Approximation and Interpolation of Functions

ECON-81500, Part I

Lilia Maliar

The Graduate Center, CUNY (2020)

Approximation and interpolation

Lilia Maliar 1 / 128

Motivation: Solving a Dynamic Economic Model

Neoclassical stochastic growth model with inelastic labor supply

• A one-agent stochastic growth model:

$$\max_{\{k_{t+1},c_t\}_{t=0}^{\infty}} E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$
s.t. $c_t + k_{t+1} = (1 - \delta) k_t + \theta_t f(k_t)$,
 $\ln \theta_{t+1} = \rho \ln \theta_t + \epsilon_{t+1}$, $\epsilon_{t+1} \sim \mathcal{N}(0, \sigma^2)$,
initial condition (k_0, θ_0) is given;
 $f(\cdot) = \text{production function}$;
 $c_t = \text{consumption}$; $k_{t+1} = \text{capital}$; $\theta_t = \text{productivity level}$;
 $\beta = \text{discount factor}$; $\delta = \text{depreciation rate of capital}$;
 $\rho = \text{autocorrelation coefficient of the productivity level}$;
 $\sigma = \text{standard deviation of the productivity shock } \epsilon_{t+1}$.
• The agent does not value leisure and supplies to the market all her

time endowment \implies A model with inelastic labor supply.

Ct β ρ σ

• We assume that a solution to the model is interior (satisfies the first-order conditions, FOCs):

$$u_{1}(c_{t}) = \beta E_{t} \left[u_{1}(c_{t+1}) \left(1 - \delta + \theta_{t+1} f_{1}(k_{t+1}) \right) \right], \qquad (1)$$

$$c_{t} + k_{t+1} = (1 - \delta) k_{t} + \theta_{t} f(k_{t}). \qquad (2)$$

- FOC (1) is the *Euler equation* or inter-temporal FOC (relates variables of different periods).
- Budget constraint (2) is intra-temporal (relates variables within the same period).

• *Objective:* to find a recursive Markov solution in which the decisions on next-period capital and consumption are made according to some time invariant state-contingent functions

$$k' = K(k, \theta)$$
, $c = C(k, \theta)$.

• Note that if the capital decision function K is known, the consumption decision function follows from the budget constraint:

$$C(k,\theta) = (1-\delta) k_t + \theta_t f(k_t) - K(k,\theta).$$

Projection-style Euler equation method, e.g., Judd (1992)

- A flexible functional form for approximation $\widehat{K}(k, \theta; b) \approx K(k, \theta)$, where b is a vector of parameters, for example, $k' = b_0 + b_1 k + b_2 \theta$.
- A grid of points $\{k_m, \theta_m\}_{m=1,...,M}$ on which K is approximated:

• Deterministic integration methods approximate integrals with weighted average $\int_{-\infty}^{\infty} G(\epsilon) w(\epsilon) d\epsilon \approx \sum_{j=1}^{J} \omega_j G(\epsilon_j)$,

(EEM): A global projection-style Euler equation method.

Step 1. Choose functional form $\widehat{K}(\cdot, b)$ for representing K, where b is the coefficients vector. Choose a grid $\{k_m, \theta_m\}_{m=1,...,M}$ on which \widehat{K} is constructed. Step 2. Choose nodes, ϵ_j , and weights, ω_j , j = 1, ..., J, for approximating integrals. Compute next-period productivity $\theta'_{m,j} = \theta^{\rho}_m \exp(\epsilon_j)$ for all j, m. Step 3. Solve for b that approximately satisfies the model's equations:

$$u_{1}(c_{m}) = \beta \sum_{j=1}^{J} \omega_{j} \cdot \left[u_{1}\left(c_{m,j}'\right) \left(1 - \delta + \theta_{m,j}'f_{1}\left(k_{m}'\right)\right) \right],$$

$$c_{m} = (1 - \delta) k_{m} + \theta_{m}f\left(k_{m}\right) - k_{m}'$$

$$c_{m,j}' = (1 - \delta) k_{m}' + \theta_{m,j}'f\left(k_{m}'\right) - k_{m,j}''$$

We have J + 2 equations and 2J + 2 unknowns $k'_m, c_m, \left\{k''_{m,j}, c'_{m,j}\right\}_{j=1}^J$ \Rightarrow the solution is under-determined.

Counting equations and unknowns

We use **stationarity**: the same decision function $\widehat{K}(\cdot, b)$ is used both at t and t + 1:

- in the current period: $k'_m = \widehat{K}(k_m, \theta_m; b);$
- in J possible future states: $k''_{m,j} = \widehat{K}(k'_m, \theta'_{m,j}; b)$, where future shocks are $\theta'_{m,j} = \theta^{\rho}_m \exp(\epsilon_j)$.

$$u_{1}(c_{m}) = \beta \sum_{j=1}^{J} \omega_{j} \left[u_{1}(c'_{m,j}) \left(1 - \delta + \theta'_{m,j} f_{1}(k'_{m}) \right) \right], \quad (3)$$

$$c_m = (1 - \delta) k_m + \theta_m f(k_m) - k'_m, \qquad (4)$$

$$c'_{m,j} = (1-\delta) k'_m + \theta'_{m,j} f\left(k'_m\right) - \widehat{K}\left(k'_m, \theta'_{m,j}; b\right).$$
(5)

• J + 2 equations and J + 2 unknowns: $c_m, k'_m, \left\{c'_{m,j}\right\}_{j=1}^J \Rightarrow$ the solution is exactly determined.

- Substitute $c'_{m,j}$ from (5) into (3).
- Substitute c_m from (4) into (3).
- Substitute $k_m' = \widehat{K}(k_m, \theta_m; b)$ into the resulting equation.

∜

- Get one equation in which the vector of coefficients *b* is the only unknown.
- If $b = (b_1, b_2)$, we need just two grid points, m = 1, 2 to exactly identify b.

- How to approximate the unknown decision functions?
- What families of functions to use for approximation?
- Possible choices: polynomials, splines, trigonometric functions, etc.
- Today, we will only talk about low-dimensional cases (one or few variables).
- High dimensional approximation and interpolation will be studied later (Smolyal sparse grids, ergodic-set methods, model reduction, machine learning, etc.).

Approximation and Interpolation in Numerical Analysis

General idea of approximation

- We consider a generic approximation problem (not in relation to solving dynamic economic models).
- Objective: Given data about a function f(x), construct a parametric function $\hat{f}(x, b)$ that approximately represents f(x), where b is a vector of the parameters.
- Why could we need such an approximation?
 - Maybe f(x) is known only in a finite set of points x_i, i = 1, ..., n or in some interval, y_i = f(x_i).
 - Maybe f(x) is costly to evaluate, so we evaluate it in few points and approximate it in other points.

Questions:

- What data should be produced and used (assuming that we have control over where to place x_i, i = 1, ..., n)?
- What parametric *family* of functions (i.e., $\hat{f}(x, b)$) should be used?
- How do we construct the approximation?

• Formally, the studied problem can be represented as

$$\min_{b} \left\| f(x) - \widehat{f}(x, b) \right\|,\,$$

where $\|\cdot\|$ is a norm for measuring approximation errors.

 There many classes of functions that can be used for approximation but we focus on a specific case of linear (in coefficients) approximations

$$\widehat{f}(x,b)=\sum_{j=1}^{m}b_{j}\phi_{j}\left(x
ight)$$
 ,

where $\phi_1(x)$, ..., $\phi_m(x)$ are basis functions and b_1 , ..., b_m are the corresponding coefficients.

• If the number of points is the same as the number of coefficients n = m, we have an *interpolation problem*

$$\begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix} = \begin{bmatrix} \phi_1(x_1) & \dots & \phi_n(x_1) \\ & \dots & \\ \phi_1(x_n) & \dots & \phi_n(x_n) \end{bmatrix} \begin{bmatrix} b_1 \\ \dots \\ b_n \end{bmatrix}$$

$$y = \Phi b$$
.

Provided that the basis functions are linearly independent, we find a unique inverse solution for the parameters $b = \Phi^{-1}y$.

• By construction the interpolant $\hat{f}(x, b)$ pass through all the data points.

• If the number of points is larger than the number of coefficients n > m, we have an *approximation problem*

$$\begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix} = \begin{bmatrix} \phi_1(x_1) & \dots & \phi_m(x_1) \\ \dots & \dots & \\ \phi_1(x_n) & \dots & \phi_m(x_n) \end{bmatrix} \begin{bmatrix} b_1 \\ \dots \\ b_m \end{bmatrix},$$

$$y = \Phi b.$$

 Generally, m free parameters do not allow the interpolant to pass through all n points, therefore the left and right sides do not coincide. • In this case, we choose the coefficients to minimize the approximation error according to some norm, such as least squares.

$$\min_{b_1,\ldots,b_m}\sum_{i=1}^n\left(y_i-\sum_{j=1}^m b_j\phi_j(x_i)\right)^2,$$

$$\min_{b} \left(y - \Phi b \right)' \left(y - \Phi b \right).$$

- This is a familiar linear regression and b is the usual least squares coefficient $b = (\Phi'\Phi)^{-1} \Phi' y$.
- Unlike interpolant, the approximating function $\hat{f}(x, b)$ does not passes through the data points.

The Graduate Center, CUNY (2020)

Approximation and interpolation

Lilia Maliar 17 / 128

Interpolation versus Approximation

• *Interpolation:* find a function from an *n*-dimensional family of functions which exactly fits *n* data points.

- Approximation (rather than interpolation): there may be errors in the original measurements.
 - We don't have to interpolate original data points exactly.
 - We only need to approximate them.

- Curve is constrained to pass through all control points.
- Piecewise linear: curve defined by multiple segments (linear).
- Piecewise polynomial: segments defined by polynomial functions; most common polynomial used is cubic (3rd order).

Extrapolation

- Interpolation: given a sequence of n unique points, (x_i, y_i), we want to construct a function f(x) that passes through all the given points so that we can use f(x) to estimate the value of y for any x inside the range of the known base points.
- Extrapolation: the process of estimating a value of f(x) that lies outside the range of the known base points.

Interpolation is inside range; **extra**polation is outside.

Lilia Maliar 20 / 128

Extrapolation: practical example

Example

Suppose we approximate a capital policy function K with an ordinary polynomial function

$$K(\cdot, b) = b_0 + b_1k + b_2a + \ldots + b_ma^p$$

on a set of simulated points $\{k_t, a_t\}, t = 1, ..., T$.

– Generally, we have more simulated points T than the polynomial coefficients in b.

- We compute the coefficients using a regression method. This is an example of approximation problem.

Example

Consider an algorithm for solving an optimal growth model on the grid $\{k_i, a_i\}, i = 1, ..., m$.

- Suppose we defined a capital policy function for each points of the grid, i.e., we have $k'_i = K(k_i, a_i)$.

– To implement iteration on the Euler equation, we need to compute future capital $k_i'' = K(k_i', a_i')$.

- To do so, we need a method that allows to infer K(k, a) for any point (k, a) on the domain given the value of this function in a finite number of grid points.

- This is an example of interpolation problem.

- 1. Polynomial Interpolation.
- 2. Orthogonal Polynomials.
- 3. Approximation (Regression).
- 4. Splines.
- 5. Multidimensional Methods.

Polynomial Interpolation

2

Polynomial Interpolation

- Any continuous function can be represented as a sum of monomials,
 xⁿ, n = 0, 1, 2,
- Monomials are bases for continuous functions.
- *Objective:* Given *n* points, we want to find the *polynomial* of order n-1

$$p_n(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}$$

that passes through all the points.

- The (n-1)-th-order polynomial that passes through n points is unique, but it can be written in different mathematical formats:
 Conventional form:
 - Lagrange Form;
 - Hermite Form (see the appendix); etc.
- Useful characteristics of polynomials
 - Infinitely differentiable
 - Can be easily integrated
 - Easy to evaluate

Conventional Form Polynomial

• One can compute the polynomial directly, $p_n(x) = \sum_{i=0}^{n-1} b_i x^i$. This is done by solving a linear system,

$$\begin{cases} y_1 = b_0 + b_1 x_1 + b_2 x_1^2 + \dots + b_{n-1} x_1^{n-1} \\ y_2 = b_0 + b_1 x_2 + b_2 x_2^2 + \dots + b_{n-1} x_2^{n-1} \\ \vdots \\ y_n = b_0 + b_1 x_n + b_2 x_n^2 + \dots + b_{n-1} x_n^{n-1} \end{cases}$$

• In matrix notation, Ab = y, where $b = (b_0, b_1, ..., b_{n-1})^{\top}$, and A is the so-called *Vandermonde* matrix for x_i , i = 1, ..., n

$$A = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_2^2 & \cdots & x_n^{n-1} \end{pmatrix}$$

• Result: If the (x_i) are distinct, there is a unique solution.

• What is the shortcoming of finding the polynomial using this method?

$$\begin{cases} y_1 = b_0 + b_1 x_1 + b_2 x_1^2 + \dots + b_{n-1} x_1^{n-1} \\ y_2 = b_0 + b_1 x_2 + b_2 x_2^2 + \dots + b_{n-1} x_2^{n-1} \\ \vdots \\ y_n = b_0 + b_1 x_n + b_2 x_n^2 + \dots + b_{n-1} x_n^{n-1} \end{cases}$$

• This system is typically ill-conditioned.

- The resulting coefficients can be highly inaccurate when n is large (if finite-precision computers are used).

- Talk about it later.
- If our objective is to determine the intermediate values between points, we can construct and represent the polynomials in Lagrange form.

Lagrange Polynomial Interpolation

• Data: (x_i, y_i) , i = 1, ..., n.

• Objective: Find a polynomial of degree n - 1, $p_n(x)$, which interpolates the sample (x_i, y_i) with $y_i = f(x_i)$,

$$y(x) = p_n(x) = \sum_{i=1}^n b_i l_i(x),$$

 $I_{i}\left(x
ight)$ = weighting function, defined by

$$I_i(x) = \prod_{j=1, j \neq i}^n \frac{x - x_j}{x_i - x_j}, \text{ for } i = 1, ..., n$$

with the property

$$l_i(x_j) = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$$

Note

$$I_{i}(x) = \frac{x - x_{1}}{x_{i} - x_{1}} \cdot \dots \cdot \frac{x - x_{i-1}}{x_{i} - x_{i-1}} \cdot \frac{x - x_{i+1}}{x_{i} - x_{i+1}} \cdot \frac{x - x_{n}}{x_{i} - x_{n}}.$$

Lagrange Polynomial Interpolation (cont.)

• Example: quadratic Lagrange interpolation (n - 1 = 2) includes $l_1(x)$, $l_2(x)$ and $l_3(x)$:

$$y(x) = b_1 l_1(x) + b_2 l_2(x) + b_3 l_3(x)$$
.

• Recall $I_i(x_j) = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$. Evaluate it at x_1 :

$$y(x_1) = b_1 \underbrace{l_1(x_1)}_{=1} + b_2 \underbrace{l_2(x_1)}_{=0} + b_3 \underbrace{l_3(x_1)}_{=0} = b_1.$$

- In general, $b_i = y_i = f(x_i)$.
- Thus, interpolation is given by

$$p_n(x) = \sum_{i=1}^n f(x_i) I_i(x)$$

• Example: $p_1(x) = f(x_0) \frac{x-x_1}{x_0-x_1} + f(x_1) \frac{x-x_0}{x_1-x_0}$.

Example

• Construct a 4th order polynomial in Lagrange form that passes through the following points:

• We can construct the polynomial as

$$p_{1}(x) = -5l_{1}(x) - 3l_{2}(x) - 15l_{3}(x) + 39l_{4}(x) - 9l_{5}(x)$$

Recall

$$I_{i}(x) = \frac{x - x_{1}}{x_{i} - x_{1}} \cdot \ldots \cdot \frac{x - x_{i-1}}{x_{i} - x_{i-1}} \cdot \frac{x - x_{i+1}}{x_{i} - x_{i+1}} \cdot \frac{x - x_{n}}{x_{i} - x_{n}}.$$

• For example, $l_1(x) = \frac{(x-1)(x+1)(x-2)(x+2)}{(0-1)(0+1)(0-2)(0+2)} = \frac{(x-1)(x+1)(x-2)(x+2)}{4}$.

Problems

- If the number of data points is large, this type of interpolation can be expansive.
- To compute a single *l_i* (*x*) we need to compute 2 (*n*−1) subtractions, *n* multiplications.
- This has to be constructed for the *n* data points to compute all needed *I_i* (*x*).
- Then to compute $p_n(x)$ we need *n* additions and *n* multiplications.

- Interpolation does not always work even for well-behaved functions.
- Does $p_n(x)$ converge to f(x) as we use more points? No!
- Consider a so-called Runge function

$$f(x) = \frac{1}{1+x^2}, \\ x_i = -5, -4, ..., 3, 4, 5$$

i.e., 11 uniformly sampled points.

- Use Lagrange interpolation (fit degree 10 polynomial).
- Conclusion: under (n-1) interpolation at n uniformly spaced points, $p_n(x)$ gets worse as we use more points.

Problems with Interpolation (cont.)

Runge function

Highly oscillatory. Hard to control away from measured points.

The Graduate Center, CUNY (2020)

Approximation and interpolation

Lilia Maliar 35 / 128

Orthogonal Polynomials

< m
- Ordinary
- Chebyshev
- Legendre
- Laguere
- Hermite, etc.

< 一型

Ordinary and Chebyshev Polynomials (cont.)

Comments about Ordinary and Chebyshev Polynomials

- For the ordinary polynomial family, the basis functions look very similar on $\mathbb{R}_+.$
- Approximation methods using ordinary polynomials may fail because they cannot distinguish between similarly shaped polynomial terms such as x^2 and x^4 .
- In contrast, for the Chebyshev polynomial family, basis functions have very different shapes and are easy to distinguish.
- Chebyshev polynomials are orthogonal.
- Good bases have an orthogonality property.
- Why? Analogy with orthogonal vectors.

Analogy with Orthogonal Vectors

- Two vectors x and y are said to be *orthogonal* if their scalar product is zero, (x, y) = 0.
- To represent any vector in a 3-dimensional space, we usually use 3 orthogonal vectors.
- We can also use 3 non-orthogonal vectors but it can happen that they are close to each other and we have very big coefficients.

Example

Consider a vector d = (1, 1, 1). We have an orthogonal basis from 3 vectors a = (1, 0, 0), b = (0, 1, 0) and c = (0, 0, 1). Note that a scalar product of (a, b), (c, b), (a, c) = 0.

$$(a, b) = (1, 0, 0) \begin{bmatrix} 0\\1\\0 \end{bmatrix} = 0$$

Then, $d = 1 \cdot a + 1 \cdot b + 1 \cdot c$.

Example

So (_

Suppose now that the basis vectors are a = (1, 0, 0), b = (1, 0.01, 0) and c = (1, 0, 0.01).

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = \alpha \begin{bmatrix} 1\\0\\0 \end{bmatrix} + \beta \begin{bmatrix} 1\\0.01\\0 \end{bmatrix} + \gamma \begin{bmatrix} 1\\0\\0.01 \end{bmatrix}$$
$$\begin{bmatrix} 1\\0\\0.01 \end{bmatrix} = \begin{bmatrix} 1&1&1\\0&0.01\\0&0&0.01 \end{bmatrix}^{-1} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} -199.0\\100.0\\100.0 \end{bmatrix}$$
instead of (1, 1, 1), we have coefficients (α, β, γ) that are very big 199, 100, 100).

Orthogonal Polynomials for Interpolation

• Coming back to the model, suppose that we would like to approximate a function by some family of functions $\{f_0(x), f_1(x), f_2(x), f_3(x), ...\}$,

$$F(x) \cong \alpha f_0(x) + \beta f_1(x) + \gamma f_2(x) + \dots$$

- It is like to approximate a vector d by vectors a, b, c.
- We would like functions $\{f_0(x), f_1(x), f_2(x), f_3(x), ...\}$ to be orthogonal, i.e., their scalar product is zero, $\langle f_0(x), f_1(x) \rangle = 0$.
- Consider monomials {1, x, x², x³, ...}. They are not orthogonal and very close to each other (see the figure).
- So, some coefficients can be very large which leads to the loss of digits in the finite arithmetic precision.

General orthogonal polynomials

- Space: polynomials over domain D
- Weighting function: w(x) > 0
- Inner product of two functions f and g: $\langle f, g \rangle \equiv \int_D f(x)g(x)w(x)dx$

Definition

 $\{\phi_i\}$ is a family of orthogonal polynomials w.r.t w(x) iff

$$\left\langle \phi_{i},\phi_{j}
ight
angle =$$
 0, $i
eq j$

The Graduate Center, CUNY (2020)

Orthogonal Polynomials (cont.)

Recurrence formulas

$$\begin{array}{rcl} \phi_0(x) &=& 1\\ \phi_1(x) &=& x\\ \phi_{k+1}(x) &=& (a_{k+1}x + b_k) \phi_k(x) + c_{k+1}\phi_{k-1}(x) \end{array}$$

Example

$$\begin{split} \phi_{2}(x) &= (a_{2}x + b_{1}) \phi_{1}(x) + c_{2}\phi_{0}(x) \\ \langle \phi_{2}, \phi_{0} \rangle &= a_{2} \langle x\phi_{1}, \phi_{0} \rangle + b_{1} \langle \phi_{1}, \phi_{0} \rangle + c_{2} \langle \phi_{0}, \phi_{0} \rangle \\ 0 &= a_{2} \langle x\phi_{1}, \phi_{0} \rangle + 0 + c_{2} \langle \phi_{0}, \phi_{0} \rangle \implies c_{2} = \frac{a_{2} \langle x\phi_{1}, \phi_{0} \rangle}{\langle \phi_{0}, \phi_{0} \rangle} \\ \text{Similarly, } \langle \phi_{2}, \phi_{1} \rangle &= a_{2} \langle x\phi_{1}, \phi_{1} \rangle + b_{1} \langle \phi_{1}, \phi_{1} \rangle + c_{2} \langle \phi_{0}, \phi_{1} \rangle \\ 0 &= a_{2} \langle x\phi_{1}, \phi_{1} \rangle + b_{1} \langle \phi_{1}, \phi_{1} \rangle + 0 \implies b_{1} = \frac{a_{2} \langle x\phi_{1}, \phi_{1} \rangle}{\langle \phi_{1}, \phi_{1} \rangle}. \end{split}$$

Chebyshev Polynomials

•
$$D = [a, b] = [-1, 1]$$

• $w(x) = (1 - x^2)^{-1/2}$
• $T_n(x) = \cos(n \arccos(x))$

• Recurrence formula:

$$T_0(x) = 1$$

$$T_1(x) = x$$

$$T_2(x) = 2x^2 - 1$$

$$T_3(x) = 4x^3 - 3x$$

$$T_4(x) = 8x^4 - 8x^2 + 1$$

. . .

$$T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x).$$

• This recurrence formula follows from the recurrence relation for cosines:

$$\cos((n+1)\theta) = 2\cos(\theta)\cos(n\theta) - \cos((n-1)\theta)$$

The Graduate Center, CUNY (2020)

Chebyshev Polynomials (cont.)

- Again, $T_{n+1}(x) = 2x T_n(x) T_{n-1}(x)$.
- For example, $T_0(x) = 0$, $T_1(x) = x$, $T_2(x) = 2x^2 1$, and $T_3(x) = 4x^3 2x^2 2x^2 + 1 = 4x^3 4x^2 + 1$.

• Check the orthogonality $\int_{-1}^{1} T_i(x) T_j(x) w(x) dx = 0$:

$$0 = \int_{-1}^{1} T_0(x) T_1(x) w(x) dx$$

= $\int_{-1}^{1} 1 \cdot x \cdot (1 - x^2)^{-1/2} dx = \int_{-1}^{1} 1 \cdot (1 - x^2)^{-1/2} \frac{dx^2}{2}$
= $\frac{1}{2} \int_{1}^{1} (1 - y)^{-1/2} dy = 0.$

- Chebyshev polynomials satisfy a discrete orthogonality relation too.
- That is, if x_k (k = 1, ..., m) are the *m* zeros of $T_m(x)$, and if *i*, j < m, then

$$\sum_{k=1}^{m} T_{i}(x_{k}) T_{j}(x_{k}) = \begin{cases} 0 & \text{if } i \neq j \\ m & \text{if } i = j = 0 \\ \frac{m}{2} & \text{if } i = j \neq 0 \end{cases}$$

Discrete Orthogonality of Chebyshev Polynomials (cont.)

Example (1)

Let
$$m = 3$$
; $T_3(x) = 4x^3 - 3x$ has 3 zeros: $x_1 = 0$, $x_2 = \frac{\sqrt{3}}{2}$, $x_3 = -\frac{\sqrt{3}}{2}$.

$$\sum_{k=1}^{3} T_0(x_k) T_1(x_k) = T_0(x_1) T_1(x_1) + T_0(x_2) T_1(x_2) + T_0(x_3) T_1(x_3) = 0$$

$$= 1 = 0 = -1 = -\frac{\sqrt{3}}{2} = 1 = -\frac{\sqrt{3}}{2}$$

$$\sum_{k=1}^{3} T_1(x_k) T_2(x_k) = T_1(x_1) T_2(x_1) + T_1(x_2) T_2(x_2) + T_1(x_3) T_2(x_3) = 0$$

$$= 0 = -1 = -\frac{\sqrt{3}}{2} = \frac{1}{2} = -\frac{\sqrt{3}}{2} = \frac{1}{2}$$

$$\sum_{k=1}^{3} T_0(x_k) T_0(x_k) = T_0(x_1) T_0(x_1) + T_0(x_2) T_0(x_2) + T_0(x_3) T_0(x_3) = 1$$

$$= 1 = 1$$

$$\sum_{k=1}^{3} T_1(x_k) T_1(x_k) = T_1(x_1) T_1(x_1) + T_1(x_2) T_1(x_2) + T_1(x_3) T_1(x_3) = \frac{3}{2}$$

$$\sum_{k=1}^{3} T_2(x_k) T_2(x_k) = T_2(x_1) T_2(x_1) + T_2(x_2) T_2(x_2) + T_2(x_2) T_2(x_2) = \frac{3}{2}$$

$$\sum_{k=1}^{3} T_2(x_k) T_2(x_k) = T_2(x_1) T_2(x_1) + T_2(x_2) T_2(x_2) + T_2(x_2) T_2(x_2) = \frac{3}{2}$$

$$\sum_{k=1}^{3} T_2(x_k) T_2(x_k) = T_2(x_1) T_2(x_1) + T_2(x_2) T_2(x_2) + T_2(x_2) T_2(x_2) = \frac{3}{2}$$

The Graduate Center, CUNY (2020)

Approximation and interpolation

Chebyshev Polynomials and Runge Function

• Using Chebyshev nodes to approximate the Runge function improves approximation (but the result is not completely good).

Chebyshev Polynomials for Interpolation

Let us illustrate the use of Chebyshev polynomials for interpolation by way of example.

Example

Let f(x) be a function defined on an interval [-1, 1], and let us approximate this function with a Chebyshev polynomial function of degree two, i.e.,

$$f(x) pprox \widehat{f}(x; b) = b_1 + b_2 x + b_3 \left(2x^2 - 1\right).$$

We compute $b \equiv (b_1, b_2, b_3)$ so that $\hat{f}(\cdot; b)$ and f coincide in three extrema of Chebyshev polynomials, namely, $\{-1, 0, 1\}$,

$$\widehat{f}(-1; b) = b_1 + b_2 \cdot (-1) + b_3 \left(2 \cdot (-1)^2 - 1 \right) = f(-1)$$

$$\widehat{f}(0; b) = b_1 + b_2 \cdot 0 + b_3 \left(2 \cdot 0^2 - 1 \right) = f(0)$$

$$\widehat{f}(1; b) = b_1 + b_2 \cdot 1 + b_3 \left(2 \cdot 1^2 - 1 \right) = f(1) .$$

Example (cont.)

This leads us to a system of three linear equations with three unknowns that has a unique solution

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} f(-1) \\ f(0) \\ f(1) \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{4} & -\frac{1}{2} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} f(-1) \\ f(0) \\ f(1) \end{bmatrix} = \begin{bmatrix} \frac{f(-1)}{4} + \frac{f(0)}{2} + \frac{f(1)}{4} \\ -\frac{f(-1)}{2} + \frac{f(1)}{2} \\ \frac{f(-1)}{4} - \frac{f(0)}{2} + \frac{f(1)}{4} \end{bmatrix}.$$

• It is possible to use Chebyshev polynomials with other grids, but the grid of extrema (or zeros) of Chebyshev polynomials is a perfect match.

Legendre Polynomials

•
$$D = [a, b] = [-1, 1]$$

- w(x) = 1
- $P_n(x) = \frac{(-1)^n}{2^n n!} \frac{d^n}{dx^n} \left[(1-x^2)^n \right]$
- Recurrence formula:

$$P_0(x) = 1$$

$$P_1(x) = x$$

$$P_{n+1}(x) = \frac{2n+1}{n+1} \times P_n(x) - \frac{n}{n+1} P_{n-1}(x),$$

< 一型

- ∢ ∃ ▶

Legendre Polynomials (cont.)

< 一型

э

Laguerre Polynomials

- $w(x) = e^{-x}$
- $L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$
- Recurrence formula:

$$L_0(x) = 1$$

$$L_1(x) = 1 - x$$

$$L_{n+1}(x) = \frac{1}{n+1} (2n+1-x) L_n(x) - \frac{n}{n+1} L_{n-1}(x),$$

▲ @ ▶ < ∃ ▶ </p>

Laguerre Polynomials (cont.)

æ

2

Hermite Polynomials

•
$$D = [a, b] = (-\infty, \infty)$$

• $w(x) = e^{-x^2}$

•
$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$$

• Recurrence formula:

$$\begin{array}{rcl} H_0(x) &=& 1\\ H_1(x) &=& 2x\\ H_{n+1}(x) &=& 2x \, H_n(x) - 2n \, H_{n-1}(x). \end{array}$$

< A

Hermite Polynomials (cont.)

Note that the Hermite Polynomials are scaled down by a factor of n^2 in order to be fit on the same plot.

The Graduate Center, CUNY (2020)

Approximation and interpolation

Lilia Maliar 60 / 128

General Orthogonal Polynomials

- Few problems have the specific intervals and weights used in definitions.
- One must adapt interval through linear change of variables (COV).
- If compact interval [a, b] is mapped to [-1, 1] by

$$y = -1 + 2\frac{x-a}{b-a},$$

where $x \in [a, b]$ and $y \in [-1, 1]$.

- Then $\phi_i \left(-1 + 2\frac{x-a}{b-a}\right)$ are orthogonal over $x \in [a, b]$ with respect to $w \left(-1 + 2\frac{x-a}{b-a}\right)$ iff $\phi_i(y)$ are orthogonal over $y \in [-1, 1]$ w.r.t. w(y).
- There are also COV for mapping a half-infinite interval [a,∞] to [0,∞] or for mapping an infinite [-∞,∞] to [-∞,∞].

Approximation (Regression)

< 一型

• When the number of data points *n* is larger than the number of unknown coefficients *m*, least-squares regression can be used to find an approximation.

• Data:
$$(x_i,y_i)$$
 , $i=1,...,n_i$

- Objective: Find a function $f(x;\beta)$ with $\beta \in \mathbb{R}^m$, $m \le n$, with $y_i \doteq f(x_i), i = 1, ..., n$.
- Least Squares regression:

$$\min_{\beta \in R^m} \sum \left(y_i - f\left(x_i; \beta \right) \right)^2$$

- Approximation function: degree *m* polynomial
- Data: *n* data points, (x_i, y_i) , i = 1, ..., n are the *n* zeroes of $T_n(x)$ adapted to [a, b]
- More data than unknown coefficients: n > m + 1
- Objective: minimize unweighted sum of errors at nodes
- Chebyshev interpolation is a special case of regression with n = m + 1.

• Approximation (assuming $\langle \phi_i, \phi_i \rangle \equiv \parallel \phi_i \parallel = 1$):

$$f(x) \cong \sum_{i=0}^{\infty} a_i \phi_i$$
$$a_i = \langle f, \phi_i \rangle = \int_D f(x) \phi_i(x) w(x) dx$$

• To find a_i's, explicit formulas are derived to avoid OLS.

Chebyshev Approximation Algorithm

General algorithm in \mathbb{R}^1 :

- Objective: Given f(x) defined on [a, b], find a *m*-point degree-*n* Chebyshev polynomial approximation p(x)
- Step 1: Compute the $m \ge n+1$ Chebyshev interpolation nodes on [-1, 1]:

$$z_k = -\cos\left(rac{2k-1}{2m} \ \pi
ight)$$
, $k = 1, \cdots, m$.

• Step 2: Adjust nodes to [a, b] interval (back transformation, i.e., $z_k \in [-1, 1]$ and $x_k \in [a, b]$:

$$x_k = (z_k+1)\left(rac{b-a}{2}
ight) + a, k = 1, ..., m.$$

• Step 3: Evaluate f at approximation nodes:

$$w_k=f(x_k)$$
 , $k=1,\cdots$, m_k

where w_k are values of the function f.

The Graduate Center, CUNY (2020)

Chebyshev Approximation Algorithm (cont.)

• Step 4: Compute Chebyshev coefficients, $a_i, i = 0, \cdots, n$:

$$\mathsf{a}_i = \frac{\sum_{k=1}^m \mathsf{w}_k \mathsf{T}_i(\mathsf{z}_k)}{\sum_{k=1}^m \mathsf{T}_i(\mathsf{z}_k)^2}$$

to arrive at approximation of f(x, y) on [a, b]:

$$p(x) = \sum_{i=0}^{n} a_i T_i \left(2\frac{x-a}{b-a} - 1 \right)$$

• Alternatively, one can solve for a using OLS formula $a = (X'X)^{-1} X'y$ where

$$X = \begin{pmatrix} T_0(z_1) & \dots & T_n(z_1) \\ \dots & \dots & \dots \\ T_0(z_m) & \dots & T_n(z_m) \end{pmatrix}, y = \begin{pmatrix} f(x_1) \\ \dots \\ f(x_m) \end{pmatrix}$$

Chebyshev Approximation Algorithm (cont.)

• For example, in our Example 1, we have

$$X'X = \begin{pmatrix} \sum_{k=1}^{3} T_{0}(z_{k}) T_{0}(z_{k}) & \sum_{k=1}^{3} T_{0}(z_{k}) T_{1}(z_{k}) & \sum_{k=1}^{3} T_{0}(z_{k}) T_{2}(z_{k}) \\ \sum_{k=1}^{3} T_{0}(z_{k}) T_{1}(z_{k}) & \sum_{k=1}^{3} T_{1}(z_{k}) T_{1}(z_{k}) & \sum_{k=1}^{3} T_{2}(z_{k}) T_{1}(z_{k}) \\ \sum_{k=1}^{3} T_{0}(z_{k}) T_{2}(z_{k}) & \sum_{k=1}^{3} T_{2}(z_{k}) T_{1}(z_{k}) & \sum_{k=1}^{3} T_{2}(z_{k}) T_{2}(z_{k}) \end{pmatrix}$$

 Note that (X'X)⁻¹ is a diagonal matrix due to the discrete orthogonality relation:

• In general,
$$a_i = \begin{cases} \frac{1}{m} \sum_{k=1}^m w_k T_i(z_k) \text{ for } i = 0\\ \frac{2}{m} \sum_{k=1}^m w_k T_i(z_k) \text{ for } i \ge 1\\ \frac{2}{m} \sum_{k=1}^m w_k T_i(z_k) \text{ for } i \ge 1 \end{cases}$$

The Graduate Center, CUNY (2020)

Chebyshev Approximation Algorithm: Example

We are given f(x) defined on [a, b]. Let [a, b] = [1, 2] and $f(x) = \ln(x)$.

• Step 1: Compute the zeros of Chebyshev polynomials, $z_k \in [-1, 1]$, from

$$z_k = -\cos\left(rac{2k-1}{2m} \ \pi
ight)$$
 , $k = 1, \cdots$, m_k

For m = 3: k = 1, $z_1 = -0.87$; k = 2, $z_2 = 0$; k = 3, $z_3 = 0.87$. • Step 2: Adjust nodes to [1, 2] interval:

$$x_{1} = (-0.87 + 1) \left(\frac{2-1}{2}\right) + 1 = 1.07,$$

$$x_{2} = (0+1) \left(\frac{2-1}{2}\right) + 1 = \frac{3}{2},$$

$$x_{3} = (0.87 + 1) \left(\frac{2-1}{2}\right) + 1 = 1.93.$$

Chebyshev Approximation Algorithm: Example (cont.)

• Step 3: Evaluate f at approximation nodes:

$$\begin{array}{rcl} w_1 & = & \ln x_1 & = \ln \left(1.07 \right), \\ w_2 & = & \ln x_2 & = \ln \left(\frac{3}{2} \right), \\ w_3 & = & \ln x_3 & = \ln \left(1.93 \right). \end{array}$$

Chebyshev Approximation Algorithm: Example (cont.)

• Step 4: Compute Chebyshev coefficients, a_0 , a_1 , a_2 on $T_0(z) = 1$, $T_1(z) = z$, $T_2(z) = 2z^2 - 1$ in p(x):

$$\begin{aligned} a_{0} &= \frac{w_{1} T_{0}(z_{1}) + w_{2} T_{0}(z_{2}) + w_{3} T_{0}(z_{3})}{T_{0}(z_{1})^{2} + T_{0}(z_{2})^{2} + T_{0}(z_{3})^{2}} \\ &= \frac{\ln (1.07) \cdot 1 + \ln \left(\frac{3}{2}\right) \cdot 1 + \ln (1.93) \cdot 1}{1 + 1 + 1} = 0.38 \\ a_{1} &= \frac{w_{1} T_{1}(z_{1}) + w_{2} T_{1}(z_{2}) + w_{3} T_{1}(z_{3})}{T_{1}(z_{1})^{2} + T_{1}(z_{2})^{2} + T_{1}(z_{3})^{2}} \\ &= \frac{\ln (1.07) \cdot (-0.87) + \ln \left(\frac{3}{2}\right) \cdot 0 + \ln (1.93) \cdot (0.87)}{(-0.87)^{2} + 0 + (0.87)^{2}} = 2 \\ a_{2} &= \frac{w_{1} T_{2}(z_{1}) + w_{2} T_{2}(z_{2}) + w_{3} T_{2}(z_{3})}{T_{2}(z_{1})^{2} + T_{2}(z_{2})^{2} + T_{2}(z_{3})^{2}} = \dots = 0.389 \end{aligned}$$
Chebyshev Approximation Algorithm: Example (cont.)

• Form the polynomial function:

$$p(x) = a_0 \underbrace{T_0 \left(2\frac{x-1}{2-1} - 1 \right)}_{=1} + a_1 T_1 \left(2\frac{x-1}{2-1} - 1 \right) \\ + a_2 T_2 \left(2\frac{x-1}{2-1} - 1 \right) \\ = 0.38 + 2 \cdot T_1 \left[2 \left(x - 1 \right) - 1 \right] + 0.389 \cdot \left(\left[2 \left(x - 1 \right) - 1 \right]^2 - 1 \right)$$

- Data: (x_i, y_i) , i = 1, ..., n.
- Objective: L^{∞} fit

$$\min_{\beta \in R^m} \max_i \|y_i - f(x_i; \beta)\|,$$

where $f(x_i; \beta)$ is a polynomial function with β being parameters.

- $\forall i$, compute $y_i f(x_i; \beta) = \text{error of approximation}$.
- Find a maximum error across all *i*.
- Choose such a β that minimizes such maximum error.

Chebyshev Minmax Property

Theorem

Suppose $f : [-1, 1] \rightarrow R$ is C^k for some $k \ge 1$, and let I_n be the n-point (degree n - 1) polynomial interpolation of f based at the zeroes of $T_n(x)$. Then

$$\| f - I_n \|_{\infty} \leq \left(\frac{2}{\pi} \log(n+1) + 1\right)$$
$$\times \frac{(n-k)!}{n!} \left(\frac{\pi}{2}\right)^k \left(\frac{b-a}{2}\right)^k \| f^{(k)} \|_{\infty}$$

Decompose the error bound

2/π log(n+1): grows very slowly in n; ignore it
 (π/2)^k (b-a/2)^k: independent of n and f
 || f^(k) ||_∞: a measure of k'th order curvature
 (n-k)!/n!: essentially 1/n^k (decreases very rapidly).

 Thus, Chebyshev interpolation converges in L[∞], essentially achieves minmax approximation, easy to compute.

Caution

- does not necessarily approximate f'
- if $|| f^{(k)} ||_{\infty}$ is large then the error may be large for moderate *n*.
- Chebyshev polynomials do not guarantee good approximations (they are wiggly) but they guarantee accuracy bounds.
 - With other polynomials, one cannot get this error bounds.

Splines

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Spline Interpolation

- For some cases, polynomials can lead to erroneous results because of round off error and overshoot.
- Alternative approach is to apply lower-order polynomials to subsets of data points. Such connecting polynomials are called spline functions.

Spline in economics

- Splines are implemented in all computer languages.
- Splines are the best choice in economic models with
 - borrowing constraints;
 - kinks (due to, e.g., zero lower bound on nominal interest rates);
 - few state variables.

Lilia Maliar 79 / 128

- Piecewise interpolation: does not fit a single function to all the data but separate functions.
- Splines: piecewise interpolation of a particular form.
- Namely, spline is a smooth function:
 - it is piecewise polynomial;
 - smooth where the polynomial pieces connect.

Spline Interpolation

The Graduate Center, CUNY (2020)

Spline Interpolation (cont.)

- (a) Linear spline
 Derivatives are not continuous
 - Not smooth
- (b) Quadratic spline
 Continuous 1st derivatives
- (c) Cubic spline
 - Continuous
 - 1st & 2nd derivatives
 - Smoother

< 67 ▶

Which of the following is a quadratic spline?

$$A(x) = \begin{cases} x^2 & x \in [-2,0] \\ x^2 + 2x & x \in [0,1] \\ x^2 + x + 1 & x \in [1,2] \end{cases}$$

$$B(x) = \begin{cases} x^2 & x \in [-2,0] \\ -x^2 & x \in [0,1] \\ 1-2x & x \in [1,2] \end{cases}$$

The Graduate Center, CUNY (2020)

æ

$$A(x) = \begin{cases} x^2 & x \in [-2,0] \\ x^2 + 2x & x \in [0,1] \\ x^2 + x + 1 & x \in [1,2] \end{cases}$$

$$A_{i}(x) = 2x$$

$$A_{i}(x) = 2x + 2$$
At $x = 0$, $A_{0}(x) \neq A_{i}(x)$.
Thus $A(x)$ is not a quadratic spline

$$B(x) = \begin{cases} x^2 & x \in [-2,0] \\ -x^2 & x \in [0,1] \\ 1-2x & x \in [1,2] \end{cases}$$

 $B_0(0) = 0 = B_1(0)$ $B_1(1) = -1 = B_2(1)$ $B_0'(0) = 0 = B_1'(0)$ $B_1'(1) = -2 = B_2'(1)$ Since *B* and *B'* are continuous for all *x* in [-2,2], and since *B_i*'s are all polynomial of degree ≤ 2 , *B* is a quadratic spline.

Definition

A function s(x) on [a, b] is a spline of order n iff

there is a grid of points (called nodes) a = x₀ < x₁ < · · · < x_m = b such that s(x) is a polynomial of degree n − 1 on each subinterval [x_i, x_{i+1}], i = 0, . . . , m − 1.

Note: an order 2 spline is the piecewise linear interpolant.

Quadratic Splines

Spline of order 3.

The Graduate Center, CUNY (2020)

Lilia Maliar 86

86 / 128

- A quadratic spline is a continuously differentiable piecewise quadratic function (spline of order 3).
- A function s is called a spline of order 3 if
 - The domain of s is an interval [a, b].
 - -s and s' are continuous functions on [a, b].
 - There are points x_i (called knots) such that

 $a = x_0 < x_1 < \ldots < x_n = b$ and s is a polynomial of degree at most 2 on each subinterval $[x_i, x_{i+1}]$.

1. Interpolating conditions

• On each sub interval $[x_i, x_{i+1}]$, the function $s_i(x)$ must satisfy the conditions

$$s_i(x_i) = f(x_i)$$
 and $s_i(x_{i+1}) = f(x_{i+1})$.

• These conditions yield 2n equations

$$a_{i}x_{i}^{2} + b_{i}x_{i} + c_{i} = f(x_{i}),$$

$$a_{i}x_{i+1}^{2} + b_{i}x_{i+1} + c_{i} = f(x_{i+1}),$$

$$i = 0, ..., n - 1.$$

2. Continuous first derivatives

- The first derivatives at the interior knots must be equal.
- This adds n-1 more equations:

$$2a_ix_i + b_i = 2a_{i+1}x_i + b_{i+1}, \quad i = 1, ..., n-1.$$

- We now have 2n + (n-1) = 3n 1 equations.
- We need one more equation.

3. Assume the 2nd derivatives is zero at the first point.

• This gives us the last condition as

$$2a_1 = 0 \Longrightarrow a_1 = 0$$

- With this condition selected, the first two points are connected by a straight line.
- *Note:* This is not the only possible choice or assumption we can make.

Fit quadratic splines to the following data points:

i	0	1	2	3
x_i	3	4.5	7	9
$f(x_i)$	2.5	1	2.5	0.5

Example (Solution)

1. Interpolating conditions:

$9a_1$	$+3b_{1}$	$+ c_1$	= 2.5
$20.25a_1$	$+4.5b_{1}$	$+ c_1$	=1.0
$20.25a_2$	$+4.5b_{2}$	$+ c_{2}$	=1.0
$49a_{2}$	$+7b_{2}$	$+ c_{2}$	= 2.5
$49a_{3}$	$+7b_{3}$	$+ c_{3}$	= 2.5
81 <i>a</i> ₃	$+9b_{3}$	$+ c_{3}$	= 0.5

2. Continuous first derivatives:

$$9a_1 + b_1 = 9a_2 + b_2 14a_2 + b_2 = 14a_3 + b_3$$

3. Assume the 2nd derivatives is zero at the first point

 $a_1 = 0$

Image: A math a math

We can write the system of equations in matrix form as

9	3	1	0	0	0	0	0	0	$\begin{bmatrix} a_1 \end{bmatrix}$]	[2.5]
20.25	4.5	1	0	0	0	0	0	0	b_1		1
0	0	0	20.25	4.5	1	0	0	0	c_1		1
0	0	0	49	7	1	0	0	0	a_2		2.5
0	0	0	0	0	0	49	7	1	b_2	=	2.5
0	0	0	0	0	0	81	9	1	c_2		0.5
9	1	0	-9	-1	0	0	0	0	<i>a</i> ₃		0
0	0	0	14	1	0	-14	-1	0	b_3		0
1	0	0	0	0	0	0	0	0	c_3		0

Notice that the coefficient matrix is sparse.

• The system of equations can be solved to yield

$$a_1 = 0$$
 $b_1 = -1$ $c_1 = 5.5$
 $a_1 = 0.64$ $b_1 = -6.76$ $c_1 = 18.46$
 $a_1 = -1.6$ $b_1 = 24.6$ $c_1 = -91.3$

• Thus, the quadratic spline that interpolates the given points is

$$s(x) = \begin{cases} -x + 5.5 & x \in [3, 4.5] \\ 0.64x^2 - 6.76x + 18.46 & x \in [4.5, 7] \\ -1.6x^2 + 24.6x - 91.3 & x \in [7, 9] \end{cases}$$

Cubic Splines

- Lagrange data set: $\{(x_i, y_i) \mid i = 0, \cdots, n\}$.
- Nodes: The x_i are the nodes of the spline.
- Functional form: $s(x) = a_i + b_i x + c_i x^2 + d_i x^3$ on $[x_{i-1}, x_i]$.
- Unknowns: 4n unknown coefficients, $a_i, b_i, c_i, d_i, i = 1, \dots n$.
- Conditions:
 - -2n interpolation and continuity conditions:

$$y_{i} = a_{i} + b_{i}x_{i} + c_{i}x_{i}^{2} + d_{i}x_{i}^{3},$$

$$i = 1, ..., n$$

$$y_{i} = a_{i+1} + b_{i+1}x_{i} + c_{i+1}x_{i}^{2} + d_{i+1}x_{i}^{3},$$

$$i = 0, ..., n - 1$$

-2n-2 conditions from C^2 at the interior: for $i = 1, \dots, n-1$,

$$b_i + 2c_i x_i + 3d_i x_i^2 = b_{i+1} + 2c_{i+1} x_i + 3d_{i+1} x_i^2$$

$$2c_i + 6d_i x_i = 2c_{i+1} + 6d_{i+1} x_i$$

- Equations (1-4) are 4n 2 linear equations in 4n unknown parameters, a, b, c, and d.
- Construct 2 side conditions
 - natural spline: $s'(x_0) = 0 = s'(x_n)$.
 - Hermite spline: $s'(x_0) = y'_0$ and $s'(x_n) = y'_n$ (assumes extra data)
- Solve system by special (sparse) methods.

Splines: Example

- Let i = 0, 1, 2, 3 (4 points): $\{(x_0, y_0), (x_1, y_1), (x_2, y_2), (x_3, y_3)\}$.
- \bullet For example, the points are $\{(0,0)\,,\,(1,1)\,,\,(2,4)\,,\,(3,5)\}.$
- The 2n = 6 interpolation and continuity equations are:

• *i* = 1, 2, 3

$$y_1 = a_1 + b_1 x_1 + c_1 x_1^2 + d_1 x_1^3$$

$$y_2 = a_2 + b_2 x_2 + c_2 x_2^2 + d_2 x_2^3$$

$$y_3 = a_3 + b_3 x_3 + c_3 x_3^2 + d_3 x_3^3$$

• *i* = 0, 1, 2

$$y_0 = a_1 + b_1 x_0 + c_1 x_0^2 + d_1 x_0^3$$

$$y_1 = a_2 + b_2 x_1 + c_2 x_1^2 + d_2 x_1^3$$

$$y_2 = a_3 + b_3 x_2 + c_3 x_2^2 + d_3 x_2^3$$

Splines: Example (cont.)

- The 2n-2 conditions at the interior for i = 1, 2
 - first derivatives match

$$b_1 + 2c_1x_1 + 3d_1x_1^2 = b_2 + 2c_2x_1 + 3d_2x_1^2$$

$$b_2 + 2c_2x_2 + 3d_2x_2 = b_3 + 2c_3x_2 + 3d_3x_2^2$$

second derivatives match

$$\begin{array}{rcl} 2c_1 + 6d_1x_1 & = & 2c_2 + 6d_2x_1 \\ 2c_2 + 6d_2x_2 & = & 2c_3 + 6d_3x_2 \end{array}$$

• Terminal conditions:

$$b_1 + 2c_1x_0 + 3d_1x_0^2 = 0$$

$$b_3 + 2c_3x_3 + 3d_3x_3^2 = 0.$$

Multidimensional Methods

< □ > < □ > < □

- So far, we study interpolation and approximation in one dimension.
- But the problems we study in economics have multiple dimensions.
- For example, for our growth model, we need to approximate / interpolate decision function of 2 state variables k' = K (k, θ).
- We now show how to extend our one-dimensional analysis to multiple dimension.

Interpolation in 2d

Interpolation in 2d passes through all grid points

Approximation in 2d

Approximation in 2d passes "the best" plane through the given points, for example, least squares

Approximation and interpolation

- Data: $D \equiv \{(x_i, z_i)\}_{i=1}^N \subset R^{n+m}$, where $x_i \in R^n$ and $z_i \in R^m$
- Objective: find $f : \mathbb{R}^n \to \mathbb{R}^m$ such that $z_i = f(x_i)$.
- Need to choose nodes carefully.
- Task: Find combinations of interpolation nodes and spanning functions to produce a nonsingular (well-conditioned) interpolation matrix.

Multidimensional Methods (cont.)

Example that DOES NOT work

Interpolation nodes:

 $\{P_1, P_2, P_3, P_4\} \equiv \{(1, 0), (-1, 0), (0, 1), (0, -1)\}$

• Use linear combinations of $\{1, x, y, xy\}$.

• Data:
$$z_i = f(P_i)$$
, $i = 1, 2, 3, 4$.

• Interpolation form f(x, y) = a + bx + cy + dxy.

• For example,
$$P_1 = (x, y) = (1, 0)$$
.
 $z_1 = f(1, 0) = a + b \cdot 1 + c \cdot 0 + d \cdot 1 \cdot 0 = a + b$.

• Defining conditions form the singular system

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix}$$

.

General Approach:

 If A and B are sets of functions over x ∈ Rⁿ, y ∈ R^m, their tensor product is

$$A\otimes B=\{arphi(x)\psi(y)\mid arphi\in A,\ \psi\in B\}.$$

Given a basis for functions of x_i, Φⁱ = {φⁱ_k(x_i)}[∞]_{k=0}, the *n*-fold tensor product basis for functions of (x₁, x₂,..., x_n) is

$$\Phi = \left\{\prod_{i=1}^n \varphi_{k_i}^i(x_i) \mid k_i = 0, 1, \cdots, i = 1, \ldots, n\right\}$$

Tensor products of unidimensional Chebyshev polynomial basis for the two-dimensional case

	Dimension y					
Dimension x	1	У	$2y^2 - 1$			
1	1	У	$2y^2 - 1$			
x	x	ху	$x(2y^2-1)$			
$2x^2 - 1$	$2x^2 - 1$	$(2x^2-1)y$	$(2x^2-1)(2y^2-1)$			

Tensor products (cont.)

Orthogonal polynomials and Least-square approximation

- Suppose Φ^i are orthogonal with respect to $w_i(x_i)$ over $[a_i, b_i]$
- Least squares approximation of $f(x_1, \cdots, x_n)$ in Φ is

$$\sum_{\varphi \in \Phi} \frac{\langle \varphi, f \rangle}{\langle \varphi, \varphi \rangle} \varphi,$$

where the product weighting function

$$W(x_1, x_2, \cdots, x_n) = \prod_{i=1}^n w_i(x_i)$$

defines $\langle \cdot, \cdot \rangle$ over $D = \prod_i [a_i, b_i]$ in

$$\langle f(x), g(x) \rangle = \int_D f(x)g(x)W(x)dx.$$

Example: Second-order Chebyshev polynomial

• Data:
$$((x_i, y_i), f(x_i, y_i))$$
.
• $(x_i, y_i) \in \{(1, 1), (1, -1), (-1, 1), (-1, -1)\}$.
• $f(x_i, y_i) \in \{f(1, 1), f(1, -1), f(-1, 1), f(-1, -1)\}$
 $T_0(1) T_0(1) T_1(1) T_1(1) T_0(1) T_0(1) T_1(1) T_1(1)$

• We are to find $b = (b_1, b_2, b_3, b_4)$ by solving $Ab = [f(1, 1), f(1, -1), f(-1, 1), f(-1, -1)]^{\top}$.

The Graduate

• For Chebyshev polynomials, evaluate A in the corresponding T₀ and T₁ to get

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \\ \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix} = \begin{pmatrix} f(1,1) \\ f(1,-1) \\ f(-1,1) \\ f(-$$
Algorithm: Chebyshev Approximation Algorithm

Algorithm in \mathbb{R}^2

- Objective: Given f(x, y) defined on [a, b] × [c, d], find the m-point degree n Chebyshev polynomial approximation p(x, y)
- Step 1: Compute the $m \ge n+1$ Chebyshev interpolation nodes on [-1, 1]:

$$z_k = -\cos\left(rac{2k-1}{2m} \ \pi
ight)$$
, $k = 1, \cdots, m$.

• Step 2: Adjust nodes to [a, b] and [c, d] intervals:

$$x_k = (z_k + 1) \left(rac{b-a}{2}
ight) + a, \, k = 1, ..., m.$$

 $y_k = (z_k + 1) \left(rac{d-c}{2}
ight) + c, \, k = 1, ..., m.$

• Step 3: Evaluate f at approximation nodes:

$$w_{k,\ell}=f(x_k,y_\ell)$$
, $k=1,\cdots$, m ., $\ell=1,\cdots$, m .

• Step 4: Compute Chebyshev coefficients, a_{ij} , $i, j = 0, \cdots, n$:

$${f a}_{ij} = rac{\sum_{k=1}^m \sum_{\ell=1}^m w_{k,\ell} T_i(z_k) T_j(z_\ell)}{(\sum_{k=1}^m T_i(z_k)^2) (\sum_{\ell=1}^m T_j(z_\ell)^2)}$$

to arrive at approximation of f(x, y) on $[a, b] \times [c, d]$:

$$p(x, y) = \sum_{i=0}^{n} \sum_{j=0}^{n} a_{ij} T_i \left(2\frac{x-a}{b-a} - 1 \right) T_j \left(2\frac{y-c}{d-c} - 1 \right)$$

The Graduate Center, CUNY (2020)

Complete polynomials

- Motivation: Tensor product contains all possible tensor terms
 A ⊗ B = {φ(x)ψ(y) | φ ∈ A, ψ ∈ B} but not all terms are equally
 important.
- Taylor's theorem for \mathbb{R}^n produce complete polynomials by removing higher-order less important terms

$$\begin{array}{ll} f(x) \doteq & f(x^{0}) \\ & + \sum_{i=1}^{n} \ \frac{\partial f}{\partial x_{i}}(x^{0}) \ (x_{i} - x_{i}^{0}) \\ & + \frac{1}{2} \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} \ \frac{\partial^{2} f}{\partial x_{i_{1}} \partial x_{i_{k}}}(x_{0})(x_{i_{1}} - x_{i_{1}}^{0})(x_{i_{k}} - x_{i_{k}}^{0}) \dots \end{array}$$

• For k = 1, Taylor's theorem for n dimensions used the linear functions

$$\mathcal{P}_1^n \equiv \{1, x_1, x_2, \cdots, x_n\}$$

• For k = 2, Taylor's theorem uses

$$\mathcal{P}_2^n \equiv \mathcal{P}_1^n \cup \{x_1^2, \cdots, x_n^2, x_1x_2, x_1x_3, \cdots, x_{n-1}x_n\}.$$

 \mathcal{P}_2^n contains some product terms, but not all; for example, $x_1x_2x_3$ is not in \mathcal{P}_2^n .

The Graduate Center, CUNY (2020)

Tensor Products versus Complete Polynomials

Tensor products of unidimensional Chebyshev polynomial basis for 2d case

	Dimension y			
Dimension x	1	У	$2y^2 - 1$	
1	1	У	$2y^2 - 1$	
x	X	ху	$x(2y^2-1)$	
$2x^2 - 1$	$2x^2 - 1$	$(2x^2-1)y$	$(2x^2-1)(2y^2-1)$	

Complete 2d Chebyshev polynomial basis

	Dimension y		
Dimension x	1	У	$2y^2 - 1$
1	1	У	$2y^2 - 1$
x	X	ху	
$2x^2 - 1$	$2x^2 - 1$		

The Graduate Center, CUNY (2020)

Lilia Maliar 112 / 128

Complete polynomial (cont.)

• In general, the *k*th degree expansion uses the *complete set of polynomials of total degree k in n variables.*

$$\mathcal{P}_k^n \equiv \{x_1^{i_1}\cdots x_n^{i_n} \mid \sum_{\ell=1}^n i_\ell \leq k, \ 0 \leq i_1, \cdots, i_n\}$$

- Complete orthogonal basis includes only terms with total degree k or less.
- Sizes of alternative bases
 - degree k \mathcal{P}_{k}^{n} Tensor Prod. 2 1+n+n(n+1)/2 3^{n} 3 $1+n+\frac{n(n+1)}{2}+n^{2}+\frac{n(n-1)(n-2)}{6}$ 4^{n}
 - Complete polynomial bases contains fewer elements than tensor products.
 - Asymptotically, complete polynomial bases are as good as tensor products.
 - For smooth *n*-dimensional functions, complete polynomials are more efficient approximations

The Graduate Center, CUNY (2020)

Approximation and interpolation

Construction

- Compute tensor product approximation, as in Algorithm above.
- Drop terms not in complete polynomial basis (or, just compute coefficients for polynomials in complete basis).
- Complete polynomial version is faster to compute since it involves fewer terms

- One-dimensional splines can be extended to two and higher dimensions using tensor-product approaches.
- The multi-dimensional splines are more cumbersome to describe, in particular, connecting smoothly the values on the boundaries.
- However, multi-dimensional splies are available and easy to use in many languages.

Summary

- Interpolation versus regression
 - Lagrange data uses level information only
 - Regression uses more points than coefficients
- One-dimensional problems
 - Smooth approximations
 - Orthogonal polynomial methods for nonperiodic functions
 - Less smooth approximations
 - Splines
- Multidimensional data
 - Tensor product methods have curse of dimension
 - Complete polynomials are more efficient
- Tensor product approaches are subject to severe curse of dimensionality.
- Later, we will show how to deal with that: Smolyak sparse grids, dimensionality reduction, ergodic-set methods, machine learning

The Graduate Center, CUNY (2020)

116 / 128

Appendix: Linear Interpolation

2

- Recall: interpolation is when we find a function from an *n*-dimensional family of functions which exactly fits *n* data items.
- An interpolation method starts with discrete data, and defines a continuos function.
- *Linear interpolation*: draw a straight line between two neighboring points and return the appropriate point along that line.
- Given a collection of data (x_i, y_i) , i = 1, ..., n, for any interval $x \in [x_{i-1}, x_i]$, we can compute y.
- It delivers a collection of approximations for each interval.
- It can perform badly for non-linear functions.

Consider two data points, (x_1, y_1) and (x_2, y_2) .

$$Slope = rac{y-y_1}{x-x_1} = rac{y_2-y_1}{x_2-x_1} \equiv b.$$

Then, y = a + bx, so that

$$a = y_1 - bx_1 = y_1 - \frac{y_2 - y_1}{x_2 - x_1} \cdot x_1 = \frac{x_2y_1 - x_1y_2}{x_2 - x_1}$$
$$y = \frac{x_2y_1 - x_1y_2}{x_2 - x_1} + \frac{y_2 - y_1}{x_2 - x_1} \cdot x.$$

The Graduate Center, CUNY (2020)

Lilia Maliar 119 / 128

Linear interpolation: Example (cont.)

The Graduate Center, CUNY (2020)

Approximation and interpolation

Lilia Maliar

120 / 128

Appendix: Hermite Interpolation

2

- Suppose we want to find polynomial that fits both the *slope* and the *level* of the function that we want to approximate.
- Data: (x_i, y_i, y'_i) , i = 1, ..., n.
- Objective: Find a polynomial of degree 2n − 1, p(x), which agrees with the data, i.e.,

$$y_i = h(x_i), i = 1, ..., n$$

 $y'_i = h'(x_i), i = 1, ..., n,$

where $h'(\cdot)$ is a derivative of polynomial.

• Result: If the (x_i) are distinct, there is a unique interpolating polynomial.

Hermite Polynomial Interpolation: Example

• Consider a third-degree polynomial:

$$h(x) = H_3 x^3 + H_2 x^2 + H_1 x + H_0$$

- Suppose that we want to match 2 points, (x_0, y_0) and (x_1, y_1) and that we have 2 derivatives, y'_0 , y'_1 , at the points.
- We can compute 4 coefficients, H_3 , H_2 , H_1 , H_0 by solving:

$$\begin{array}{rcl} h\left(x_{0}\right) &=& H_{3}x_{0}^{3}+H_{2}x_{0}^{2}+H_{1}x_{0}+H_{0}=y_{0},\\ h\left(x_{1}\right) &=& H_{3}x_{1}^{3}+H_{2}x_{1}^{2}+H_{1}x_{1}+H_{0}=y_{1},\\ h'\left(x_{0}\right) &=& 3H_{3}x_{0}^{2}+2H_{2}x_{0}+H_{1}=y_{0}',\\ h'\left(x_{1}\right) &=& 3H_{3}x_{1}^{2}+2H_{2}x_{1}+H_{1}=y_{1}'. \end{array}$$

• Cai and Judd, (2015). "Dynamic Programming with Hermite Approximation".

Appendix: Trigonometric Polynomials

The Graduate Center, CUNY (2020)

2

Trigonometric Polynomials and Fourier Series

- $\{\cos(n\theta), \sin(m\theta)\}\$ are orthogonal on $[-\pi, \pi]$.
- If f is continuous on $[-\pi,\pi]$ and $f(-\pi)=f(\pi)$, then

$$f(\theta) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(n\theta) + \sum_{n=1}^{\infty} b_n \sin(n\theta)$$
(6)

where the Fourier coefficients are

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos(n\theta) d\theta$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin(n\theta) d\theta,$$

- A trigonometric polynomial is any function of the form in (6).
- Convergence is uniform for periodic functions.
- Excellent for approximating a smooth *periodic function*, i.e., $f: R \to R$ such that for some ω , $f(x) = f(x + \omega)$.
- Not good for nonperiodic functions
 - Convergence is not uniform
 - Many terms are needed

Appendix: B-splines

Image: A matrix and a matrix

æ

B-splines

- Put knots at $\{x_{-k}, \cdots, x_{-1}, x_0, \cdots, x_n\}$.
- Order 1 splines: step function interpolation spanned by

$$B_i^0(x) = \begin{cases} 0, & x < x_i, \\ 1, & x_i \le x < x_{i+1}, \\ 0, & x_{i+1} \le x, \end{cases}$$

• Order 2 splines: piecewise linear interpolation and are spanned by

$$B_{i}^{1}(x) = \begin{cases} 0, & x \leq x_{i} \text{ or } x \geq x_{i+2} \\ \frac{x - x_{i}}{x_{i+1} - x_{i}}, & x_{i} \leq x \leq x_{i+1}, \\ \frac{x_{i+2} - x}{x_{i+2} - x_{i+1}}, & x_{i+1} \leq x \leq x_{i+2}. \end{cases}$$

The B_i^1 -spline is the tent function with peak at x_{i+1} and is zero for $x \le x_i$ and $x \ge x_{i+2}$.

- Both B^0 and $\overline{B^1}$ splines form cardinal bases for interpolation at the x_i 's.
- Higher-order B-splines are defined by the recursive relation = =

The Graduate Center, CUNY (2020)

Approximation and interpolation

,