied models.

HA Divisible labor HA Indivisible labor HA Full/Part time

η =1
5 η = 1 η = 5 η =1

5 η = 1 η = 5 η =1
5 η = 1 η = 5

Income distribution

Top 1% 0.015 0.036 0.032 0.033 0.032 0.029 0.031 0.032 0.030

Top 20% 0.270 0.398 0.374 0.385 0.368 0.358 0.371 0.371 0.359

Top 40% 0.520 0.636 0.610 0.630 0.606 0.595 0.612 0.610 0.594

Bottom 20% 0.082 0.071 0.083 0.068 0.081 0.088 0.072 0.079 0.089

Bottom 40% 0.254 0.193 0.214 0.193 0.214 0.224 0.205 0.211 0.226

Gini 0.190 0.327 0.292 0.320 0.288 0.272 0.300 0.294 0.271

Wealth distribution

Top 1% 0.013 0.038 0.043 0.042 0.043 0.042 0.037 0.042 0.041

Top 20% 0.243 0.422 0.461 0.453 0.446 0.447 0.407 0.447 0.445

Top 40% 0.470 0.666 0.708 0.705 0.691 0.696 0.648 0.690 0.689

Bottom 20% 0.133 0.059 0.043 0.041 0.047 0.045 0.064 0.048 0.048

Bottom 40% 0.319 0.169 0.137 0.135 0.148 0.143 0.181 0.149 0.150

Gini 0.111 0.365 0.420 0.416 0.401 0.405 0.344 0.400 0.398

Note: The statistics are computed across 100 simulations, each of which is length 1,000 periods;

RA and HA refer to representative- and heterogeneous-agent models.

Overall, the distributional implications of the studied models with indivisible labor are similar to those of
the heterogeneous-agent model with intensive and extensive margins studied in Chang et al. (2019). A
robust distributional implication of this class of models is that they underpredict the degree of inequality
relative to the US economy; see, e.g., Aiyagari (1993) for the corresponding statistics on the US economy
data. We see that the introduction of indivisible labor helps mitigate this problem and increase the degrees
of inequality, in particular, the share of wealth that belongs to the top one percent of the population. Unlike
the divisible labor model, the indivisible labor models are characterized by the degrees of income and wealth
inequalities that do not significantly depend on the inverse of elasticity of intertemporal substitution of
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labor. However, the assumption of indivisible labor alone is not sufficient to produce the empirically
relevant degrees of income and wealth inequalities as in the data.

6 Conclusion

This paper shows how to use deep learning classification approach borrowed from data science for modeling
discrete choices in dynamic economic models. A combination of the state-of-the-art machine learning
techniques makes the proposed method tractable in problems with very high dimensionality – hundreds
of heterogeneous agents. We investigate just one example – discrete labor choice – but the proposed deep
learning classification method has a variety of potential applications such as sovereign default models,
models with retirement, and models with indivisible commodities, in particular, housing.
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Appendix A

In Sections A1, A2 and A3, we present the deep learning solution algorithms for the versions of Krusell
and Smith (1998) model with divisible labor choice, indivisible labor choice, and part-time and full-time
employment, respectively.

Our algorithm follows Maliar et al. (2018, 2019), except that we allow for divisible and indivisible labor
choices. It alternates between the solution and simulation steps:

1. Draw initial aggregate productivity z0 and initial distributions {K0, Z0} ≡
{
ki0, z

i
0

}`
i=1

;

2. Construct labor
{
ni0
}`
i=1

using neural network approximation;

3. Compute the prices R0 and W0;

4. Compute consumption
{
ci0
}`
i=1

using the neural network approximation and find
{
ki1
}`
i=1

from the
budget constraints;

5. Draw the uncorrelated shocks and train the neural network to satisfy the optimality conditions for `
agents;

6. Perform forward simulation to produce next-period individual and aggregate productivity z1 and{Z1} ={
zi1
}`
i=1

.
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Proceed iteratively until the convergence is achieved.

As the machine is trained and the panel is simulated, the decision functions are refined jointly with
the ergodic distribution.8 The studied method is similar in spirit to Krusell and Smith’s (1998) one but
is simpler conceptually as it does not involve construction of separate approximation of the law of motion
for aggregate variables using the reduced state space. We just simulate the panel of heterogeneous agents,
and we use the resulting distributions to infer both the individual and aggregate quantities and prices as
the economy evolves over time.

8Since random variables are autocorrelated in our model, the stochastic gradient is correlated over time and hence, it is
biased. To reduce the bias, we train the model on cross-sections which are sufficiently separated in time instead of using all
consecutive periods.
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A1. Solution method for divisible labor model

Algorithm 1: Deep learning for divisible labor model.

Step 0: (Initialization). Construct initial state of the economy
({
ki0, z

i
0

}`
i=1

, z0

)
and parameterize

three decision functions by a neural network with three outputs{
nit,

cit
wit

}
= σ

(
ζ0 + ϕ

(
kit, z

i
t,
{
kit, z

i
t

}`
i=1

, zt; θ
))

,

µit = exp
(
ζ0 + ϕ

(
kit, z

i
t,
{
kit, z

i
t

}`
i=1

, zt; θ
))

,

where wit ≡ Rtkit +Wt exp
(
zit
)
nit is wealth; µit is Lagrange multiplier associated with the borrowing

constraint; ϕ (·) is a neural network; σ (x) = 1
1+e−x is a sigmoid (logistic) function; ζ0 is a constant;

θ is a vector of coefficients (biases and weights).

Step 1: (Evaluation of decision functions).

Given state
({
kit, z

i
t

}`
i=1

, zt

)
, compute nit, w

i
t,

cit
wit

from the decision rules and find kit+1 from the

budget constraint for all agents i = 1, ..., `.

Step 2: (Construction of Euler residuals).

Draw two random sets of individual productivity shocks Σ1 =
(
ε11, ..., ε

`
1

)
, Σ2 =

(
ε12, ..., ε

`
2

)
and

two aggregate shocks ε1,, ε2. Construct the Euler residuals,

R1 =

{[
ΨFB

(
1− wi

ci
, 1− µi

)]2

+v

[
βu′
(
ci
′
(Σ1,ε1,)

)
u′(ci)

(1 +Rt)− µi
][

βu′
(
ci
′
(Σ2,ε2,)

)
u′(ci)

(1 +Rt)− µi
]
,

where ΨFB (a, b) = a+ b−
√
a2 + b2 is a Fischer-Burmeister function.

Step 3: (Construction of labor-choice residuals).

Construct the residuals in the labor choice by

R2 =

(
nit − 1−

[
c−γi Wt exp(zit)

B

]−1/η
)2

.

Step 4: (Training).

Train the neural network coefficients θ to minimize a weighted sum of two residuals R1 + νR2

across the agents i = 1, ..., ` and batches, where ν is an exogenous weight.

Step 5: (Simulation).

Move to t+ 1 by using endogenous and exogenous variables obtained in Step 4 under

Σ1 =
(
ε11, ..., ε

`
1

)
and ε1 as a next-period state

({
kit+1, z

i
t+1

}`
i=1

, zt+1

)
.
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A2. Solution method for indivisible labor model

Algorithm 2: Deep learning for indivisible labor model.

Step 0: (Initialization). Construct initial state of the economy
({
ki0, z

i
0

}`
i=1

, z0

)
and parameterize

the decision functions by {
ln

pit
1−pit

,
cit
wit

}
= σ

(
ζ0 + ϕ

(
kit, z

i
t,
{
kit, z

i
t

}`
i=1

, zt; θ
))

,

µit = exp
(
ζ0 + ϕ

(
kit, z

i
t,
{
kit, z

i
t

}`
i=1

, zt; θ
))

,

where pit is the probability of being employed nit = 1.

Step 1: (Evaluation of decision functions).

Given state
({
kit, z

i
t

}`
i=1

, zt

)
≡ sit, compute nit = n if pit ≥ 1

2 and nit = 0 if pit <
1
2 . Compute wit and

cit
wit

from the decision rules and find kit+1 from the budget constraint for all agents i = 1, ..., `.

Step 2: (Construction of Euler residuals). ...

Step 3: (Construction of labor-choice residuals).

Construct the residuals in the labor choice by

R2 =

[∑̀
i=1

n̂it ln
(
p
(
sit; θ

))
+
(
1− n̂it

)
ln
(
1− p

(
sit; θ

))]2

where n̂it =

 1 if L−
[
c−γi Wt exp(zit)

B

]−1/η

≥ nf
0 otherwise.

.

...
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A3. Solution method for the model with full and part time employment

Algorithm 3: Deep learning for the model with full and partial employment.

Step 0: (Initialization). Construct initial state of the economy
({
ki0, z

i
0

}`
i=1

, z0

)
and parameterize the

decision functions by{
ln

pit(1)

∆i
t
, ln

pit(
1
2)

∆i
t
, ln

pit(0)

∆i
t
,
cit
wit

}
= σ

(
ζ0 + ϕ

(
kit, z

i
t,
{
kit, z

i
t

}`
i=1

, zt; θ
))

,

where pit (1) , pit
(

1
2

)
and pit (0) are the probabilities to be full- and part-time employed and unemployed,

respectively, and ∆i
t ≡ pit (1) + pit

(
1
2

)
+ pit (0) is a normalization of probability to one.

Step 1: (Evaluation of decision functions).

Given state
({
kit, z

i
t

}`
i=1

, zt

)
≡ sit, , set nit = 1, nit = 1

2 and nit = 0 depending on which probability pit (1) ,

pit
(

1
2

)
and pit (0) is the largest. Compute wit,

cit
wit

from the decision rules and find kit+1 from the budget

constraint for all agents i = 1, ...`.

Step 2: (Construction of Euler residuals). ...

Step 3: (Construction of labor-choice residuals).

Construct the residuals in the labor choice by

R2 =
∑3

j=1

[∑̀
i=1

n̂it ln

(
e
ϕ(si,θj)

eϕ(si,θ1)+eϕ(si,θ2)+eϕ(si,θ3)

)
+
(
1− n̂it

)
ln

(
1− e

ϕ(si,θj)

eϕ(si,θ1)+eϕ(si,θ2)+eϕ(si,θ3)

)]2

where n̂it =


1 if L−

[
c−γi Wt exp(zit)

B

]−1/η

≥ nf

1
2 if L−

[
c−γi Wt exp(zit)

B

]−1/η

∈ [np, nf ]

0 otherwise

..

...

A4. Remarkable features of deep learning that help to deal with the curse of dimen-
sionality

Maliar et al. (2018, 2019) argue that three remarkable features of deep learning approach help us deal
with the curse of dimensionality. We discuss these features below.

Ergodic-set domain. We solve the model on simulated series (ergodic set) instead of a rectangular-
style domain that classical projection methods (like Smolyak) use. The volume of the rectangular domain
is huge in high-dimensional problems, and it is prohibitively expensive to attain accurate approximation
everywhere on such a huge domain. In contrast, only an infinitesimally small fraction of rectangular domain
is generally visited in equilibrium in high-dimensional applications; see Judd et al. (2011) for a discussion.
By solving the model on simulated series, we restrict attention to a relatively small ergodic-set domain in
which the solution ”lives” – this helps us deal with the curse of dimensionality.

Perfect multicollinearity. In the approximating function of the consumption share, we include the

state variables of agent i twice ϕ
(
kit, z

i
t,
{
kit, z

i
t

}`
i=1

, zt; θ
)

, namely, they enter both as variables of agent i

and as an element of the distribution. This repetition implies perfect collinearity in explanatory variables,
so that the inverse problem is not well defined. Such a multicollinearity would break down a conventional
numerical method which solves the inverse problem but neural networks can learn to ignore redundant
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colinear variables, as we have shown earlier. Thus, even though it is possible to design a transformation
that avoids a repetition of variables, it would require cumbersome and costly permutations, so we find it
easier to keep the repeated variables.

Model reduction. We solve the models with hundreds of heterogeneous agents (and thus, state vari-
ables). How can the deep learning method deal with such a huge state space? In addition to the ability
to handle multicollinearity, neural networks possess another remarkable property: they automatically per-
form the model reduction. When we supply a large number of state variables to the input layer, the neural
network condenses the information into 64 neurons of two hidden layers, making it more abstract and
compact. In a sense, this procedure is similar to a photo compression or principal component transforma-
tion when a large set of variables is condensed into a smaller set of principal components without losing
essential information; see Goodfellow et al. (2016) for a discussion of neural networks.

Krusell and Smith (1998) found one specific model reduction that works extremely well for their model,
namely, they approximate the distribution of state variables with a finite set of moments. They found that
in their model, just one moment – a mean of wealth distribution mt – is a sufficient statistic for capturing
all relevant information, which reduces their state space to just four state variables (kit, z

i
t, zt,mt).

If Krusell and Smith’s (1998) construction is the most efficient representation of the state space, the
neural network is likely to find this representation as an outcome of training. However, the neural network
will automatically consider many other possible ways of extracting the information that is contained in

the distribution
{
ki1, z

i
1

}`
i=1

and condensing it in a relatively small set of hidden layers. The output of the
machine can look like moments or some other statistics – we will not always be able to understand how
the machine handles the information in the hidden layers but this fact does not prevent us from using this
remarkable technology in applications.

Appendix B.

In this appendix, we show sensitivity results with respect to the inverse of intertemporal elasticity of
substitution of labor η for the models with divisible labor, indivisible labor model and full- and part-time
employment.

Figure 4: Divisible labor model under γ = 1 and η = 0.2.
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Figure 5: Divisible labor model under γ = 1 and η = 5.

Figure 6: Indivisible labor model under γ = 1 and η = 0.2.
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Figure 7: Indivisible labor model under γ = 1 and η = 5.

Figure 8: Model with full- and part-time employment under γ = 1 and η = 0.2.
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Figure 9: Model with full- and part-time employment under γ = 1 and η = 5.
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