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Motivation: Solving a Dynamic Economic Model
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Neoclassical stochastic growth model with inelastic labor
supply

A one-agent stochastic growth model:

max
fkt+1,ctg∞

t=0

E0
∞

∑
t=0

βtu (ct )

s.t. ct + kt+1 = (1� δ) kt + θt f (kt ) ,

ln θt+1 = ρ ln θt + εt+1, εt+1 � N
�
0, σ2

�
,

initial condition (k0, θ0) is given;
f (�) = production function;
ct = consumption; kt+1 = capital; θt = productivity level;
β = discount factor; δ = depreciation rate of capital;
ρ = autocorrelation coe¢ cient of the productivity level;
σ = standard deviation of the productivity shock εt+1.
The agent does not value leisure and supplies to the market all her
time endowment =) A model with inelastic labor supply.
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First-order conditions

We assume that a solution to the model is interior (satis�es the
�rst-order conditions, FOCs):

u1 (ct ) = βEt [u1 (ct+1) (1� δ+ θt+1f1 (kt+1))] , (1)

ct + kt+1 = (1� δ) kt + θt f (kt ) . (2)

FOC (1) is the Euler equation or inter-temporal FOC (relates
variables of di¤erent periods).

Budget constraint (2) is intra-temporal (relates variables within the
same period).
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Concept of solution

Objective: to �nd a recursive Markov solution in which the decisions
on next-period capital and consumption are made according to some
time invariant state-contingent functions

k 0 = K (k, θ) , c = C (k, θ) .

Note that if the capital decision function K is known, the
consumption decision function follows from the budget constraint:

C (k, θ) = (1� δ) kt + θt f (kt )�K (k, θ) .
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Projection-style Euler equation method, e.g., Judd (1992)

A �exible functional form for approximation bK (k, θ; b) � K (k, θ),
where b is a vector of parameters, for example, k 0 = b0 + b1k + b2θ.
A grid of points fkm , θmgm=1,...,M on which K is approximated:

Deterministic integration methods approximate integrals with
weighted average

R ∞
�∞ G (ε)w (ε) dε � ∑J

j=1 ωjG (εj ),

where fεjgJj=1 and fωjgJj=1 are integration nodes and weights.
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Global projection-style Euler equation method

(EEM): A global projection-style Euler equation method.
Step 1. Choose functional form bK (�, b) for representing K , where b is the
coe¢ cients vector. Choose a grid fkm , θmgm=1,...,M on which bK is constructed.
Step 2. Choose nodes, εj , and weights, ωj , j = 1, ..., J, for approximating
integrals. Compute next-period productivity θ0m,j = θ

ρ
m exp

�
εj
�
for all j , m.

Step 3. Solve for b that approximately satis�es the model�s equations:

u1 (cm) = β
J

∑
j=1

ωj �
h
u1
�
c 0m,j

� �
1� δ+ θ0m,j f1 (k

0
m)
�i
,

cm = (1� δ) km + θm f (km)� k 0m
c 0m,j = (1� δ) k 0m + θ0m,j f (k

0
m)� k 00m,j

We have J + 2 equations and 2J + 2 unknowns k 0m , cm ,
n
k 00m,j , c

0
m,j

oJ
j=1

) the solution is under-determined.
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Counting equations and unknowns

We use stationarity: the same decision function bK (�, b) is used both at t
and t + 1 :

in the current period: k 0m = bK (km , θm ; b);
in J possible future states: k 00m,j = bK �k 0m , θ0m,j ; b�, where future
shocks are θ0m,j = θ

ρ
m exp (εj ).

u1 (cm) = β
J

∑
j=1

ωj
�
u1
�
c 0m,j

� �
1� δ+ θ0m,j f1

�
k 0m
���

, (3)

cm = (1� δ) km + θm f (km)� k 0m , (4)

c 0m,j = (1� δ) k 0m + θ0m,j f
�
k 0m
�
� bK �k 0m , θ0m,j ; b� . (5)

J + 2 equations and J + 2 unknowns: cm , k 0m ,
n
c 0m,j

oJ
j=1

) the

solution is exactly determined.
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Discussion

Substitute c 0m,j from (5) into (3).

Substitute cm from (4) into (3).

Substitute k 0m = bK (km , θm ; b) into the resulting equation.
+

Get one equation in which the vector of coe¢ cients b is the only
unknown.

If b = (b1, b2), we need just two grid points, m = 1, 2 to exactly
identify b.
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Questions arising in the context of this algorithm

How to approximate the unknown decision functions?

What families of functions to use for approximation?

Possible choices: polynomials, splines, trigonometric functions, etc.

Today, we will only talk about low-dimensional cases (one or few
variables).

High dimensional approximation and interpolation will be studied
later (Smolyal sparse grids, ergodic-set methods, model reduction,
machine learning, etc.).
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Approximation and Interpolation in Numerical Analysis
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General idea of approximation

We consider a generic approximation problem (not in relation to
solving dynamic economic models).
Objective: Given data about a function f (x), construct a parametric
function bf (x , b) that approximately represents f (x), where b is a
vector of the parameters.
Why could we need such an approximation?

Maybe f (x) is known only in a �nite set of points xi , i = 1, ..., n or in
some interval, yi = f (xi ).
Maybe f (x) is costly to evaluate, so we evaluate it in few points and
approximate it in other points.

Questions:
What data should be produced and used (assuming that we have
control over where to place xi , i = 1, ..., n)?
What parametric family of functions (i.e., bf (x , b)) should be used?
How do we construct the approximation?
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General problem

Formally, the studied problem can be represented as

min
b

f (x)� bf (x , b) ,
where k�k is a norm for measuring approximation errors.

There many classes of functions that can be used for approximation
but we focus on a speci�c case of linear (in coe¢ cients)
approximations bf (x , b) = m

∑
j=1
bjφj (x) ,

where φ1 (x) , ..., φm (x) are basis functions and b1, ..., bm are the
corresponding coe¢ cients.
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Interpolation problem

If the number of points is the same as the number of coe¢ cients
n = m, we have an interpolation problem24 y1

...
yn

35 =
24 φ1 (x1) ... φn (x1)

...
φ1 (xn) ... φn (xn)

3524 b1
...
bn

35
y = Φb.

Provided that the basis functions are linearly independent, we �nd a
unique inverse solution for the parameters b = Φ�1y .

By construction the interpolant bf (x , b) pass through all the data
points.
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Approximation problem

If the number of points is larger than the number of coe¢ cients
n > m, we have an approximation problem24 y1

...
yn

35 =
24 φ1 (x1) ... φm (x1)

...
φ1 (xn) ... φm (xn)

3524 b1
...
bm

35 ,
y = Φb.

Generally, m free parameters do not allow the interpolant to pass
through all n points, therefore the left and right sides do not coincide.
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Approximation (cont.)

In this case, we choose the coe¢ cients to minimize the approximation
error according to some norm, such as least squares.

min
b1,...,bm

n

∑
i=1

 
yi �

m

∑
j=1
bjφj (xi )

!2
,

min
b
(y �Φb)0 (y �Φb) .

This is a familiar linear regression and b is the usual least squares
coe¢ cient b = (Φ0Φ)�1 Φ0y .

Unlike interpolant, the approximating function bf (x , b) does not
passes through the data points.
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Interpolation versus Approximation

interpolation approximation
curve must pass through control points curve is in�uenced by control points

x

f(x)

x

f(x)

x

f(x)

x

f(x)
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Interpolation versus Approximation

Interpolation: �nd a function from an n-dimensional family of
functions which exactly �ts n data points.

Approximation (rather than interpolation): there may be errors in the
original measurements.
�We don�t have to interpolate original data points exactly.
�We only need to approximate them.
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Interpolation Curves

Curve is constrained to
pass through all control
points.

Piecewise linear: curve
de�ned by multiple
segments (linear).

Piecewise polynomial:
segments de�ned by
polynomial functions;
most common polynomial
used is cubic (3rd order).
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Extrapolation

Interpolation: given a
sequence of n unique
points, (xi , yi ), we want
to construct a function
f (x) that passes through
all the given points so
that we can use f (x) to
estimate the value of y
for any x inside the range
of the known base points.

Extrapolation: the
process of estimating a
value of f (x) that lies
outside the range of the
known base points.

Interpolation is inside range;
extrapolation is outside.
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Extrapolation: practical example
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Example of approximation in economics

Example
Suppose we approximate a capital policy function K with an ordinary
polynomial function

K (�, b) = b0 + b1k + b2a+ ...+ bmap

on a set of simulated points fkt , atg, t = 1, ...,T .
�Generally, we have more simulated points T than the polynomial
coe¢ cients in b.
�We compute the coe¢ cients using a regression method. This is an
example of approximation problem.
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Example of interpolation in economics

Example
Consider an algorithm for solving an optimal growth model on the grid
fki , aig, i = 1, ...,m.
�Suppose we de�ned a capital policy function for each points of the grid,
i.e., we have k 0i = K (ki , ai ).
�To implement iteration on the Euler equation, we need to compute
future capital k 00i = K (k

0
i , a

0
i ).

�To do so, we need a method that allows to infer K (k, a) for any point
(k, a) on the domain given the value of this function in a �nite number of
grid points.
�This is an example of interpolation problem.
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Plan of the lecture

1. Polynomial Interpolation.

2. Orthogonal Polynomials.

3. Approximation (Regression).

4. Splines.

5. Multidimensional Methods.
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Polynomial Interpolation
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Polynomial Interpolation

Any continuous function can be represented as a sum of monomials,
xn, n = 0, 1, 2, ....
Monomials are bases for continuous functions.
Objective: Given n points, we want to �nd the polynomial of order
n� 1

pn (x) = b0 + b1x + b2x2 + ...+ bn�1xn�1

that passes through all the points.
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Polynomial Interpolation (cont.)

The (n� 1)-th-order polynomial that passes through n points is
unique, but it can be written in di¤erent mathematical formats:
�Conventional form;
�Lagrange Form;
�Hermite Form (see the appendix); etc.

Useful characteristics of polynomials
� In�nitely di¤erentiable
�Can be easily integrated
�Easy to evaluate
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Conventional Form Polynomial

One can compute the polynomial directly, pn (x) =
n�1
∑
i=0
bix i . This is

done by solving a linear system,8>>><>>>:
y1 = b0 + b1x1 + b2x21 + ...+ bn�1x

n�1
1

y2 = b0 + b1x2 + b2x22 + ...+ bn�1x
n�1
2

...
yn = b0 + b1xn + b2x2n + ...+ bn�1x

n�1
n

.

In matrix notation, Ab = y , where b = (b0, b1, ..., bn�1)
>, and A is

the so-called Vandermonde matrix for xi , i = 1, ..., n

A =

0BBB@
1 x1 x21 � � � xn�11
1 x2 x22 � � � xn�12
...

...
...

. . .
...

1 xn x22 � � � xn�1n

1CCCA
Result: If the (xi ) are distinct, there is a unique solution.
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Conventional Form Polynomial

What is the shortcoming of �nding the polynomial using this method?8>>><>>>:
y1 = b0 + b1x1 + b2x21 + ...+ bn�1x

n�1
1

y2 = b0 + b1x2 + b2x22 + ...+ bn�1x
n�1
2

...
yn = b0 + b1xn + b2x2n + ...+ bn�1x

n�1
n

.

This system is typically ill-conditioned.
�The resulting coe¢ cients can be highly inaccurate when n is large
(if �nite-precision computers are used).
�Talk about it later.

If our objective is to determine the intermediate values between
points, we can construct and represent the polynomials in Lagrange
form.

The Graduate Center, CUNY (2020) Approximation and interpolation Lilia Maliar 29 / 128



Lagrange Polynomial Interpolation

Data: (xi , yi ) , i = 1, .., n.
Objective: Find a polynomial of degree n� 1, pn(x), which
interpolates the sample (xi , yi ) with yi = f (xi ),

y (x) = pn(x) =
n

∑
i=1
bi li (x) ,

li (x) = weighting function, de�ned by

li (x) =
n

∏
j=1,j 6=i

x � xj
xi � xj

, for i = 1, .., n

with the property

li (xj ) =
�
1 if i = j
0 if i 6= j

Note

li (x) =
x � x1
xi � x1

� ... � x � xi�1
xi � xi�1

� x � xi+1
xi � xi+1

� x � xn
xi � xn

.
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Lagrange Polynomial Interpolation (cont.)

Example: quadratic Lagrange interpolation (n� 1 = 2) includes
l1 (x), l2 (x) and l3 (x):

y (x) = b1l1 (x) + b2l2 (x) + b3l3 (x) .

Recall li (xj ) =
�
1 if i = j
0 if i 6= j . Evaluate it at x1:

y (x1) = b1l1 (x1)| {z }
=1

+ b2l2 (x1)| {z }
=0

+ b3l3 (x1)| {z }
=0

= b1.

In general, bi = yi = f (xi ).
Thus, interpolation is given by

pn (x) =
n

∑
i=1
f (xi )li (x)

Example: p1 (x) = f (x0) x�x1x0�x1 + f (x1)
x�x0
x1�x0 .
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Example

Construct a 4th order polynomial in Lagrange form that passes
through the following points:

i 1 2 3 4 5
xi 0 1 �1 2 �2

f (xi ) �5 �3 �15 39 �9

We can construct the polynomial as

p1 (x) = �5l1 (x)� 3l2 (x)� 15l3 (x) + 39l4 (x)� 9l5 (x)

Recall

li (x) =
x � x1
xi � x1

� ... � x � xi�1
xi � xi�1

� x � xi+1
xi � xi+1

� x � xn
xi � xn

.

For example, l1 (x) =
(x�1)(x+1)(x�2)(x+2)
(0�1)(0+1)(0�2)(0+2) =

(x�1)(x+1)(x�2)(x+2)
4 .
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Lagrange Polynomial Interpolation (cont.)

Problems

If the number of data points is large, this type of interpolation can be
expansive.

To compute a single li (x) we need to compute 2 (n� 1)
subtractions, n multiplications.

This has to be constructed for the n data points to compute all
needed li (x).

Then to compute pn (x) we need n additions and n multiplications.

The Graduate Center, CUNY (2020) Approximation and interpolation Lilia Maliar 33 / 128



Problems with Interpolation

Interpolation does not always work even for well-behaved functions.

Does pn(x) converge to f (x) as we use more points? No!

Consider a so-called Runge function

f (x) =
1

1+ x2
,

xi = �5,�4, ..., 3, 4, 5

i.e., 11 uniformly sampled points.

Use Lagrange interpolation (�t degree 10 polynomial).

Conclusion: under (n� 1) interpolation at n uniformly spaced points,
pn(x) gets worse as we use more points.
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Problems with Interpolation (cont.)

Runge function

5 4 3 2 1 0 1 2 3 4 5
2

1

0

1

2

3

4

5

6

Highly oscillatory. Hard to control away from measured points.
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Orthogonal Polynomials
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Polynomials

Ordinary

Chebyshev

Legendre

Laguere

Hermite, etc.
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Ordinary and Chebyshev Polynomials (cont.)
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Comments about Ordinary and Chebyshev Polynomials

For the ordinary polynomial family, the basis functions look very
similar on R+.

Approximation methods using ordinary polynomials may fail because
they cannot distinguish between similarly shaped polynomial terms
such as x2 and x4.

In contrast, for the Chebyshev polynomial family, basis functions have
very di¤erent shapes and are easy to distinguish.

Chebyshev polynomials are orthogonal.

Good bases have an orthogonality property.

Why? Analogy with orthogonal vectors.
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Analogy with Orthogonal Vectors

Two vectors x and y are
said to be orthogonal if
their scalar product is
zero, (x , y) = 0.

To represent any vector in
a 3-dimensional space, we
usually use 3 orthogonal
vectors.

We can also use 3
non-orthogonal vectors
but it can happen that
they are close to each
other and we have very
big coe¢ cients.
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Orthogonal versus Non-orthogonal Vectors

Example

Consider a vector d = (1, 1, 1). We have an orthogonal basis from 3
vectors a = (1, 0, 0), b = (0, 1, 0) and c = (0, 0, 1). Note that a scalar
product of (a, b), (c , b), (a, c) = 0.

(a, b) = (1, 0, 0)

24 01
0

35 = 0
Then, d = 1 � a+ 1 � b+ 1 � c .
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Orthogonal versus Non-orthogonal Vectors (cont.)

Example

Suppose now that the basis vectors are a = (1, 0, 0), b = (1, 0.01, 0) and
c = (1, 0, 0.01).24 11

1

35 = αa+ βb+ γc = α

24 10
0

35+ β

24 1
0.01
0

35+ γ

24 1
0
0.01

35
24 α

β
γ

35 =
24 1 1 1
0 0.01 0
0 0 0.01

35�1 24 11
1

35 =
24 �199.0100.0

100.0

35
So, instead of (1, 1, 1), we have coe¢ cients (α, β,γ) that are very big
(�199, 100, 100).
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Orthogonal Polynomials for Interpolation

Coming back to the model, suppose that we would like to
approximate a function by some family of functions
ff0 (x) , f1 (x) , f2 (x) , f3 (x) , ...g ,

F (x) �= αf0 (x) + βf1 (x) + γf2 (x) + ...

It is like to approximate a vector d by vectors a, b, c .

We would like functions ff0 (x) , f1 (x) , f2 (x) , f3 (x) , ...g to be
orthogonal, i.e., their scalar product is zero, hf0 (x) , f1 (x)i = 0.
Consider monomials

�
1, x , x2, x3, ...

	
. They are not orthogonal and

very close to each other (see the �gure).

So, some coe¢ cients can be very large which leads to the loss of
digits in the �nite arithmetic precision.
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Orthogonal Polynomials

General orthogonal polynomials

Space: polynomials over domain D

Weighting function: w(x) > 0

Inner product of two functions f and g : hf , gi �
R
D f (x)g(x)w(x)dx

De�nition
fφig is a family of orthogonal polynomials w.r.t w (x) i¤D

φi , φj

E
= 0, i 6= j
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Orthogonal Polynomials (cont.)
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Orthogonal Polynomials (cont.)

Recurrence formulas

φ0(x) = 1

φ1(x) = x

φk+1(x) = (ak+1x + bk ) φk (x) + ck+1φk�1(x)

Example

φ2(x) = (a2x + b1) φ1(x) + c2φ0(x)
hφ2, φ0i = a2 hxφ1, φ0i+ b1 hφ1, φ0i+ c2 hφ0, φ0i
0 = a2 hxφ1, φ0i+ 0+ c2 hφ0, φ0i =) c2 =

a2hxφ1,φ0i
hφ0,φ0i

Similarly, hφ2, φ1i = a2 hxφ1, φ1i+ b1 hφ1, φ1i+ c2 hφ0, φ1i
0 = a2 hxφ1, φ1i+ b1 hφ1, φ1i+ 0 =) b1 =

a2hxφ1,φ1i
hφ1,φ1i

.
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Chebyshev Polynomials

D = [a, b] = [�1, 1]
w(x) =

�
1� x2

��1/2

Tn(x) = cos(n arccos ( x))
Recurrence formula:

T0(x) = 1

T1(x) = x

T2(x) = 2x2 � 1
T3(x) = 4x3 � 3x
T4(x) = 8x4 � 8x2 + 1

...

Tn+1(x) = 2x Tn(x)� Tn�1(x).
This recurrence formula follows from the recurrence relation for
cosines:

cos((n+ 1)θ) = 2 cos(θ) cos(nθ)� cos((n� 1)θ).
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Chebyshev Polynomials (cont.)

Again, Tn+1(x) = 2x Tn(x)� Tn�1(x).
For example, T0(x) = 0, T1(x) = x , T2(x) = 2x2 � 1, and
T3(x) = 4x3 � 2x2 � 2x2 + 1 = 4x3 � 4x2 + 1.
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Orthogonality of Chebyshev Polynomials (cont.)

Check the orthogonality
R 1
�1 Ti (x)Tj (x)w(x)dx = 0:

0 =
Z 1

�1
T0(x)T1(x)w(x)dx

=
Z 1

�1
1 � x �

�
1� x2

��1/2
dx =

Z 1

�1
1 �
�
1� x2

��1/2 dx2

2

=
y=x 2

1
2

Z 1

1
(1� y)�1/2 dy = 0.
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Discrete Orthogonality of Chebyshev Polynomials

Chebyshev polynomials satisfy a discrete orthogonality relation too.

That is, if xk (k = 1, ...,m) are the m zeros of Tm(x), and if i ,
j < m, then

m

∑
k=1

Ti (xk )Tj (xk ) =

8<:
0 if i 6= j
m if i = j = 0
m
2 if i = j 6= 0
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Discrete Orthogonality of Chebyshev Polynomials (cont.)

Example (1)

Let m = 3; T3(x) = 4x3 � 3x has 3 zeros: x1 = 0, x2 =
p
3
2 , x3 = �

p
3
2 .

3

∑
k=1

T0 (xk )T1 (xk ) = T0 (x1)
=1

T1 (x1)
=0

+T0 (x2)
=1

T1 (x2)
=
p
3
2

+T0 (x3)
=1

T1 (x3)
=�

p
3
2

= 0

3

∑
k=1

T1 (xk )T2 (xk ) = T1 (x1)
=0

T2 (x1)
=�1

+T1 (x2)
=
p
3
2

T2 (x2)
= 1
2

+T1 (x3)
=�

p
3
2

T2 (x3)
= 1
2

= 0

3

∑
k=1

T0 (xk )T0 (xk ) = T0 (x1)
=1

T0 (x1)
=1

+T 0 (x2)T0 (x2) +T 0 (x3)T0 (x3) = 3

3

∑
k=1

T1 (xk )T1 (xk ) = T1 (x1)
=0

T1 (x1)
=0

+T1 (x2)
=
p
3
2

T1 (x2)
=
p
3
2

+T1 (x3)
=�

p
3
2

T1 (x3)
=�

p
3
2

=
3
2

3

∑
k=1

T2 (xk )T2 (xk ) = T2 (x1)
=�1

T2 (x1)
=�1

+T2 (x2)
= 1
2

T2 (x2)
= 1
2

+T2 (x2)
= 1
2

T2 (x2)
= 1
2

=
3
2
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Chebyshev Polynomials and Runge Function

Using Chebyshev nodes to approximate the Runge function improves
approximation (but the result is not completely good).

5 4 3 2 1 0 1 2 3 4 5
0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2
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Chebyshev Polynomials for Interpolation

Let us illustrate the use of Chebyshev polynomials for interpolation by way
of example.

Example

Let f (x) be a function de�ned on an interval [�1, 1], and let us
approximate this function with a Chebyshev polynomial function of degree
two, i.e.,

f (x) � bf (x ; b) = b1 + b2x + b3 �2x2 � 1� .
We compute b � (b1, b2, b3) so that bf (�; b) and f coincide in three
extrema of Chebyshev polynomials, namely, f�1, 0, 1g,

bf (�1; b) = b1 + b2 � (�1) + b3
�
2 � (�1)2 � 1

�
= f (�1)bf (0; b) = b1 + b2 � 0+ b3

�
2 � 02 � 1

�
= f (0)bf (1; b) = b1 + b2 � 1+ b3

�
2 � 12 � 1

�
= f (1) .
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Chebyshev Polynomials for Interpolation (cont.)

Example (cont.)
This leads us to a system of three linear equations with three unknowns
that has a unique solution24 b1b2

b3

35 =
24 1 �1 1
1 0 �1
1 1 1

35�1 24 f (�1)f (0)
f (1)

35
=

24 1
4

1
2

1
4

� 1
2 0 1

2
1
4 � 1

2
1
4

3524 f (�1)f (0)
f (1)

35 =
264

f (�1)
4 + f (0)

2 + f (1)
4

� f (�1)
2 + f (1)

2
f (�1)
4 � f (0)

2 + f (1)
4

375 .
It is possible to use Chebyshev polynomials with other grids, but the
grid of extrema (or zeros) of Chebyshev polynomials is a perfect
match.
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Legendre Polynomials

D = [a, b] = [�1, 1]
w(x) = 1

Pn(x) =
(�1)n
2nn!

d n
dx n

�
(1� x2)n

�
Recurrence formula:

P0(x) = 1

P1(x) = x

Pn+1(x) =
2n+ 1
n+ 1

x Pn(x)�
n

n+ 1
Pn�1(x),
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Legendre Polynomials (cont.)
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Laguerre Polynomials

D = [a, b] = [0,∞)
w(x) = e�x

Ln(x) = ex
n!

d n
dx n (x

n e�x )

Recurrence formula:

L0(x) = 1

L1(x) = 1� x

Ln+1(x) =
1

n+ 1
(2n+ 1� x) Ln(x)�

n
n+ 1

Ln�1(x),
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Laguerre Polynomials (cont.)
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Hermite Polynomials

D = [a, b] = (�∞,∞)

w(x) = e�x
2

Hn(x) = (�1)nex
2 d n
dx n (e

�x 2)

Recurrence formula:

H0(x) = 1

H1(x) = 2x

Hn+1(x) = 2x Hn(x)� 2n Hn�1(x).
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Hermite Polynomials (cont.)

Note that the Hermite Polynomials are scaled down by a factor of n2 in
order to be �t on the same plot.
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General Orthogonal Polynomials

Few problems have the speci�c intervals and weights used in
de�nitions.

One must adapt interval through linear change of variables (COV).

If compact interval [a, b] is mapped to [�1, 1] by

y = �1+ 2x � a
b� a ,

where x 2 [a, b] and y 2 [�1, 1].
Then φi

�
�1+ 2 x�ab�a

�
are orthogonal over x 2 [a, b] with respect to

w
�
�1+ 2 x�ab�a

�
i¤ φi (y) are orthogonal over y 2 [�1, 1] w.r.t.

w (y).

There are also COV for mapping a half-in�nite interval [a,∞] to
[0,∞] or for mapping an in�nite [�∞,∞] to [�∞,∞].
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Approximation (Regression)
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Regression

When the number of data points n is larger than the number of
unknown coe¢ cients m, least-squares regression can be used to �nd
an approximation.

Data: (xi , yi ) , i = 1, .., n.

Objective: Find a function f (x ; β) with β 2 Rm , m � n, with
yi
.
= f (xi ), i = 1, .., n.

Least Squares regression:

min
β2Rm ∑ (yi � f (xi ; β))2
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Chebyshev Regression (Approximation)

Approximation function: degree m polynomial

Data: n data points, (xi , yi ) , i = 1, .., n are the n zeroes of Tn(x)
adapted to [a, b]

More data than unknown coe¢ cients: n > m+ 1

Objective: minimize unweighted sum of errors at nodes

Chebyshev interpolation is a special case of regression with
n = m+ 1.
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Orthogonal Polynomials

Approximation (assuming hφi , φi i �k φi k= 1):

f (x) �=
∞

∑
i=0
aiφi

ai = hf , φi i =
Z
D
f (x)φi (x)w(x)dx

To �nd ai�s, explicit formulas are derived to avoid OLS.
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Chebyshev Approximation Algorithm

General algorithm in R1:

Objective: Given f (x) de�ned on [a, b], �nd a m-point degree-n
Chebyshev polynomial approximation p(x)
Step 1: Compute the m � n+ 1 Chebyshev interpolation nodes on
[�1, 1]:

zk = �cos
�
2k � 1
2m

π

�
, k = 1, � � � ,m.

Step 2: Adjust nodes to [a, b] interval (back transformation, i.e.,
zk 2 [�1, 1] and xk 2 [a, b]:

xk = (zk + 1)
�
b� a
2

�
+ a, k = 1, ...,m.

Step 3: Evaluate f at approximation nodes:

wk = f (xk ) , k = 1, � � � ,m,

where wk are values of the function f .
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Chebyshev Approximation Algorithm (cont.)

Step 4: Compute Chebyshev coe¢ cients, ai , i = 0, � � � , n :

ai =
∑m
k=1 wkTi (zk )

∑m
k=1 Ti (zk )2

to arrive at approximation of f (x , y) on [a, b]:

p(x) =
n

∑
i=0
aiTi

�
2
x � a
b� a � 1

�
Alternatively, one can solve for a using OLS formula
a = (X 0X )�1 X 0y where

X =

0@ T0 (z1) ... Tn (z1)
... ...

T0 (zm) ... Tn (zm)

1A , y =
0@ f (x1)

...
f (xm)

1A
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Chebyshev Approximation Algorithm (cont.)

For example, in our Example 1, we have

X 0X =

0BBBBBBBB@

3

∑
k=1

T0 (zk )T0 (zk )
3

∑
k=1

T0 (zk )T1 (zk )
3

∑
k=1

T0 (zk )T2 (zk )

3

∑
k=1

T0 (zk )T1 (zk )
3

∑
k=1

T1 (zk )T1 (zk )
3

∑
k=1

T2 (zk )T1 (zk )

3

∑
k=1

T0 (zk )T2 (zk )
3

∑
k=1

T2 (zk )T1 (zk )
3

∑
k=1

T2 (zk )T2 (zk )

1CCCCCCCCA
Note that (X 0X )�1 is a diagonal matrix due to the discrete
orthogonality relation:

X 0X =

0@ 3 0 0
0 3

2 0
0 0 3

2

1A
In general, ai =

� 1
m ∑m

k=1 wkTi (zk ) for i = 0
2
m ∑m

k=1 wkTi (zk )for i � 1
The Graduate Center, CUNY (2020) Approximation and interpolation Lilia Maliar 68 / 128



Chebyshev Approximation Algorithm: Example

We are given f (x) de�ned on [a, b]. Let [a, b] = [1, 2] and f (x) = ln (x).

Step 1: Compute the zeros of Chebyshev polynomials, zk 2 [�1, 1],
from

zk = �cos
�
2k � 1
2m

π

�
, k = 1, � � � ,m.

For m = 3: k = 1, z1 = �0.87; k = 2, z2 = 0; k = 3, z3 = 0.87.
Step 2: Adjust nodes to [1, 2] interval:

x1 = (�0.87+ 1)
�
2� 1
2

�
+ 1 = 1.07,

x2 = (0+ 1)
�
2� 1
2

�
+ 1 =

3
2
,

x3 = (0.87+ 1)
�
2� 1
2

�
+ 1 = 1.93.
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Chebyshev Approximation Algorithm: Example (cont.)
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Chebyshev Approximation Algorithm: Example (cont.)

Step 3: Evaluate f at approximation nodes:

w1 = ln x1 = ln (1.07) ,

w2 = ln x2 = ln
�
3
2

�
,

w3 = ln x3 = ln (1.93) .
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Chebyshev Approximation Algorithm: Example (cont.)

Step 4: Compute Chebyshev coe¢ cients, a0, a1, a2 on T0 (z) = 1,
T1 (z) = z , T2 (z) = 2z2 � 1 in p(x):

a0=
w1T0(z1) + w2T0(z2) + w3T0(z3)

T0(z1)
2+T 0(z2)

2+T 0(z3)
2

=
ln (1.07) �1+ ln

� 3
2

�
�1+ ln (1.93) �1

1+ 1+ 1
= 0.38

a1=
w1T1(z1) + w2T1(z2) + w3T1(z3)

T1(z1)
2+T 1(z2)

2+T 1(z3)
2

=
ln (1.07) � (�0.87) + ln

� 3
2

�
�0+ ln (1.93) � (0.87)

(�0.87)2 +0+ (0.87)2
= 2

a2=
w1T2(z1) + w2T2(z2) + w3T2(z3)

T2(z1)
2+T 2(z2)

2+T 2(z3)
2 =...= 0.389
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Chebyshev Approximation Algorithm: Example (cont.)

Form the polynomial function:

p(x) = a0T0

�
2
x � 1
2� 1 � 1

�
| {z }

=1

+ a1T1

�
2
x � 1
2� 1 � 1

�

+a2T2

�
2
x � 1
2� 1 � 1

�
= 0.38+ 2 � T1 [2 (x � 1)� 1] + 0.389 �

�
[2 (x � 1)� 1]2 � 1

�
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Minmax Approximation

Data: (xi , yi ) , i = 1, .., n.

Objective: L∞ �t

min
β2Rm

max
i
kyi � f (xi ; β)k ,

where f (xi ; β) is a polynomial function with β being parameters.

8i , compute yi � f (xi ; β) = error of approximation.
Find a maximum error across all i .

Choose such a β that minimizes such maximum error.
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Chebyshev Minmax Property

Theorem

Suppose f : [�1, 1]! R is C k for some k � 1, and let In be the n-point
(degree n� 1) polynomial interpolation of f based at the zeroes of Tn(x).
Then

k f � In k∞�
�
2
π
log(n+ 1) + 1

�
� (n� k)!

n!

�π

2

�k �b� a
2

�k
k f (k ) k∞

Decompose the error bound
2
π log(n+ 1): grows very slowly in n; ignore it�

π
2

�k � b�a
2

�k
: independent of n and f

k f (k ) k∞: a measure of k�th order curvature
(n�k )!
n! : essentially 1

nk (decreases very rapidly).
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Chebyshev Minmax Property (cont.)

Thus, Chebyshev interpolation converges in L∞, essentially achieves
minmax approximation, easy to compute.

Caution

does not necessarily approximate f 0

if k f (k ) k∞ is large then the error may be large for moderate n.

Chebyshev polynomials do not guarantee good approximations (they
are wiggly) but they guarantee accuracy bounds.
�With other polynomials, one cannot get this error bounds.
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Splines
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Spline Interpolation

For some cases,
polynomials can lead to
erroneous results because
of round o¤ error and
overshoot.

Alternative approach is to
apply lower-order
polynomials to subsets of
data points. Such
connecting polynomials
are called spline functions.
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Spline in economics

Splines are implemented
in all computer languages.

Splines are the best choice
in economic models with
�borrowing constraints;
�kinks (due to, e.g., zero
lower bound on nominal
interest rates);
� few state variables.
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Splines

Piecewise interpolation: does not �t a single function to all the data
but separate functions.

Splines: piecewise interpolation of a particular form.

Namely, spline is a smooth function:

it is piecewise polynomial;
smooth where the polynomial pieces connect.
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Spline Interpolation
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Spline Interpolation (cont.)

(a) Linear spline
�Derivatives are not
continuous
�Not smooth

(b) Quadratic spline
�Continuous 1st
derivatives

(c) Cubic spline
�Continuous
�1st & 2nd derivatives
�Smoother
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Exercise

Which of the following is a quadratic spline?
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Exercise: Solution
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De�nition of splines

De�nition
A function s(x) on [a, b] is a spline of order n i¤

1 s is C n�2 on [a, b], and
2 there is a grid of points (called nodes) a = x0 < x1 < � � � < xm = b
such that s(x) is a polynomial of degree n� 1 on each subinterval
[xi , xi+1], i = 0, . . . ,m� 1.

Note: an order 2 spline is the piecewise linear interpolant.
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Quadratic Splines

Spline of order 3.
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Quadratic Splines (cont.)

A quadratic spline is a continuously di¤erentiable piecewise quadratic
function (spline of order 3).

A function s is called a spline of order 3 if
�The domain of s is an interval [a, b].
� s and s 0 are continuous functions on [a, b].
�There are points xi (called knots) such that
a = x0 < x1 < . . . < xn = b and s is a polynomial of degree at most
2 on each subinterval [xi , xi+1].
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Quadratic Interpolation (3n conditions)

1. Interpolating conditions

On each sub interval [xi , xi+1], the function si (x) must satisfy the
conditions

si (xi ) = f (xi ) and si (xi+1) = f (xi+1).

These conditions yield 2n equations

aix2i + bi xi + ci = f (xi ),

aix2i+1 + bi xi+1 + ci = f (xi+1),

i = 0, ..., n� 1.
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Quadratic Interpolation (3n conditions) (cont.)

2. Continuous �rst derivatives

The �rst derivatives at the interior knots must be equal.

This adds n� 1 more equations:

2aixi + bi = 2ai+1xi + bi+1, i = 1, ..., n� 1.

We now have 2n+ (n� 1) = 3n� 1 equations.
We need one more equation.
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Quadratic Interpolation (3n conditions) (cont.)

3. Assume the 2nd derivatives is zero at the �rst point.

This gives us the last condition as

2a1 = 0 =) a1 = 0

With this condition selected, the �rst two points are connected by a
straight line.

Note: This is not the only possible choice or assumption we can make.
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Example

Fit quadratic splines to the following data points:

i 0 1 2 3
xi 3 4.5 7 9
f(xi) 2.5 1 2.5 0.5
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Example (Solution)

1. Interpolating conditions:

5.0981
5.2749
5.2749
0.15.425.20
0.15.425.20
5.239

333

333

222

222

111

111

=++
=++
=++
=++
=++
=++

cba
cba
cba
cba
cba
cba

2. Continuous �rst derivatives:

3322

2211

1414
99

baba
baba

+=+
+=+

3. Assume the 2nd derivatives is zero at the �rst point

a1 = 0
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Example (Solution) (cont.)

We can write the system of equations in matrix form as



































=





































































−−
−−

0
0
0
5.0
5.2
5.2

1
1
5.2

000000001
01140114000
000019019
1981000000
1749000000
0001749000
00015.425.20000
00000015.425.20
000000139

3

3

3

2

2

2

1

1

1

c
b
a
c
b
a
c
b
a

Notice that the coe¢ cient matrix is sparse.
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Example (Solution) (cont.)

The system of equations can be solved to yield

a1 = 0 b1 = �1 c1 = 5.5
a1 = 0.64 b1 = �6.76 c1 = 18.46
a1 = �1.6 b1 = 24.6 c1 = �91.3

Thus, the quadratic spline that interpolates the given points is

s(x) =

8<:
�x + 5.5 x 2 [3, 4.5]

0.64x2 � 6.76x + 18.46 x 2 [4.5, 7]
�1.6x2 + 24.6x � 91.3 x 2 [7, 9]
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Cubic Splines

Lagrange data set: f(xi , yi ) j i = 0, � � � , ng.
Nodes: The xi are the nodes of the spline.
Functional form: s(x) = ai + bi x + ci x2 + di x3 on [xi�1, xi ].
Unknowns: 4n unknown coe¢ cients, ai , bi , ci , di , i = 1, � � � n.
Conditions:
�2n interpolation and continuity conditions:

yi =ai + bixi + cix2i + dix
3
i ,

i = 1, ..., n

yi =ai+1 + bi+1xi + ci+1x2i + di+1x
3
i ,

i = 0, ..., n� 1

�2n� 2 conditions from C 2 at the interior: for i = 1, � � � n� 1,

bi + 2cixi + 3dix2i = bi+1 + 2ci+1 xi + 3di+1x2i
2ci + 6dixi = 2ci+1 + 6di+1xi
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Cubic Splines (cont.)

Equations (1�4) are 4n� 2 linear equations in 4n unknown
parameters, a, b, c , and d .

Construct 2 side conditions

natural spline: s 0(x0) = 0 = s 0(xn).
Hermite spline : s 0(x0) = y 00 and s

0(xn) = y 0n (assumes extra data)

Solve system by special (sparse) methods.
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Splines: Example

Let i = 0, 1, 2, 3 (4 points): f(x0, y0) , (x1, y1) , (x2, y2) , (x3, y3)g.
For example, the points are f(0, 0) , (1, 1) , (2, 4) , (3, 5)g.
The 2n = 6 interpolation and continuity equations are:

i = 1, 2, 3

y1 = a1 + b1x1 + c1x
2
1 + d1x

3
1

y2 = a2 + b2x2 + c2x
2
2 + d2x

3
2

y3 = a3 + b3x3 + c3x
2
3 + d3x

3
3

i = 0, 1, 2

y0 = a1 + b1x0 + c1x
2
0 + d1x

3
0

y1 = a2 + b2x1 + c2x
2
1 + d2x

3
1

y2 = a3 + b3x2 + c3x
2
2 + d3x

3
2
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Splines: Example (cont.)

The 2n� 2 conditions at the interior for i = 1, 2
�rst derivatives match

b1 + 2c1x1 + 3d1x
2
1 = b2 + 2c2x1 + 3d2x

2
1

b2 + 2c2x2 + 3d2x2 = b3 + 2c3x2 + 3d3x
2
2

second derivatives match

2c1 + 6d1x1 = 2c2 + 6d2x1
2c2 + 6d2x2 = 2c3 + 6d3x2

Terminal conditions:

b1 + 2c1x0 + 3d1x20 = 0

b3 + 2c3x3 + 3d3x23 = 0.
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Multidimensional Methods

The Graduate Center, CUNY (2020) Approximation and interpolation Lilia Maliar 99 / 128



Multidimensional Methods

So far, we study interpolation and approximation in one dimension.

But the problems we study in economics have multiple dimensions.

For example, for our growth model, we need to approximate /
interpolate decision function of 2 state variables k 0 = K (k, θ).

We now show how to extend our one-dimensional analysis to multiple
dimension.
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Interpolation in 2d

Interpolation in 2d passes through all grid points
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Approximation in 2d

Approximation in 2d passes "the best" plane through the given points, for
example, least squares
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Multidimensional Methods

Data: D � f(xi , zi )gNi=1 � Rn+m , where xi 2 Rn and zi 2 Rm

Objective: �nd f : Rn ! Rm such that zi = f (xi ).

Need to choose nodes carefully.

Task: Find combinations of interpolation nodes and spanning
functions to produce a nonsingular (well-conditioned) interpolation
matrix.
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Multidimensional Methods (cont.)

Example that DOES NOT work

Interpolation nodes:

fP1,P2,P3,P4g � f(1, 0), (�1, 0), (0, 1), (0,�1)g

Use linear combinations of f1, x , y , xyg.
Data: zi = f (Pi ), i = 1, 2, 3, 4.
Interpolation form f (x , y) = a+ bx + cy + dxy .
For example, P1 = (x , y) = (1, 0).
z1 = f (1, 0) = a+ b � 1+ c � 0+ d � 1 � 0 = a+ b.
De�ning conditions form the singular system0BB@

1 1 0 0
1 �1 0 0
1 0 1 0
1 0 �1 0

1CCA
0BB@
a
b
c
d

1CCA =

0BB@
z1
z2
z3
z4

1CCA .
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Tensor Products

General Approach:

If A and B are sets of functions over x 2 Rn, y 2 Rm , their tensor
product is

A
 B = fϕ(x)ψ(y) j ϕ 2 A, ψ 2 Bg.
Given a basis for functions of xi , Φi = fϕik (xi )g∞

k=0, the n-fold tensor
product basis for functions of (x1, x2, . . . , xn) is

Φ =

(
n

∏
i=1

ϕiki (xi ) j ki = 0, 1, � � � , i = 1, . . . , n

)
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Tensor Products (cont.)

Tensor products of unidimensional Chebyshev polynomial basis for the
two-dimensional case

Dimension y
Dimension x 1 y 2y2 � 1
1 1 y 2y2 � 1
x x xy x

�
2y2 � 1

�
2x2 � 1 2x2 � 1

�
2x2 � 1

�
y

�
2x2 � 1

� �
2y2 � 1

�
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Tensor products (cont.)

Orthogonal polynomials and Least-square approximation

Suppose Φi are orthogonal with respect to wi (xi ) over [ai , bi ]

Least squares approximation of f (x1, � � � , xn) in Φ is

∑
ϕ2Φ

hϕ, f i
hϕ, ϕi ϕ,

where the product weighting function

W (x1, x2, � � � , xn) =
n

∏
i=1

wi (xi )

de�nes h�, �i over D = ∏i [ai , bi ] in

hf (x), g(x)i =
Z
D
f (x)g(x)W (x)dx .
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Example: Second-order Chebyshev polynomial

Data: ((xi , yi ) , f (xi , yi )).
(xi , yi ) 2 f(1, 1) , (1,�1) , (�1, 1) , (�1,�1)g.
f (xi , yi )2 ff (1, 1) , f (1,�1) , f (�1, 1) , f (�1,�1)g
T0 (1)T0 (1) T1 (1)T0 (1) T0 (1)T1 (1) T1 (1)T1 (1)
T0 (1)T0 (�1) T1 (1)T0 (�1) T0 (1)T1 (�1) T1 (1)T1 (�1)
T0 (�1)T0 (1) T1 (�1)T0 (1) T0 (�1)T1 (1) T1 (�1)T1 (1)
T0 (�1)T0 (�1) T1 (�1)T0 (�1) T0 (�1)T1 (�1) T1 (�1)T1 (�1)| {z }

A

We are to �nd b = (b1, b2, b3, b4) by solving
Ab = [f (1, 1) , f (1,�1) , f (�1, 1) , f (�1,�1)]>.
For Chebyshev polynomials, evaluate A in the corresponding T0 and T1 to
get 0BB@

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

1CCA
0BB@
b1
b2
b3
b4

1CCA =

0BB@
f (1, 1)
f (1,�1)
f (�1, 1)
f (�1,�1)

1CCA .
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Algorithm: Chebyshev Approximation Algorithm

Algorithm in R2

Objective: Given f (x , y) de�ned on [a, b]� [c , d ], �nd the m-point
degree n Chebyshev polynomial approximation p(x , y)

Step 1: Compute the m � n+ 1 Chebyshev interpolation nodes on
[�1, 1]:

zk = �cos
�
2k � 1
2m

π

�
, k = 1, � � � ,m.

Step 2: Adjust nodes to [a, b] and [c , d ] intervals:

xk = (zk + 1)
�
b� a
2

�
+ a, k = 1, ...,m.

yk = (zk + 1)
�
d � c
2

�
+ c , k = 1, ...,m.
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Algorithm: Chebyshev Approximation Algorithm (cont.)

Step 3: Evaluate f at approximation nodes:

wk ,` = f (xk , y`) , k = 1, � � � ,m. , ` = 1, � � � ,m.

Step 4: Compute Chebyshev coe¢ cients, aij , i , j = 0, � � � , n :

aij =
∑m
k=1 ∑m

`=1 wk ,`Ti (zk )Tj (z`)
(∑m

k=1 Ti (zk )2) (∑
m
`=1 Tj (z`)2)

to arrive at approximation of f (x , y) on [a, b]� [c , d ]:

p(x , y) =
n

∑
i=0

n

∑
j=0
aijTi

�
2
x � a
b� a � 1

�
Tj

�
2
y � c
d � c � 1

�
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Complete polynomials

Motivation: Tensor product contains all possible tensor terms
A
 B = fϕ(x)ψ(y) j ϕ 2 A, ψ 2 Bg but not all terms are equally
important.
Taylor�s theorem for Rn produce complete polynomials by removing
higher-order less important terms

f (x)
.
= f (x0)

+∑n
i=1

∂f
∂xi
(x0) (xi � x0i )

+ 1
2 ∑n

i1=1 ∑n
i2=1

∂2f
∂xi1 ∂xik

(x0)(xi1 � x0i1)(xik � x
0
ik
)...

For k = 1, Taylor�s theorem for n dimensions used the linear functions

Pn1 � f1, x1, x2, � � � , xng
For k = 2, Taylor�s theorem uses

Pn2 � Pn1 [ fx21 , � � � , x2n , x1x2, x1x3, � � � , xn�1xng.
Pn2 contains some product terms, but not all; for example, x1x2x3 is
not in Pn2 .
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Tensor Products versus Complete Polynomials

Tensor products of unidimensional Chebyshev polynomial basis for 2d case

Dimension y
Dimension x 1 y 2y2 � 1

1 1 y 2y2 � 1
x x xy x

�
2y2 � 1

�
2x2 � 1 2x2 � 1

�
2x2 � 1

�
y

�
2x2 � 1

� �
2y2 � 1

�
Complete 2d Chebyshev polynomial basis

Dimension y
Dimension x 1 y 2y2 � 1

1 1 y 2y2 � 1
x x xy

2x2 � 1 2x2 � 1
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Complete polynomial (cont.)

In general, the kth degree expansion uses the complete set of
polynomials of total degree k in n variables.

Pnk � fx i11 � � � x inn j
n

∑
`=1

i` � k, 0 � i1, � � � , ing

Complete orthogonal basis includes only terms with total degree k or
less.
Sizes of alternative bases

degree k Pnk Tensor Prod.
2 1+ n+ n(n+ 1)/2 3n

3 1+ n+ n(n+1)
2 + n2 + n(n�1)(n�2)

6 4n

Complete polynomial bases contains fewer elements than tensor
products.
Asymptotically, complete polynomial bases are as good as tensor
products.
For smooth n-dimensional functions, complete polynomials are more
e¢ cient approximations
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Complete polynomials (cont.)

Construction

Compute tensor product approximation, as in Algorithm above.

Drop terms not in complete polynomial basis (or, just compute
coe¢ cients for polynomials in complete basis).

Complete polynomial version is faster to compute since it involves
fewer terms
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Multidimensional splines

One-dimensional splines can be extended to two and higher
dimensions using tensor-product approaches.

The multi-dimensional splines are more cumbersome to describe, in
particular, connecting smoothly the values on the boundaries.

However, multi-dimensional splies are available and easy to use in
many languages.
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Summary

Interpolation versus regression

Lagrange data uses level information only
Regression uses more points than coe¢ cients

One-dimensional problems

Smooth approximations
�Orthogonal polynomial methods for nonperiodic functions
Less smooth approximations
�Splines

Multidimensional data

Tensor product methods have curse of dimension
Complete polynomials are more e¢ cient

Tensor product approaches are subject to severe curse of
dimensionality.
Later, we will show how to deal with that: Smolyak sparse grids,
dimensionality reduction, ergodic-set methods, machine learning
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Appendix: Linear Interpolation
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Linear Interpolation

Recall: interpolation is when we �nd a function from an
n-dimensional family of functions which exactly �ts n data items.

An interpolation method starts with discrete data, and de�nes a
continuos function.

Linear interpolation: draw a straight line between two neighboring
points and return the appropriate point along that line.

Given a collection of data (xi , yi ), i = 1, ..., n, for any interval
x 2 [xi�1, xi ], we can compute y .
It delivers a collection of approximations for each interval.

It can perform badly for non-linear functions.
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Linear interpolation: Example

Consider two data points, (x1, y1) and (x2, y2).

Slope =
y � y1
x � x1

=
y2 � y1
x2 � x1

� b.

Then, y = a+ bx , so that

a = y1 � bx1 = y1 �
y2 � y1
x2 � x1

� x1 =
x2y1 � x1y2
x2 � x1

y =
x2y1 � x1y2
x2 � x1

+
y2 � y1
x2 � x1

� x .
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Linear interpolation: Example (cont.)
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Appendix: Hermite Interpolation
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Hermite Polynomial Interpolation

Suppose we want to �nd polynomial that �ts both the slope and the
level of the function that we want to approximate.

Data: (xi , yi , y 0i ) , i = 1, .., n.

Objective: Find a polynomial of degree 2n� 1, p(x), which agrees
with the data, i.e.,

yi = h(xi ), i = 1, .., n

y 0i = h0(xi ), i = 1, .., n,

where h0(�) is a derivative of polynomial.
Result: If the (xi ) are distinct, there is a unique interpolating
polynomial.
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Hermite Polynomial Interpolation: Example

Consider a third-degree polynomial:

h (x) = H3x3 +H2x2 +H1x +H0

Suppose that we want to match 2 points, (x0, y0) and (x1, y1) and
that we have 2 derivatives, y 00, y

0
1, at the points.

We can compute 4 coe¢ cients, H3, H2, H1, H0 by solving:

h (x0) = H3x30 +H2x
2
0 +H1x0 +H0 = y0,

h (x1) = H3x31 +H2x
2
1 +H1x1 +H0 = y1,

h0 (x0) = 3H3x20 + 2H2x0 +H1 = y
0
0,

h0 (x1) = 3H3x21 + 2H2x1 +H1 = y
0
1.

Cai and Judd, (2015). "Dynamic Programming with Hermite
Approximation".
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Appendix: Trigonometric Polynomials
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Trigonometric Polynomials and Fourier Series

fcos(nθ), sin(mθ)g are orthogonal on [�π,π].

If f is continuous on [�π,π] and f (�π) = f (π), then

f (θ) =
1
2
a0 +

∞

∑
n=1

an cos(nθ) +
∞

∑
n=1

bn sin(nθ) (6)

where the Fourier coe¢ cients are

an =
1
π

Z π

�π
f (θ) cos(nθ)dθ

bn =
1
π

Z π

�π
f (θ) sin(nθ) dθ,
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Trigonometric Polynomials and Fourier Series (cont.)

A trigonometric polynomial is any function of the form in (6).

Convergence is uniform for periodic functions.

Excellent for approximating a smooth periodic function, i.e.,
f : R ! R such that for some ω, f (x) = f (x +ω).

Not good for nonperiodic functions

Convergence is not uniform
Many terms are needed
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Appendix: B-splines
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B-splines

Put knots at fx�k , � � � , x�1, x0, � � � , xng.
Order 1 splines: step function interpolation spanned by

B0i (x) =

8<:
0, x < xi ,
1, xi � x < xi+1,
0, xi+1 � x ,

Order 2 splines: piecewise linear interpolation and are spanned by

B1i (x) =

8>>>>><>>>>>:

0 , x � xi or x � xi+2,

x�xi
xi+1�xi , xi � x � xi+1,

xi+2�x
xi+2�xi+1 , xi+1 � x � xi+2.

The B1i -spline is the tent function with peak at xi+1 and is zero for
x � xi and x � xi+2.
Both B0 and B1 splines form cardinal bases for interpolation at the
xi�s.
Higher-order B-splines are de�ned by the recursive relation

Bki (x) =

�
x � xi
xi+k � xi

�
Bk�1i (x)

+

�
xi+k+1 � x
xi+k+1 � xi+1

�
Bk�1i+1 (x)
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