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1 Introduction

A notable failure of the textbook representative agent New Keynesian (RANK) model is its lack of Keynesian

mechanisms in the transmission of contemporaneous changes in real interest rates. As highlighted in Kaplan,

Moll, and Violante (2018), monetary policy in RANK models works almost exclusively through intertemporal

substitution. In the literature, this channel is often referred to as the direct effect channel. The conventional

Keynesian explanation, however, emphasizes the role of changes in income in monetary policy transmission.

The first round change in consumption due to intertemporal substation, the argument goes, generates a

change in income which leads to additional changes in consumption.

In the paper, we study how the transmission of monetary policy innovations is affected by the endogenous

response of the central bank to standard macroeconomic aggregates in a two-agent New Keynesian model

(TANK) similar to that used in Bilbiie (2008) and Debortoli and Gaĺı (2018). We focus on how the stance

of monetary policy and the fraction of savers in the economy jointly affect the transmission. We consider

both contemporaneous and future monetary policy innovations. In both cases, we assume that the agents

learn about the innovation in the current period. One can view the exercise as studying the transmission

of monetary policy “news shocks” during a period of conventional monetary policy with the central bank

following a standard Taylor rule.1

The literature has largely focused on monetary policy innovations that generate one-for-one changes

in the real interest rate (Bilbiie 2019 and Kaplan, Moll, and Violante 2018 Section I). A central bank can

implement this by following a Taylor rule that fully offsets changes in expected inflation and does not respond

to any other macroeconomic variables. By focusing on innovations that generate one-for-one changes in the

real interest rate, one can split the response of consumption to the innovation into a direct, price effect and

an indirect, income effect. With a standard Taylor rule (i.e. one that more than offsets changes in expected

inflation or responds to other macroeconomic variables), a one-unit innovation in the monetary policy shock

does not necessarily generate a one-unit change in the real interest rate. In our analysis, we define the direct

effect of a monetary policy innovation as the part of the consumption response attributable to the innovation

holding endogenous variables such as income and inflation constant. The indirect effect, therefore, captures

the part of the response due to changes in income and changes in the real interest rate attributable to the

central bank’s endogenous response and the response of expected inflation.

When the central bank responds endogenously to macroeconomic variables, the indirect effect of a mon-

etary policy innovation can be either positive or negative. We show that the indirect effect is negative when

the response of the central bank is sufficiently strong. We provide an interpretation of this result by further

decomposing the indirect effect into an indirect income effect and an indirect real rate effect. The indirect

1. Maliar and Taylor (2024) consider monetary policy “news shocks” in a RANK model.
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real rate effect captures the response of consumption to changes in the real rate that are due to the central

bank’s response and changes in expected inflation rather than real interest rate changes that are due directly

to the innovation and the exogenous shock.

Following a monetary policy innovation, an increase in income, all else equal, works to increase con-

sumption and contributes positively to the indirect effect. Since the central bank responds to the increase

in inflation, however, with sticky prices, the real interest rate also increases. The (relatively) higher real

rate contributes negatively to the indirect effect. When the central bank’s response is sufficiently strong, the

latter effect dominates leading to a negative indirect effect.

Only agents who have the ability to save respond to a change in the real interest rate. Therefore, for a

fixed monetary policy rule, the magnitude of the indirect real rate effect depends on the fraction of savers

in the economy. We show that the magnitude of the indirect real rate effect declines as the share of non-

savers increases. In other words, a certain parameterization of the central bank’s policy rule may generate a

negative indirect effect when many agents have access to savings, but the same parameterization of the rule

may generate a positive indirect effect when few agents have access to savings.

The relative magnitudes of the two components of the indirect effect are also affected by the horizon of

the innovation. Specifically, the magnitude of the indirect real rate effect declines relative to the indirect

income effect as the horizon increases. Consequently, under a given parameterization, the indirect effect of a

contemporaneous innovation may be negative while the indirect effect of an innovation in the distant future

is positive.

Related Literature

Much work has been done on how heterogeneity affects monetary policy transmission in New Keynesian

models (marginal propensity to consume heterogeneity in Auclert 2019, marginal propensity to bear risk

heterogeneity in Kekre and Lenel 2022 and marginal propensity to invest heterogeneity in Luetticke 2021).

Our work is most closely related to the literature that focuses on the role of heterogeneity in shaping

the direct and indirect transmission of monetary policy. In this strand of the literature, the response

of consumption to a change in the real interest rate is split into a direct, partial equilibrium effect that

captures the response of consumption to changes in real interest rates holding income fixed and an indirect,

general equilibrium effect that captures the response of consumption due to the induced change in income.

Using this decomposition, Kaplan, Moll, and Violante (2018) show that nearly all of the transmission of

a contemporaneous monetary policy innovation is due to the direct effect in a representative agent New

Keynesian model. In their TANK model, the proportion of the total response of consumption attributable

to the direct effect is roughly equal to the fraction of savers in the economy. Bilbiie (2020) provides a similar

decomposition in an analytically tractable heterogeneous agent New Keynesian model with idiosyncratic
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risk (THANK). He shows that the share of the total response of consumption due to the indirect effect is

amplified when income risk is countercyclical. The opposite is true when income risk is procyclical.

The present paper complements the existing literature by focusing on the direct and indirect effects

of monetary policy innovations as opposed to the direct and indirect effects of real interest rate changes.

When the central bank follows a standard Taylor rule, part of the change in the real interest rate following a

monetary policy innovation is due to the endogenous response of the central bank. Our analysis separates the

response of consumption to these changes from the response of consumption directly due to the innovation

and exogenous shock.

Outline

The remainder of the paper is as follows. In Section 2, we present the linearized model. Section 3 presents

our decomposition of responses to monetary policy innovations. In Section 4, we analyze the case of a

contemporaneous Phillips curve. In Section 5, we consider a forward-looking Phillips curve. Section 6

concludes. The non-linear model and derivations are presented in Appendix 7.

2 Model

The model is a standard two-agent New Keynesian model with sticky prices and flexible wages as in Bilbiie

(2008) and Debortoli and Gaĺı (2018). There is a unit mass of agents. The share of non-savers or constrained

agents is given by λ. These agents do not hold any assets either because they are not permitted to trade assets

by assumption or because they are fully myopic. The share of savers or unconstrained agents is then given

by 1− λ. These agents are forward-looking and are permitted to trade in all asset markets. Both household

types derive flow utility from consumption and dis-utility from supplying labor. The remaining details of the

non-linear model are relegated to Appendix 7.1. In Appendix 7.2, we log-linearize the equilibrium conditions

of the non-linear model. Throughout the remainder of the paper, we work with the log-linearized model.

Denote the output gap as yt, consumption as ct, the net inflation rate as πt, the net nominal interest rate

as it, the monetary policy shock as vt and the innovation to the monetary policy shock as εvt . The future

sequence of innovations,
{
εvt+τ

}∞
τ=0

, is revealed to agents in period t and is deterministic. The linearized

model is characterized by an IS curve, a Taylor rule, a goods market clearing condition, a law of motion for
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the monetary policy shock and a Phillips curve. The first four equations are given by

[IS Curve] ct = Et [ct+1]−
1

σ (1− Φ)
(it − Et [πt+1]) (1)

[Taylor Rule] it = ϕππt + ϕEπ
Et [πt+1] + ϕyyt + vt (2)

[Goods Market Clearing] ct = yt (3)

[Monetary Policy Shock] vt = ρvvt−1 + εvt (4)

Household heterogeneity is captured by two terms in the linearized model: Φ and κ whose definitions

are given by equation 119 and equation 116, respectively. The term 1
(1−Φ) that multiplies the elasticity of

intertemporal substitution, 1
σ , in the IS curve is the elasticity of aggregate consumption to consumption of the

unconstrained agent. When all agents are unconstrained, Φ = 0. We limit our attention to parameterizations

where Φ < 1. Bilbiie (2008) refers to the case when Φ > 1 as the “inverted aggregate demand” case.2 The

slope of the Phillips curve, κ, is also affected by household heterogeneity as the two types of households may

make different labor supply decisions.

The particular specification of the Phillips curve depends on the details of the price adjustment frictions

firms face. We consider two alternatives. Both alternatives assume that the firms discount future dividends

using the stochastic discount factor of the unconstrained household. The rate of time preference of the

unconstrained household is given by β. The slope of the Phillips curve is the same in both alternatives. In

the first alternative, each firm faces a Rotemberg (1982) price adjustment cost where the cost depends on

the price a firm sets today relative to the aggregate price level from the previous period which the firm treats

as exogenous. This specification was previously used in Bilbiie (2019). Under this assumption, as shown in

Appendix 7.1.4, the Phillips curve is given by equation 5a. In the second alternative, the price adjustment

cost depends on the price a firm chooses today relative to the price the firm set in the previous period. As

shown in Appendix 7.1.5, this setup results in the Phillips curve given in equation 5b which is the textbook

New Keynesian Phillips curve (Gaĺı 2015).{
πt = κyt (5a)

πt = βEt [πt+1] + κyt (5b)

We refer to the Phillips curve given by equation 5a as the “contemporaneous Phillips curve”. The Phillips

curve given by equation 5b is referred to as the “forward-looking Phillips curve”.

3 Decomposing the Response

In this section, we start by decomposing the response of consumption to a monetary policy innovation into

a direct effect and an indirect effect. We then provide a further decomposition of the indirect effect. We

2. In the inverted aggregate demand case, an increase in the real interest rate generates an increase in consumption.
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use this additional decomposition to explain why the indirect effect may be negative when the central bank

responds endogenously to macroeconomic aggregates as it does when following a conventional Taylor rule.

3.1 Direct and Indirect Effects

We begin by decomposing the response of consumption to a monetary policy innovation into two parts.

The first part is what we call the direct effect, which is the response of consumption to an innovation in

the monetary policy shock holding all endogenous variables fixed.3 Consider an innovation to the monetary

policy shock occurring T ≥ 0 periods in the future (i.e. at time t + T ). If the persistence of the monetary

policy shock is zero, then the direct effect is computed as the partial derivative of consumption in period t

with respect to the innovation to the monetary policy shock in period t+T , ∂ct
∂εvt+T

. If the shock is persistent,

then the direct effect also captures the response of consumption to the shock in periods following the period

in which the innovation to the shock occurs. That is, for an innovation T periods in the future, we include(
∂ct

∂vt+T+τ

)(
dvt+T+τ

dεvt+T

)
for τ ≥ 0 as part of the direct effect. Denote the steady state output gap as y∗ and

the steady state net inflation rate as π∗. The direct effect is given by dct
dεvt+T

∣∣∣∣
{yt+τ=y∗}∞

τ=0,{πt+τ=π∗}∞
τ=0

. We

denote this as dct
dεvt+T

∣∣∣∣
y∗,π∗

.

The second component of the response is the indirect effect. The indirect effect is the portion of the

total effect, dct
dεvt+T

, not due to the direct effect. The indirect effect captures the response of consumption

to changes in income as well as the response to changes in the real interest rate due to the central bank’s

endogenous response to macroeconomic variables and changes in expected inflation. Using the direct effect

and total effect, we compute the direct effect share ϑDE
T and the indirect effect share ϑIET .

ϑDE
T ≜

(
dct

dεvt+T

∣∣∣∣
y∗,π∗

)
(

dct
dεvt+T

) (6)

ϑIET ≜ 1−

(
dct

dεvt+T

∣∣∣∣
y∗,π∗

)
(

dct
dεvt+T

) (7)

Consider a one-time positive innovation to the monetary policy shock occurring T periods in the future.

The persistence of the monetary policy shock is given by ρv. The share of the aggregate consumption response

in the log-linearized model apportioned to the consumption response of constrained agents is denoted by

ζ ∈ (0, 1). The direct effect of the innovation, as shown in Appendix 7.3.2, is given by

dct
dεvt+T

∣∣∣∣
y∗,π∗

= −
( 1

σβ (1− ζ)

1− [(1− Φ) (1− ζ)β] ρv

)
× [(1− Φ) (1− ζ)β]

T
(8)

3. We thank an anonymous referee for suggesting this decomposition.
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From equation 8, one sees that the direct effect is always negative. This follows from the fact that both Φ

and ζ are positive and less than unity. Additionally, the size of the direct effect decreases with the horizon

of the innovation and converges to zero in the limit.

The direct effect is a partial equilibrium effect. Therefore, the size of the direct effect is independent of

the pricing frictions firms face. Additionally, the direct effect does not depend on the responsiveness of the

central bank to macroeconomic aggregates.

Unlike the level of the direct effect, however, the direct effect share does depend on the other aspects

of the model. In general, the direct effect share may be less than or greater than unity. A direct effect

share greater than unity implies that the indirect effect is negative. In Section 3.2, we further decompose the

indirect effect to show how the central bank’s response to macroeconomic variables can generate a negative

indirect effect.

3.2 Indirect Income and Indirect Real Rate Effects

Using the planned expenditure curve, one can see what drives a negative indirect effect. The planned expen-

diture curve expresses consumption as a function of income, yt, and the real interest rate, (it − E [πt+1]).

Denote the forward operator as F . For any variable xt, we have Fxt = xt+1. As shown in Appendix 7.3,

the planned expenditure curve can be written as

ct =

[
1− (1− Φ) (1− ζ)β

1− (1− Φ) (1− ζ)βF

]
yt −

[ 1
σβ (1− ζ)

1− (1− Φ) (1− ζ)βF

]
(it − Et [πt+1]) (9)

=

Indirect Income︷ ︸︸ ︷[
1− (1− Φ) (1− ζ)β

1− (1− Φ) (1− ζ)βF

]
yt

Indirect Real Rate︷ ︸︸ ︷
−
[ 1

σβ (1− ζ)

1− (1− Φ) (1− ζ)βF

]
([it − vt]− Et [πt+1])︸ ︷︷ ︸

Indirect

+

(
−
[ 1

σβ (1− ζ)

1− (1− Φ) (1− ζ)βF

]
vt

)
︸ ︷︷ ︸

Direct

(10)

In equation 10, we split the indirect effect into an indirect income effect and an indirect real rate effect. The

indirect income effect captures the portion of the indirect effect due to changes in income absent changes in

the real interest rate. The indirect real rate effect captures the portion of the indirect effect due to changes

in the real interest rate absent changes in income. The above decomposition shows that the indirect effect

is negative when the magnitude of the indirect real rate effect exceeds the magnitude of the indirect income

effect.

In the model with a contemporaneous Phillips curve, we can use the decomposition to analytically

characterize the threshold level of the central bank’s response to inflation that generates a negative indirect

effect if the innovation is contemporaneous or in the distant future. We consider these cases in Section 4.1

and Section 4.2, respectively. With a forward-looking Phillips curve, the decomposition only permits an
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analytical characterization in the case of a contemporaneous innovation which we consider in Section 5.1.

For all other cases, we rely on numerical results.

4 Contemporaneous Phillips Curve

Unlike the direct effect of a monetary policy innovation, the total effect incorporates general equilibrium

feedback effects. Therefore, the total effect depends on the pricing frictions, the systematic component of

monetary policy as captured by the parameters of the Taylor rule and all other model features. In this

section, we consider the case when the Rotemberg (1982) adjustment cost a firm faces when resetting its

price depends on the aggregate price level in the previous period which the firm takes as given as in Bilbiie

(2019). In this case, the linearized Phillips curve, as shown in Appendix 7.1.4, is given by equation 5a and

restated here

π = κyt (11)

In this section, we restrict our attention to a Taylor rule that only responds to inflation

it = ϕππt + vt (12)

As shown in Appendix 7.4, the total effect of an innovation occurring T periods in the future is

dct
dεvt+T

= −

 1

σ

[
1

1
σκϕπ + (1− Φ)

] 1

1−
[

1
σκ+(1−Φ)

1
σκϕπ+(1−Φ)

ρv

]
×

[ 1
σκ+ (1− Φ)

1
σκϕπ + (1− Φ)

]T
(13)

The total effect of the innovation converges to zero as T → ∞ so long as ϕπ > 1. As seen in equation 13,

the speed of convergence is determined by the central bank’s response to inflation. Finally, the total effect

is always negative. Consequently, positive monetary policy innovations are contractionary, and negative

monetary policy innovations are expansionary as would be expected.

The direct effect share, ϑDE
T , is given by the ratio of the direct effect (equation 8) to the total effect

(equation 13).

ϑDE
T =


β(1−ζ)

1−[(1−Φ)(1−ζ)β]ρv[
1

1
σκϕπ+(1−Φ)

] 1

1−
[

1
σ

κ+(1−Φ)

1
σ

κϕπ+(1−Φ)
ρv

]


×

 (1− Φ) (1− ζ)β(
1
σκ+(1−Φ)

1
σκϕπ+(1−Φ)

)
T

(14)

From equation 14, one sees that the direct effect share depends on the share of constrained agents, through

Φ, ζ and κ; the stance of monetary policy, through ϕπ and the horizon of the innovation, through T . The

remainder of the paper analyzes how the direct effect share and, consequently, the sign of the indirect effect

depend on these three dimensions.
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4.1 Contemporaneous Innovation

In this section and Section 4.2, we assume that we can interchange differentiation and the application of the

forward operator. In Section 4.3 we provide additional discussion of when this assumption is justified and

when it leads to erroneous conclusions.

Consider a contemporaneous innovation (i.e. T = 0). Using market clearing, ct = yt, the Taylor rule,

the Phillips curve and the fact that, in response to a contemporaneous innovation, dct+1

dεvt
= ρv

dct
dεvt

, equation

10 can be written as

ct =

[
1

1− (1− Φ) (1− ζ)βF

]
Indirect Income︷ ︸︸ ︷

[1− (1− Φ) (1− ζ)β]

Indirect Real Rate︷ ︸︸ ︷
−
[
1

σ
β (1− ζ)

]
(ϕπκ− ρvκ)

 yt
︸ ︷︷ ︸

Indirect

−
[ 1

σβ (1− ζ)

1− (1− Φ) (1− ζ)βF

]
vt︸ ︷︷ ︸

Direct

(15)

The indirect effect is negative when the indirect real rate effect dominates the indirect income effect

Indirect Income︷ ︸︸ ︷
[1− (1− Φ) (1− ζ)β]

Indirect Real Rate︷ ︸︸ ︷
−
[
1

σ
β (1− ζ)

]
(ϕπκ− ρvκ) < 0 (16)

The inequality is satisfied if the central bank’s response to inflation, ϕπ, is sufficiently strong. Define the

threshold level as ϕNIE
π (T ) so that ϕπ > ϕNIE

π (T ) results in a negative indirect effect when the innovation

occurs T periods in the future. The formula for ϕNIE
π (0), derived from inequality 16, is given by

ϕNIE
π (0) ≜

σ

κ

[
1− (1− Φ) (1− ζ)β

β (1− ζ)

]
+ ρv (17)

There is a positive relationship between the share of constrained agents, λ, and ϕNIE
π (0) as shown in Figure

1. The figure partitions (λ, ϕπ) space into regions of positive indirect effects, negative indirect effects and

indeterminacy. The boundary between the positive indirect effect region and negative indirect effect region

is determined by tracing out ϕNIE
π (0) as a function of λ. The orange-shaded region consists of (λ, ϕπ)

combinations where the indirect effect is negative (the direct effect share exceeds unity). The blue-shaded

region is the region of the space where the indirect effect is positive (the direct effect share is less than unity).

The green-shaded region contains the parameter combinations where the solution is indeterminate.
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Figure 1: Contemporaneous Phillips Curve, Contemporaneous Innovation Indirect Effect Regions

Notes: The figure partitions λ (horizontal axis), ϕπ (vertical axis) space into regions of positive indirect effects,

negative indirect effects and indeterminacy. The orange-shaded region corresponds to λ and ϕπ combinations where

the indirect effect is negative. The blue-shaded region corresponds to λ and ϕπ combinations where the indirect effect

is positive. The green-shaded region corresponds to λ and ϕπ combinations where the solution is indeterminate.

To understand why ϕNIE
π (0) increases with the share of constrained agents, λ, consider a negative

monetary policy innovation. The direct effect of the innovation works to increase the consumption of the

(non-myopic) unconstrained agents. To meet the higher level of desired consumption, hours worked and

output both increase. These increases result in higher income and, therefore, higher consumption for both

unconstrained and constrained agents. This is the indirect income effect. The central bank’s endogenous

response, which works to increase the real interest rate, however, has a countervailing effect, working to

reduce desired consumption for the unconstrained agents. This effect is the indirect real rate effect. The

question then becomes, “Which effect dominates?” With few constrained agents and many unconstrained

agents (i.e. a low value of λ), many agents adjust their consumption following the central bank’s endogenous

response. The desire to increase consumption due to higher income is smaller in magnitude than the desire to

decrease consumption due to the higher real interest rate. Therefore, the indirect real rate effect dominates,

and the indirect effect is negative.

As the share of constrained agents increases (i.e. λ increases), fewer agents respond to the central bank’s

endogenous increase in the real interest rate. For the consumption response to the endogenous increase in
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the interest rate to more than offset the consumption response due to higher income, a larger increase in the

interest rate is needed. In other words, the central bank needs to more aggressively respond to increases in

inflation in order to achieve a negative indirect effect. Consequently, ϕNIE
π (0) increases with λ. This can

be seen in Figure 1 by comparing the point (λ = 0.05, ϕπ = 3.0), denoted by the green circle, with the point

(λ = 0.21, ϕπ = 3.0) which is denoted by the red square. In both economies, the central bank’s response to

inflation is the same. When only 5% of the population is constrained, the direct effect share exceeds unity

which is why the green circle is in the orange, negative indirect effect region. On the other hand, when 21%

of the population is constrained, the direct effect share is less than unity and the indirect effect is positive

(i.e. the red square is in the blue, positive indirect effect region).

It is important to note that a negative indirect effect does not imply that the real interest rate falls

following a positive monetary policy innovation.4 Recall that the indirect real rate effect does not include

the portion of the change in the real interest rate directly attributable to the monetary policy shocks.

Therefore, the changes in the model’s endogenous variables may generate a decline in the real rate, but,

when the change in the exogenous variable is taken into account, the overall change in the real rate is

positive. Mathematically, the following sequence of inequalities is possible.

d

dεvt+T

([it − vt]− Et [πt+1]) < 0 <
d

dεvt+T

(it − Et [πt+1]) (18)

Figure 4 in Appendix 7.6.1 shows that the inequalities tend to hold. That is, positive contemporaneous

monetary policy innovations generate real interest rate increases even when the indirect effect is negative.

Note that we can directly use ϑDE
T

∣∣
T=0

to derive ϕNIE
π (0). This allows us to verify that interchanging

differentiation and application of the forward operator is permissible for a given Phillips curve (contempo-

raneous versus forward-looking) and innovation horizon. The direct effect share, ϑDE
T , is given by the ratio

of the direct effect (equation 8) to the total effect (equation 13). When the innovation is contemporaneous,

the direct effect, total effect and direct effect share are given by

dct
dεvt+T

∣∣∣∣
y∗,π∗,T=0

= −
1
σβ (1− ζ)

1− [(1− Φ) (1− ζ)β] ρv
(19)

dct
dεvt+T

∣∣∣∣
T=0

= − 1

σ

[
1

1
σκ (ϕπ − ρv) + (1− Φ) (1− ρv)

]
(20)

ϑDE
T

∣∣∣∣
T=0

=
β (1− ζ)

[
1
σκ (ϕπ − ρv) + (1− Φ) (1− ρv)

]
1− [(1− Φ) (1− ζ)β] ρv

(21)

By setting equation 21 equal to unity and solving for ϕπ, we arrive at the same bound derived previously,

ϕNIE
π (0).

4. We thank an anonymous referee for bringing this point to our attention.
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4.2 Innovation in the Distant Future

We now consider the case of an innovation occurring at time T with T ∗ < T <∞ where T ∗ ≫ 0.5 When the

innovation occurs T > 1 periods in the future, the relationship between consumption today and consumption

next period is given by

dct+1

dεvt+T

=

[ 1
σκϕπ + (1− Φ)
1
σκ+ (1− Φ)

]
dct
dεvt+T

(22)

Using this relationship, the Taylor rule, the Phillips curve and the market clearing condition in equation 10,

we see that the indirect effect is negative when the following inequality is satisfied.

Indirect Income︷ ︸︸ ︷
[1− (1− Φ) (1− ζ)β]

Indirect Real Rate︷ ︸︸ ︷
−
[
1

σ
β (1− ζ)

](
ϕπκ−

[ 1
σκϕπ + (1− Φ)
1
σκ+ (1− Φ)

]
κ

)
< 0 (23)

Again, we can rearrange the inequality and solve for the threshold level for the central bank’s response to

inflation that leads to a negative indirect effect. Denote the threshold level as ϕNIE
π (∞). The formula for

ϕNIE
π (∞) is given by

ϕNIE
π (∞) ≜

σ

κ

[
1− (1− Φ) (1− ζ)β

β (1− ζ)

]
+

1

(1− Φ) (1− ζ)β
(24)

As shown in Figure 5 in Appendix 7.6, ϕNIE
π (∞) is increasing in λ. Additionally, ϕNIE

π (∞) > ϕNIE
π (0)

for all values of λ. Note that, unlike in the case of a contemporaneous innovation, when the innovation

is in the distant future, the persistence of the shock, ρv, does not affect the bound. The reason why the

shock persistence appears in the formula for ϕNIE
π (T ) when the innovation is contemporaneous is that the

persistence determines the relationship between consumption in consecutive time periods (i.e. dct+1

dεvt
= ρv

dct
dεvt

).

When the innovation occurs T > T ∗ periods in the future, the relationship between consumption today and

consumption next period is given by equation 22 which does not depend on ρv.

One can alternatively use the direct effect share, ϑDE
T

∣∣
T>T∗ , to derive the threshold. The direct effect

share of an innovation in the distant future is determined by the following ratio

ϑDE
T

∣∣∣∣
T>T∗

∝

 (1− Φ) (1− ζ)β(
1
σκ+(1−Φ)

1
σκϕπ+(1−Φ)

)
T

(25)

If one sets the term in brackets equal to unity and solves for ϕπ, one arrives at the same bound for ϕNIE
π (∞)

given in equation 24.

5. One can think of this as something similar to the limit case of taking T to infinity. In the analysis, we rely on there being a

well defined relationship between consumption in consecutive periods. In much of the analysis, innovations in the infinite future

have no effect on consumption today (i.e. dct
dεv

t+T
|T→∞ = 0). Therefore, the relationship between consumption in consective

periods is not well defined in this case as ct+1 = act for any a ∈ R.
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4.3 Innovation in the Intermediate Future

For intermediate values of T , we are unable to derive an analytical expression for the cutoff value of ϕπ

that results in a negative indirect effect, ϕNIE
π (T ). In Section 4.1 and Section 4.2, we assumed that we

could interchange differentiation and application of the forward operator. Performing this interchange is

not problematic when considering contemporaneous innovations as the relationship between consumption in

period t + τ and consumption in period t + 1 + τ is the same as the relationship between consumption in

period t and consumption in period t+ 1(
dct+1

dεvt

)
(

dct
dεvt

) =

(
dct+1+τ

dεvt

)
(

dct+τ

dεvt

) = ρv ∀ 0 ≤ τ <∞

When the innovation is in the future, the relationship between consumption in consecutive periods is not

constant. There is a constant relationship before the innovation and a constant, though different, relationship

following the innovation. If the innovation is sufficiently far in the future, as was the case considered in Section

4.2, the contribution from terms dated period t+T or later has a negligible effect. Therefore, we can directly

use the relationship presented in equation 22 in equation 10 and ignore the forward operator.

In the intermediate future, both the contribution from future income changes to future innovations and

the contribution from future income changes to past innovations have a non-negligible effect. In other words,

interchanging differentiation and application of the forward operator is both mathematically incorrect and

leads to incorrect conclusions. However, we can still numerically solve for the value of ϕπ that sets the direct

effect share equal to unity for T ∈ {1, ..., T ∗}. We rely on the numerical results to verify that the positive

relationship between the share of constrained agents, λ, and the cutoff level of the central bank’s response to

inflation which generates a negative indirect effect, ϕNIE
π (T ), continues to hold when the innovation is in the

intermediate future. Figure 2 plots ϕNIE
π (T ) as a function of λ for T ∈ {1, 10, 50}. The blue line is for T = 1,

the orange line is for T = 10 and the green line is for T = 50. For a fixed value of T , (λ, ϕπ) combinations

above the line corresponding to that value of T result in a negative indirect effect while combinations below

the line result in a positive indirect effects.

13



Figure 2: Threshold Inflation Response for Intermediate Values of T

Notes: The figure plots ϕNIE
π (T ) as a function of λ for T ∈ {1, 10, 50}. The lines partition λ (horizontal axis), ϕπ

(vertical axis) space into regions of positive and negative indirect effects with each line corresponding to a different

innovation horizon, T . For a fixed value of λ, ϕπ values above a given line result in a negative indirect effect while

values of ϕπ below the line result in a positive indirect effect. The blue line is for an innovation one period in the

future (i.e. ϕNIE
π (1)). The orange line is for an innovation 10 periods in the future (i.e. ϕNIE

π (10)). The green line

is for an innovation 50 periods in the future (i.e. ϕNIE
π (50)).

From the figure, one sees that the positive relationship between λ and ϕNIE
π (T ) continues to hold.

Additionally, we see that the threshold level for an innovation one period in the future, ϕNIE
π (1), lies

uniformly below the threshold level for an innovation 10 periods in the future, ϕNIE
π (10). In other words,

for a given share of constrained agents, the threshold level is increasing in T .

The reason for this result is as follows. When the innovation is in the future, changes in consumption

increase in magnitude as one approaches the date of the innovation. Following the innovation, changes in

consumption decrease in magnitude.

dct+1+τ

dεvt+T

=



[ 1
σκϕπ + (1− Φ)
1
σκ+ (1− Φ)

]
︸ ︷︷ ︸

>1

dct+τ

dεvt+T
if τ < T

ρv︸︷︷︸
<1

dct+τ

dεvt+T
if τ ≥ T

(26)

For concreteness, consider a monetary policy innovation that increases consumption. Since future inflation
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is proportional to future consumption (see equation 11), all else equal, the real interest rate is lower in an

arbitrary period leading up to the innovation than it is in a period following the innovation.

it −

πt+1︷ ︸︸ ︷
κ

[ 1
σκϕπ + (1− Φ)
1
σκ+ (1− Φ)

]
ct < it −

πt+1︷ ︸︸ ︷
κρvct (27)

By construction, the number of periods leading up to the innovation increases with the horizon of the

innovation. Consequently, all else equal, the indirect real rate effect declines in magnitude with the horizon.

Therefore, to generate an indirect real rate effect large enough in magnitude to offset the indirect income

effect, the central bank needs to be more responsive to inflation as T increases. As a result, ϕNIE
π (T ) is

increasing in the horizon of the innovation.

5 Forward Looking Phillips Curve

We now consider the case when the Rotemberg (1982) cost a firm faces when adjusting its price depends on

the price the firm set in the previous period. We present the price setting problem in Appendix 7.1.5. The

linearized model generates the same Phillips curve as in the textbook New Keynesian model (Gaĺı 2015)

which we refer to as the “forward-looking Phillips curve”. The linearized Phillips curve is given by equation

5b which we restate here

πt = βEt [πt+1] + κyt (28)

With a forward-looking Phillips curve, we can only characterize the regions of positive and negative indirect

effects analytically in the case of a contemporaneous innovation, (i.e. T = 0). Following our analysis of a

contemporaneous innovation, we provide a brief commentary on future innovations.

5.1 Contemporaneous Innovation

When the monetary policy innovation is contemporaneous, the relationship between the response of inflation

in period t and the response of inflation in period t+ 1 is given by

dπt+1

dεvt
= ρv

dπt
dεvt

(29)

For the derivation, see Appendix 7.5. Using this relationship and the Phillips curve in equation 10, we see

that the indirect effect is negative when the following inequality is satisfied

Indirect Income︷ ︸︸ ︷
[1− (1− Φ) (1− ζ)β]

1

κ
(1− βρv)

Indirect Real Rate︷ ︸︸ ︷
−
[
1

σ
β (1− ζ)

](
ϕπ + (ϕEπ − 1) ρv + ϕy

1

κ
(1− βρv)

)
< 0 (30)
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One can use the inequality to partition the parameter space into a region where a contemporaneous innovation

generates a positive indirect effect and a region where a contemporaneous innovation generates a negative

indirect effect. For the sake of comparison with the previous section, we only present the cutoff value of the

central bank’s response to inflation, ϕπ, that generates a negative indirect effect, denoted as ϕNIE,FPC
π (T ).

That is, for ϕπ > ϕNIE,FPC
π (T ) the indirect effect of an innovation T periods in the future is negative. We

use the superscript “FPC” to denote that the bound corresponds to the model with the forward-looking

Phillips curve.

ϕNIE,FPC
π (0) ≜

σ

κ

[1− (1− Φ) (1− ζ)β] (1− βρv)

β (1− ζ)
− (ϕEπ − 1) ρv − ϕy

1

κ
(1− βρv) (31)

If the central bank only responds to inflation (i.e. ϕEπ = ϕy = 0), as in Section 4, ϕNIE,FPC
π (0) can be

written as

ϕNIE,FPC
π (0) = ϕNIE

π (0)− σ

κ

[1− (1− Φ) (1− ζ)β]

β (1− ζ)
βρv (32)

From equation 32, we see that the threshold level that results in a negative indirect effect is lower in the

model with the forward-looking Phillips curve than in the model with the contemporaneous Phillips curve

so long as the monetary policy shock is persistent (i.e. ρv ̸= 0). The reason for this result is that, unlike in

the case of the contemporaneous Phillips curve, with the forward-looking Phillips curve, inflation today also

depends on inflation next period.

In Figure 3, we again partition (λ, ϕπ) space into three regions: a region of where a contemporaneous

monetary policy innovation generates a positive indirect effect (blue region), a region where an innovation

generates a negative indirect effect (orange region) and an indeterminacy region (green region).
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Figure 3: Forward-looking Phillips Curve, Contemporaneous Innovation Indirect Effect Regions

Notes: The figure partitions λ (horizontal axis), ϕπ (vertical axis) space into regions of positive indirect effects,

negative indirect effects and indeterminacy. The orange-shaded region corresponds to λ and ϕπ combinations where

the indirect effect is negative. The blue-shaded region corresponds to λ and ϕπ combinations where the indirect effect

is positive. The green-shaded region corresponds to λ and ϕπ combinations where the solution is indeterminate.

The fact that the threshold in the model with the forward-looking Phillips curve, ϕNIE,FPC
π (0), is shifted

downward in (λ, ϕ) space relative to the threshold in the model with the contemporaneous Phillips curve,

ϕNIE
π (0), is reflected in Figure 3. As indicated by the point denoted with a green circle in Figure 3, with

a forward-looking Phillips curve, a central bank that assigns a weight of 1.2 to inflation in its Taylor rule

generates a negative indirect effect when 5% of the population is constrained (i.e. λ = 0.05 and ϕπ = 1.2).

With a contemporaneous Phillips curve, this parameter combination resulted in a positive indirect effect

as can be seen in Figure 1. The general takeaway from Figure 3 is that conventional parameter values

for the central bank’s response to inflation generate negative indirect effects when the model features a

forward-looking Phillips curve.

5.2 A Comment on Future Innovations

With a forward-looking Phillips curve, a positive future monetary policy innovation (i.e. an innovation T > 0

periods in the future) no longer necessarily generates a negative total effect. In other words, positive monetary

policy innovations can be expansionary, and negative monetary policy innovations can be contractionary. By
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responding to macroeconomic variables, the central bank undoes the effect of the initial innovation. Given

the empirical implausibility of this result, we do not consider this case any further.

6 Conclusion

In this paper, we study monetary policy transmission in a standard two-agent New Keynesian model. We

decompose the response of consumption to a monetary policy innovation into a direct and indirect effect.

We show that the direct effect share of a monetary policy innovation may exceed unity, leading to a negative

indirect effect. Our decomposition of the indirect effect shows that a negative indirect effect arises when

the indirect real rate effect is larger in magnitude than the indirect income effect. The relative magnitude

of the indirect real rate effect increases with the strength of the central bank’s response to macroeconomic

aggregates and the share of unconstrained agents. In the model with a contemporaneous Phillips curve, the

magnitude of the indirect real rate effect decreases with the horizon of the innovation. In the model with

a forward-looking Phillips curve, conventional values for the central bank’s response to inflation and output

result in a negative indirect effect following a contemporaneous monetary policy innovation.
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7 Appendix

7.1 Non-Linear Model

In this appendix, we present the non-linear model. In the model, time is discrete. The problems of the

various agents are all formulated sequentially. We start with a discussion of the household block of the

model. We then discuss how the government implements taxes and transfers. Next, we discuss the firm side
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of the model. We finish with a discussion of monetary policy and a summary of the model’s equilibrium

conditions. Throughout, we assume that the steady-state net inflation rate is equal to zero.

7.1.1 Households

The model is a variant of the TANK models studied in Bilbiie (2008) and Debortoli and Gaĺı (2018). In

the model, there is a continuum of agents uniformly distributed over the unit interval. Let j ∈ [0, 1] denote

the name of an agent. A fraction of agents, denoted by λ, are myopic or otherwise excluded from the asset

markets. We call these agents, with names j ∈ [0, λ], “constrained agents” or “non-savers”, and, when

needed, we denote their choices with a superscript K. Those agents with names j ∈ (λ, 1] are non-myopic

and participate in asset markets. We call these agents “unconstrained agents” or “savers” and denote their

choices with a superscript U .

Both agent types are infinitely lived. Agents have additively separable utility defined over composite

consumption, C•
t , and hours worked, N•

t . Composite consumption is composed of a continuum of differenti-

ated goods that are combined using a Dixit and Stiglitz (1977) aggregator with the elasticity of substitution

given by ε.

C•
t =

(∫ 1

0

(C•
t (i))

ε−1
ε di

) ε
ε−1

(33)

The price of one unit of composite consumption is denoted by Pt. The utility function for consumption and

dis-utility function for hours worked are both of the power form. The inverse elasticity of intertemporal

substitution is given by σ. The Frisch labor supply elasticity is given by φ.

The unconstrained household discounts the future at a rate β ∈ (0, 1). The household receives income

from supplying labor in the market. Nominal wages are denoted by Wt. Labor income is subject to a

linear tax with the tax rate given by δW . The household also derives income from its two types of assets:

one-period nominal bonds, BU
t−1, and shares of a mutual fund, FU

t−1. Nominal bonds pay a risk-free (gross)

nominal interest rate of Rt−1. The mutual fund owns all the equity in the goods-producing firms. The real

price of a share in the mutual fund is denoted by Qt. Ownership of a share in the mutual fund entitles the

household to a dividend payment of Dt. Dividend income is subject to a linear tax with the tax rate given

by δ. The household receives transfers denoted by TU
D,t and TU

W,t. The former transfer is funded by taxes

on dividends while the latter transfer is funded by taxes on labor income. Note that only the unconstrained

agent pays the former tax while both agents pay the latter tax. The unconstrained household uses its

resources to purchase consumption, nominal bonds and mutual fund shares. The unconstrained household

chooses sequences of consumption, labor, bonds and shares to maximize expected discounted utility subject

to its budget constraint, initial bond holdings, initial shareholdings and initial nominal interest rate. The

problem of the household is given by equations 34, 35 and 36. In equation 34, E0 denotes the expectation
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conditional on the information set available at time 0.

max
{CU

t ,NU
t ,BU

t ,FU
t }∞

t=0

E0

∞∑
t=0

βt

[(
CU

t

)1−σ − 1

1− σ
−
(
NU

t

)1+φ

1 + φ

]
(34)

CU
t +

BU
t

Pt
+QtF

U
t =

BU
t−1Rt−1

Pt
+
(
1− δW

) Wt

Pt
NU

t + [Qt + (1− δ)Dt]F
U
t−1 + TU

D,t + TU
W,t (35){

BU
−1, F

U
−1, R−1

}
given (36)

Denote the Lagrange multiplier on the budget constraint as ΛU
t . The unconstrained household’s first-order

conditions are

[
CU

t

]
:

(
CU

t

)−σ − ΛU
t = 0 (37)[

FU
t

]
: −ΛU

t Qt + Et

[
ΛU
t+1 [Qt+1 + (1− δ)Dt+1]

]
= 0 (38)[

BU
t

]
: −ΛU

t

1

Pt
+ βRtEt

[
ΛU
t+1

1

Pt+1

]
= 0 (39)

[
NU

t

]
: −

(
NU

t

)φ
+ ΛU

t

(
1− δW

) Wt

Pt
= 0 (40)

[
ΛU
t

]
:

BU
t−1Rt−1

Pt
+
(
1− δW

) Wt

Pt
NU

t + [Qt + (1− δ)Dt]F
U
t−1 + TU

D,t + TU
W,t−[

CU
t +

BU
t

Pt
+QtF

U
t

]
= 0 (41)

As mentioned previously, the constrained household is myopic or lacks access to asset markets. Therefore,

the constrained household solves a static problem each period. The constrained household receives labor

income which is subject to the same tax rate that unconstrained households face. The only other income the

constrained household receives is from transfers, TK
D,t and TK

W,t. The constrained household uses its entire

income to purchase consumption. The problem of the constrained household is to choose consumption and

hours worked in the present period to maximize utility subject to its budget constraint. The constrained

household’s objective function is given in equation 42 and the budget constraint in real terms is given in

equation 43.

max
{CK

t ,NK
t }∞

t=0

[(
CK

t

)1−σ − 1

1− σ
−
(
NK

t

)1+φ

1 + φ

]
(42)

CK
t =

(
1− δW

) Wt

Pt
NK

t + TK
D,t + TK

W,t (43)

Denote the Lagrange multiplier on the constrained household’s budget constraint as ΛK
t . The constrained

household’s first-order conditions are

[
CK

t

]
:

(
CK

t

)−σ − ΛK
t = 0 (44)[

NK
t

]
: −

(
NK

t

)φ
+ ΛK

t

(
1− δW

) Wt

Pt
= 0 (45)[

ΛK
t

]
:

(
1− δW

) Wt

Pt
NK

t + TK
D,t + TK

W,t − CK
t = 0 (46)
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7.1.2 Government

The government uses taxes on dividends and labor income to fund its transfers. The amount of redistribution

is determined by the tax sharing parameters, τ and τW . The dividend tax sharing parameter τ is restricted

to the interval [0, 1]. When τ = 1, all dividend taxes are transferred to the unconstrained household. When

τ = 0, all agents receive an equal transfer of δDt. We view the case of τ < 1 as redistribution in favor of

the constrained household as the constrained household receives more in transfers funded by dividend taxes

than it contributes in dividend taxes.

For the labor income tax sharing parameter τW , we restrict it to the interval
[
− 1−λ

λ , 1
]
. As is the

case with transfers of dividend taxes, when τW = 1, all labor income tax revenue is transferred to the

unconstrained household. At the opposite end of the interval, when τW = − 1−λ
λ , the constrained household

receives all of the labor income tax revenue. When τ = 0, both households receive the same amount in

transfers. Due to potential differences in labor supply, the amount received in transfers when τ = 0 may

differ from the amount the household pays in taxes.

The transfer rules for dividend tax revenues are given by equations 47 and 48. The transfer rules for

labor income tax revenues are given by equations 49 and 50.

[U Dividend Transfer] TU
D,t =

(
1 +

τλ

1− λ

)
δDt (47)

[K Dividend Transfer] TK
D,t = (1− τ) δDt (48)

[U Labor Income Transfer] TU
W,t =

(
1 +

τWλ

1− λ

)
δW

Wt

Pt
Nt (49)

[K Labor Income Transfer] TK
W,t =

(
1− τW

)
δW

Wt

Pt
Nt (50)

7.1.3 Firms

There is a continuum of goods-producing firms indexed by i ∈ [0.1]. The outputs produced by the different

firms are imperfect substitutes. Denote firm i’s output as Yt (i) and aggregate output as Yt. The demand

function for firm i’s output, derived from the cost minimization problem of households in Appendix 7.1.1, is

given by

Yt (i) =

(
Pt (i)

Pt

)−ε

Yt (51)

Each firm has a constant returns-to-scale production technology that uses labor to produce output. Denote

labor demand of firm i as Nd
t (i). Firm i’s output is given by

Yt (i) = Nd
t (i) (52)

A firm hires labor at a nominal wage rate of Wt. Each firm is able to reset its price in every period subject

to a Rotemberg (1982) price adjustment cost. The elasticity of the adjustment cost with respect to the net

22



inflation rate is given by ξ. We consider two variants of the price adjustment cost which we discuss in detail

in Appendix 7.1.4 and Appendix 7.1.5. Firms remit their profits to the mutual fund. Denote the real profits

of firm i as Dt (i) and the fraction of output going towards price adjustment costs as Ξt (i)Pt. Profits are

given by

Dt (i) =Yt (i) (1− Ξt (i))−
Wt

Pt
Nd

t (i) (53)

7.1.4 Contemporaneous Phillips Curve

In this section, we derive the contemporaneous Phillips curve. Following Bilbiie (2019), we assume that the

adjustment cost depends on the previous period’s aggregate price level, Pt−1, instead of the price chosen

by firm i in the previous period. In equilibrium, all firms choose the same price. Therefore, the aggregate

price level is the same as the price level chosen by firm i. However, firm i treats the aggregate price level

as exogenous when setting its price. Under this assumption, the price adjustment cost, denoted by Ξt (i), is

given by

Ξt (i) ≜
ξ

2

(
Pt (i)

Pt−1
− 1

)2

PtYt (54)

Firm i chooses its price to maximize the present discounted value of profits. The firm discounts using the

stochastic discount factor of the unconstrained household which we denote by ΛU
t,τ . Denote firm i’s real

marginal cost as mct. The profit maximization problem of firm i is given by

Pt (i) =P̂t(i)

∞∑
τ=t

ΛU
t,τ

P̂t (i)Yt (i)− PtmctYt (i)−
ξ

2

(
P̂t (i)

Pt−1
− 1

)2

PtYt

 (55)

Yt (i) = Yt

(
P̂t (i)

Pt

)−ε

(56)

The first order condition with respect to P̂t (i) is

(1− ε)Yt (i) + εmctYt (i)−
[
ξ

(
Pt (i)

Pt−1
− 1

)
Pt

Pt−1
Yt

]
= 0 (57)

In a symmetric equilibrium, Pt (i) = Pt and Yt (i) = Yt. Denote the real markup as Mt and the gross

inflation rate as Πt. The Phillips curve, equation 57, can be written as

Πt (Πt − 1) =
ε

ξ

(
mct −

ε− 1

ε

)
=
ε

ξ

(
1

Mt
− 1

M

)
(58)

Denoting the net inflation rate as πt and the log deviation of the markup from the steady state markup as

µt, a first-order Taylor expansion yields

πt = − ε

ξM
µt (59)
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7.1.5 Forward Looking Phillips Curve

In this section, we derive the forward-looking Phillips curve. We assume that the adjustment cost depends

on the price chosen by firm i in the previous period. Under this assumption, the price adjustment cost,

denoted by Ξt (i), is given by

Ξt (i) ≜
ξ

2

(
Pt (i)

Pt−1 (i)
− 1

)2

PtYt (60)

The profit maximization problem of firm i is given by

Pt (i) =P̂t(i)

∞∑
τ=t

ΛU
t,τ

P̂t (i)Yt (i)− PtmctYt (i)−
ξ

2

(
P̂t (i)

Pt−1 (i)
− 1

)2

PtYt

 (61)

Yt (i) = Yt

(
P̂t (i)

Pt

)−ε

(62)

The first order condition with respect to P̂t (i) is

(1− ε)Yt (i) + εmctYt (i)−
[
ξ

(
Pt (i)

Pt−1 (i)
− 1

)
Pt

Pt−1 (i)
Yt

]
+[

ΛU
t,t+1ξ

(
Pt+1 (i)

Pt (i)
− 1

)
Pt+1

Pt (i)
Yt+1

]
= 0 (63)

In a symmetric equilibrium, Pt (i) = Pt and Yt (i) = Yt. Therefore, under this assumption, the Phillips curve,

equation 63, can be written as

Πt (Πt − 1) =
ε

ξ

(
mct −

ε− 1

ε

)
+ Et

[
ΛU
t,t+1

Yt+1

Yt
Πt+1 (Πt+1 − 1)

]
=
ε

ξ

(
1

Mt
− 1

M

)
+ Et

[
ΛU
t,t+1

Yt+1

Yt
Πt+1 (Πt+1 − 1)

]
(64)

A first-order Taylor expansion yields

πt = − ε

ξM
µt + βEt [πt+1] (65)

7.1.6 Monetary Policy

To close the model, we assume that the central bank sets the nominal interest rate according to a Taylor rule.

The central bank responds to deviations of inflation and expected one-period ahead inflation from target

inflation and the deviation of output from its steady-state level. The strength of the central bank’s responses

to the deviations are given by ϕπ, ϕEπ
and ϕy, respectively. Denote the steady state nominal interest rate

as R∗ and the steady state level of output as Y ∗. We assume that the target net inflation rate is zero. The

monetary policy rule is subject to a shock, vt, that follows an AR (1) process. The persistence of the shock

is given by ρv. The innovation to the shock is denoted by εvt . The Taylor rule and the law of motion for the
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monetary policy shock are given by

Rt = R∗ (Πt)
ϕπ (Et [Πt+1])

ϕEπ

(
Yt
Y ∗

)ϕy

evt (66)

vt = ρvvt−1 + εvt (67)

The linearized Taylor rule is given by

it =ϕππt + ϕEπ
Et [πt+1] + ϕyyt + vt (68)

7.1.7 Equilibrium Conditions

The model features 20 endogenous variables.{
CU

t , F
U
t , B

U
t , N

U
t ,Λ

U
t , T

U
D,t, T

U
W,t, C

K
t , N

K
t ,Λ

K
t , T

K
D,t, T

K
W,t, Dt, Qt,Πt, Rt, Yt,Mt, N

d
t ,
Wt

Pt

}
The 21 equilibrium conditions, including a redundant market clearing condition, are

[
CU

t

]
:

(
CU

t

)−σ − ΛU
t = 0 (69)[

FU
t

]
: −ΛU

t Qt + Et

[
ΛU
t+1 [Qt+1 + (1− δ)Dt+1]

]
= 0 (70)[

BU
t

]
: −ΛU

t + βRtEt

[
ΛU
t+1

1

Πt+1

]
= 0 (71)

[
NU

t

]
: −

(
NU

t

)φ
+ ΛU

t

(
1− δW

) Wt

Pt
= 0 (72)

[
ΛU
t

]
:

BU
t−1Rt−1

Πt
+
(
1− δW

) Wt

Pt
NU

t + [Qt + (1− δ)Dt]F
U
t−1 + TU

D,t + TU
W,t−[

CU
t +BU

t +QtF
U
t

]
= 0 (73)[

CK
t

]
:

(
CK

t

)−σ − ΛK
t = 0 (74)[

NK
t

]
: −

(
NK

t

)φ
+ ΛK

t

(
1− δW

) Wt

Pt
= 0 (75)[

ΛK
t

]
:

(
1− δW

) Wt

Pt
NK

t + TK
D,t + TK

W,t − CK
t = 0 (76)

[
TU
D,t

]
TU
D,t −

(
1 +

τλ

1− λ

)
δDt = 0 (77)

[
TK
D,t

]
TK
D,t − (1− τ) δDt = 0 (78)[

TU
W,t

]
TU
W,t −

(
1 +

τWλ

1− λ

)
δW

Wt

Pt
Nt = 0 (79)

[
TK
W,t

]
TK
W,t −

(
1− τW

)
δW

Wt

Pt
Nt = 0 (80)[

Nd
t

]
:

1

Mt
− Wt

Pt
= 0 (81)

[Phillips Curve]

ε

ξ

(
1

Mt
− 1

M

)
−Πt (Πt − 1)

ε

ξ

(
1

Mt
− 1

M

)
+ Et

[
ΛU
t,t+1

Yt+1

Yt
Πt+1 (Πt+1 − 1)

]
−Πt (Πt − 1)

 = 0 (82)
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[Goods] λCU
t + (1− λ)CK

t − Yt

(
1− ξ

2
(Πt − 1)

2

)
= 0 (83)

[Labor] λNK
t + (1− λ)NU

t −Nd
t = 0 (84)

[Taylor Rule] Rt −R∗ (Πt)
ϕπ (Et [Πt+1])

ϕEπ

(
Yt
Y ∗

)ϕy

evt = 0 (85)

[Bond] BU
t = 0 (86)

[Shares] Ft − 1 = 0 (87)

[Dividends] Yt

(
1− ξ

2
(Πt − 1)

2

)
− Wt

Pt
Nd

t −Dt = 0 (88)

[Production] Y −Nd = 0 (89)

Aggregate consumption demand, Ct, and aggregate labor supply, Nt, are given by

Ct ≜ λCU
t + (1− λ)CK

t (90)

Nt ≜ λNU
t + (1− λ)NK

t (91)

When log-linearizing the model in Appendix 7.2, we work with two auxiliary variables which are helpful in

reducing the model to three equations. The first is the consumption gap, Γt.

Γt ≜ 1− CK
t

CU
t

(92)

The second is the labor gap, Ωt.

Ωt ≜ 1− NK
t

NU
t

(93)

With this notation, aggregate consumption demand and aggregate labor supply can be written as

Ct = (1− λΓt)C
U
t (94)

Nt = (1− λΩt)N
U
t (95)

In Appendix 7.7, we reduce the consumption gap to

Γt =
N0,t

D0,t
(96)

where N0,t and D0,t are given by

N0,t =τ
W δW+

[1− (1− τ) δ] [(1− Ξt)Mt − 1] [1− λΩt] +[
(1− λ) (1− δw)− λτW δW

]
Ωt (97)

D0,t =
[
(1− λ)

(
1− δW

)
+
(
1− λ+ τWλ

)
δW
]
+

[1− δ (1− τ)λ] [(1− Ξt)Mt − 1] [1− λΩt]−[
1 +

(
τW − 1

)
λ
]
δWλΩt (98)
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7.1.8 Model Parameterization

We use the following parameter values when generating the numerical results. The values are standard values

used in the literature.

Table 1: Parameter Values

Parameter Value

β 0.975

ξ 105

σ 1

φ 1

ε 10

ρv 0.9

τ 1

δ 0.92

τW 0.0

δW 0.15

7.2 Log-linear Equations

In this appendix, we present the log-linearized model. We start with the market clearing condition, equa-

tion 83. To a first-order approximation, Ξt is equal to zero. Therefore, using the definition of aggregate

consumption given in equation 90, the log-linearized market clearing condition is given by

yt = ct (99)

Using the first-order conditions for consumption and labor for the two types of households (equations 37 and

40 for the unconstrained agent and equations 44 and 45 for the constrained agent), we arrive at the following

relationship between the consumption gap and the labor gap

(1− Γt)
−σ

= (1− Ωt)
φ

(100)

Log-linearizing equation 100 gives us

σ

1− Γ
γt = − φ

1− Ω
ωt (101)

Log-linearizing equation 96 after using equation 100 to eliminate the labor gap, Ωt, we arrive at the result

that the consumption gap is proportional to the markup. The constant of proportionality, θ1, is given in
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equation 186.

γt = θ1µt (102)

The log-linearized labor first-order conditions for the two households are given by

wt =σc
U
t + φnUt (103)

wt =σc
K
t + φnKt (104)

Log-linearizing equation 95 gives us the following relationship between the labor supply of the unconstrained

households, aggregate labor and the labor gap.

nUt = nt +
λ

1− λΩ
ωt (105)

Similarly, we log-linearize equation 94 to drive a relationship between unconstrained consumption, aggregate

consumption and the consumption gap.

cUt = ct +
λ

1− λΓ
γt (106)

Using equation 105 to replace nUt and equation 106 to replace cUt in the unconstrained households log-

linearized first-order condition for labor (equation 103), we arrive at the following equation relating the wage

to aggregate consumption, the consumption gap, aggregate labor and the labor gap.

wt = σct +
σλ

1− λΓ
γt + φnt +

φλ

1− λΩ
ωt (107)

The production function in log-linear form is

yt = nt (108)

Log-linearizing equation 81 gives us

µt = −wt (109)

Combining equations 99, 107, 108 and 109 we arrive at

µt = − (σ + φ) yt −
σλ

1− λΓ
γt −

φλ

1− λΩ
ωt (110)

Using the relationship between the consumption gap and labor gap given by equation 101 in equation 110

to eliminate ωt, we have

µt = − (σ + φ) yt + σ

[(
λ

1− λΩ

)(
1− Ω

1− Γ

)
−
(

λ

1− λΓ

)]
γt (111)
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Next, we substitute for the consumption gap, γt, using equation 102. After rearranging, we arrive at the

following relationship between the markup and output

µt = −
[
1− σ

[(
λ

1− λΩ

)(
1− Ω

1− Γ

)
−
(

λ

1− λΓ

)]
θ1

]−1

(σ + φ) yt (112)

We denote the constant multiplying [− (σ + φ) yt] as θ2

θ2 ≜

[
1− σ

[(
λ

1− λΩ

)(
1− Ω

1− Γ

)
−
(

σλ

1− λΓ

)]
θ1

]−1

(113)

The log-linearized Phillips curve is given by

πt = − ε

ξM
µt (114)

Using equation 112 and the definition of θ2 in equation 114, we can write the Phillips curve as

πt = κyt (115)

where

κ ≜
ε

ξM
(σ + φ) θ2 (116)

The log-linearized bond Euler equation for the unconstrained household is given by

cUt = Et

[
cUt+1

]
− 1

σ
(it − Et [πt+1]) (117)

Combining equations 94, 102 and 99, we have the following relationship between consumption of the uncon-

strained agent and aggregate consumption

cUt = (1− Φ) ct (118)

where Φ is defined as

Φ ≜
λ (σ + φ) θ1θ2

1− λΓ
(119)

Using equation 118 in equation 117 we arrive at the following aggregate Euler equation.

ct = Et [ct+1]−
1

σ (1− Φ)
(it − E [πt+1]) (120)

7.3 Planned Expenditure Curve

In this appendix, we derive an expression for aggregate consumption as a function of aggregate income,

the nominal interest rate and expected inflation. We use this representation to compute the direct effect of

an innovation to the monetary policy shock. Additionally, this representation allows us to decompose the

indirect effect into the indirect income effect and the indirect real rate effect. The derivation follows the

presentation provided in the appendix of Bilbiie (2020).
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7.3.1 Derivation

We start with the intertemporal budget constraint of the unconstrained household. Denote the income of

the unconstrained household as Y U
t . The household’s lifetime budget constraint is given by

Et

[ ∞∑
i=0

ΛU
t,t+iY

U
t+i

]
= Et

[ ∞∑
i=0

ΛU
t,t+iC

U
t+i

]
(121)

Denote the log deviation of the unconstrained household’s stochastic discount factor from steady state as

Λ̂t,t+i and the log deviation of the unconstrained household’s income from steady state income as yUt . Log-

linearizing the lifetime budget constraint gives us

Et

[ ∞∑
i=0

βi
(
Λ̂U
t,t+i + yUt+i

)]
= Et

[ ∞∑
i=0

βi
(
Λ̂U
t,t+i + cUt+i

)]
(122)

The linearized stochastic discount factor is given by

Λ̂U
t,t+i = −σ

(
cUt+i − cUt

)
(123)

Adding
(
1
σ − 1

)
Et

[∑∞
t=0 β

iΛ̂t,t+i

]
to both sides of equation 122, one obtains

Et

[ ∞∑
i=0

βi

(
1

σ
Λ̂U
t,t+i + yUt+i

)]
= Et

[ ∞∑
i=0

βi

(
1

σ
Λ̂U
t,t+i + cUt+i

)]
(124)

Using the Euler equation of the unconstrained agent, the right-hand side becomes 1
1−β c

U
t . Noting that

Λ̂U
t,t = 0, we can rewrite equation 124 as

Et

[ ∞∑
i=1

βi

(
1

σ
Λ̂U
t,t+i + yUt+i

)]
+ yUt =

1

1− β
cUt (125)

From the first order condition for bonds, we have

Et

[
Λ̂t,t+i

]
= −Et

[
i−1∑
k=0

(it+k − πt+1+k)

]
(126)

Using this result, we have

∞∑
i=0

βiEt

[
Λ̂t,t+i

]
= −

∞∑
i=1

βiEt

[
i−1∑
k=0

(it+k − πt+1+k)

]
= − β

1− β
Et

[ ∞∑
i=0

βi (it+i − πt+1+i)

]
(127)

Combining the latter two results gives us

1

1− β
cUt = − 1

σ

(
β

1− β

)
Et

[ ∞∑
i=0

βi (it+i − πt+1+i)

]
+ Et

[ ∞∑
i=0

βiyUt+i

]
(128)

Multiplying both sides by 1− β and removing the i = 0 variables from the summations, we have

cUt =(1− β) yUt − 1

σ
β (it − E [πt+1])− β

1

σ
Et

[ ∞∑
i=0

βi (it+1+i − πt+2+i)

]
+

(1− β)Et

[ ∞∑
i=0

βiyUt+1+i

]
(129)
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Finally, noting that

βcUt+1 = −β 1

σ
Et

[ ∞∑
i=0

βi (it+1+i − πt+2+i)

]
+ (1− β)Et

[ ∞∑
i=0

βiyUt+1+i

]
(130)

we obtain unconstrained consumption as a function of income, the real interest rate and expected future

consumption.

cUt = (1− β) yUt − 1

σ
β (it − Et [πt+1]) + βEt

[
cUt+1

]
(131)

The constrained agent consumes all of his or her income each period. Denote the log deviation of constrained

income from steady-state as yKt . Therefore, we have the following

cKt = yKt (132)

Log-linearizing equation 90 gives us the following relationship between aggregate consumption and consump-

tion of the two types of households

ct = (1− ζ) cUt + ζcKt (133)

where ζ is defined as

ζ ≜
λ (1− Γ)

(1− λ) + λ (1− Γ)
(134)

Finally, aggregating consumption across the two types of agents gives us

ct = [1− (1− Φ) (1− ζ)β] yt −
1

σ
β (1− ζ) (it − Et [πt+1]) + (1− Φ) (1− ζ)βEt [ct+1] (135)

Replacing ct+1 with Fct and rearranging gives us equation 9 in the main text.

7.3.2 Direct Effect

We now use equation 135 to derive the direct effect of an innovation occurring T periods in the future.

ct = [1− (1− Φ) (1− ζ)β] yt −
1

σ
β (1− ζ) [it − Et [πt+1]] + (1− Φ) (1− ζ)βE [ct+1] (136)

= [1− (1− Φ) (1− ζ)β]

∞∑
τ=0

[(1− Φ) (1− ζ)β]
τ
E [yt+τ ]−

1

σ
β (1− ζ)

∞∑
τ=0

[(1− Φ) (1− ζ)β]
τ
E [it+τ − πt+1+τ ] (137)

= [1− (1− Φ) (1− ζ)β]

∞∑
τ=0

[(1− Φ) (1− ζ)β]
τ
E [yt+τ ]−

1

σ
β (1− ζ)

∞∑
τ=0

[(1− Φ) (1− ζ)β]
τ
E [(ϕEπ − 1)πt+1+τ + ϕyyt+τ + ϕππt+τ + vt+τ ] (138)

31



Assuming the persistence of the shock is ρv, the direct effect of an innovation happening T periods from now

(in period t+ T ) is given by

dct
dεvt+T

∣∣∣∣
y∗,π∗

= − 1

σ
β (1− ζ)

∞∑
τ=T

[(1− Φ) (1− ζ)β]
τ
ρτ−T
v

= − 1

σ
β (1− ζ) [(1− Φ) (1− ζ)β]

T
∞∑

τ=T

[(1− Φ) (1− ζ)β]
τ−T

ρτ−T
v

= −
1
σβ (1− ζ) [(1− Φ) (1− ζ)β]

T

1− [(1− Φ) (1− ζ)β] ρv
(139)

7.4 Contemporaneous Phillips Curve: Total Effect

In this appendix, we derive the total effect of a monetary policy innovation when firms face the price setting

problem presented in Appendix 7.1.4. The linearized model is characterized by the following equilibrium

conditions

πt = κct (140)

it = ϕπt + vt (141)

ct = [1− (1− Φ) (1− ζ)β] yt −
1

σ
β (1− ζ) [it − Et [πt+1]] + (1− Φ) (1− ζ)βE [ct+1] (142)

ct = yt (143)

Denote the forward shift operator as F . For any variable xt, we have Fxt = xt+1. After substituting the

Phillips curve, Taylor rule and market clearing condition into equation 142 and rearranging, one arrives at

the following equation for consumption as a function of the sequence of exogenous variables {vt+τ}∞τ=0.

ct

{
1− [1− (1− Φ) (1− ζ)β] +

1

σ
β (1− ζ)κϕ−

[
1

σ
β (1− ζ)κ+ (1− Φ) (1− ζ)β

]
F
}

=

− 1

σ
β (1− ζ) vt

ct

{
(1− Φ) (1− ζ)β +

1

σ
β (1− ζ)κϕ−

[
1

σ
β (1− ζ)κ+ (1− Φ) (1− ζ)β

]
F
}

=

− 1

σ
β (1− ζ) vt

ct

{
(1− Φ) +

1

σ
κϕ−

[
1

σ
κ+ (1− Φ)

]
F
}

= − 1

σ
vt

ct

{
1−

[ 1
σκ+ (1− Φ)
1
σκϕ+ (1− Φ)

]
F
}

= − 1

σ

[
1

1
σκϕ+ (1− Φ)

]
vt

ct = − 1

σ

[
1

1
σκϕ+ (1− Φ)

] ∞∑
τ=0

[ 1
σκ+ (1− Φ)
1
σκϕ+ (1− Φ)

]τ
vt+τ
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Under the assumption that the monetary policy shock follows an AR (1) process with persistence ρv, the

total response of consumption to an innovation T ≥ 0 periods in the future is

dct
dεvt+T

= − 1

σ

[
1

1
σκϕ+ (1− Φ)

] ∞∑
τ=T

[ 1
σκ+ (1− Φ)
1
σκϕ+ (1− Φ)

]τ
ρτ−T
v (144)

= − 1

σ

[
1

1
σκϕ+ (1− Φ)

] [ 1
σκ+ (1− Φ)
1
σκϕ+ (1− Φ)

]T ∞∑
τ=T

[ 1
σκ+ (1− Φ)
1
σκϕ+ (1− Φ)

ρv

]τ−T

(145)

= − 1

σ

[
1

1
σκϕ+ (1− Φ)

] [ 1
σκ+ (1− Φ)
1
σκϕ+ (1− Φ)

]T  1

1−
[

1
σκ+(1−Φ)
1
σκϕ+(1−Φ)

ρv

]
 (146)

Rearranging equation 146 gives us equation 13.

7.5 Forward Looking Phillips Curve: Total Effect

We now derive the total effect in the model with the forward-looking Phillips curve. The model reduces

to a linear second-order difference equation with constant coefficients. The solutions to linear second-order

difference equations are well-known from the time series econometrics literature (see, for example, Sargent

1975). Denote the forward shift operator as F . For any variable xt, we have Fxt = xt+1. Combining the

Euler equation, Phillips curve and Taylor rule, the model can be written as.(
F2 +ϖ2F +ϖ1

)
πt = −ṽt (147)

where

ϖ1 ≜

[
1

β
+

ϕπκ+ ϕy
βσ (1− Φ)

]
(148)

ϖ2 ≜

[
−1− 1

β
+

1

βσ (1− Φ)
(ϕEπκ− βϕy − κ)

]
(149)

ṽt ≜
κ

βσ (1− Φ)
vt (150)

Denote the roots of the characteristic equation from equation 147 as m1 and m2. The formula for inflation

is given by

πt =− 1

(F −m1) (F −m2)
ṽt (151)

=

(
1

m1 −m2

)(
1

m1

)(
1

1− 1
m1

F

)
ṽt −

(
1

m1 −m2

)(
1

m2

)(
1

1− 1
m2

F

)
ṽt (152)

If both roots are real and greater than unity (i.e. m1 > 1 and m2 > 1) or the roots are complex with

magnitude greater than unity, we can rewrite this as

πt =

(
1

m1 −m2

)(
1

m1

) ∞∑
s=0

(m1)
−s
ṽt+s −

(
1

m1 −m2

)(
1

m2

) ∞∑
s=0

(m2)
−s
ṽt+s (153)

=

(
1

m1 −m2

)[(
1

m1

) ∞∑
s=t

mt−s
1 ṽs −

(
1

m2

) ∞∑
s=t

mt−s
2 ṽs

]
(154)
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7.5.1 Real Roots

The formula for inflation is given by

πt =

(
1

m1 −m2

)[(
1

m1

) ∞∑
s=t

mt−s
1 ṽs −

(
1

m2

) ∞∑
s=t

mt−s
2 ṽs

]
(155)

If an innovation occurs in period t + T and the shock has persistence ρv, the response of inflation to the

innovation is

dπt
dεvt+T

=

[
κ

βσ (1− Φ)

](
1

m1 −m2

)[(
1

m1 − ρv

)
m−T

1 −
(

1

m2 − ρv

)
m−T

2

]
(156)

In Section 5.1 we consider contemporaneous innovations to the monetary policy shock (i.e. T = 0). To

compute the total effect of the innovation, we need the response of πt+1 to an innovation in period t. That

is, we need the response of inflation to an innovation that occurred in the past. Under the maintained

assumption that the shock follows an AR (1) process with persistence ρv, the response of inflation in period

t+ τ to an innovation in period t is

dπt+τ

dεvt
=

[
κ

βσ (1− Φ)

](
1

m1 −m2

)[(
1

m1 − ρv

)
−
(

1

m2 − ρv

)]
ρτv = ρτv

dπt
dεvt

(157)

7.5.2 Complex Roots

If the roots are complex, then m1 = mr + imc = reiw and m2 = mr − imc = re−iw where mr is the real

part and mc is the imaginary part of m1 and m2. Denote the magnitude of m1 as r and the argument as w.

r ≜
√
m2

r +m2
c (158)

w ≜ arctan

(
mc

mr

)
(159)
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The formula for inflation can be rewritten as follows

πt =

(
1

m1 −m2

)[(
1

m1

) ∞∑
s=t

mt−s
1 ṽs −

(
1

m2

) ∞∑
s=t

mt−s
2 ṽs

]
(160)

=

(
1

m1 −m2

)[ ∞∑
s=t

m
t−(s+1)
1 ṽs −

∞∑
s=t

m
t−(s+1)
2 ṽs

]
(161)

=

(
1

m1 −m2

)[ ∞∑
s=t

(
m

t−(s+1)
1 −m

t−(s+1)
2

)
ṽs

]
(162)

=

(
1

m1 −m2

)[ ∞∑
s=t

rt−(s+1)
[(
eiw
)t−(s+1) −

(
e−iw

)t−(s+1)
]
ṽs

]
(163)

=

(
1

m1 −m2

)[ ∞∑
s=t

rt−(s+1)2i sin [w (t− (s+ 1))] ṽs

]
(164)

=

(
1

r (eiw − e−iw)

)[ ∞∑
s=t

rt−(s+1)2i sin [w (t− (s+ 1))] ṽs

]
(165)

=

(
1

r2i sin (w)

)[ ∞∑
s=t

rt−(s+1)2i sin [w (t− (s+ 1))] ṽs

]
(166)

=

(
1

r sin (w)

)[ ∞∑
s=t

rt−(s+1) sin [w (t− (s+ 1))] ṽs

]
(167)

For an innovation T periods in the future, the response is

dπt
dεvt+T

=

[
κ

βσ (1− Φ)

]
1

r sin (w)
r−1−T

∞∑
s=t+T

rt+T−sρs−(t+T )
v sin [w (t− 1− s)] (168)

Note that we can rewrite the sine term as follows

sin [w (t− 1− s)] =sin [w (T + t− s) + w (−1− T )] (169)

= sin [w (T + t− s)] cos [w (−1− T )] + cos [w (T + t− s)] sin [w (−1− T )] (170)

After substitution, we have

dπt
dεvt+T

=

[
κ

βσ (1− Φ)

] [
cos [w (−1− T )]

1

r sin (w)
r−1−T

∞∑
s=t+T

(ρv
r

)s−(t+T )

sin [w (T + t− s)] +

sin [w (−1− T )]
1

r sin (w)
r−1−T

∞∑
s=t+T

(ρv
r

)s−(t+T )

cos [w (T + t− s)]

]
(171)

Using the properties of infinite geometric series, as shown in Appendix 7.8, we have

dπt
dεvt+T

=

[
κ

βσ (1− Φ)

] [
1

r sin (w)
r−1−T

] [
sin [w (−1− T )]

[
1− ρv

r cos (w)

1 +
(
ρv

r

)2 − 2
(
ρv

r

)
cos (w)

]
−

cos [w (−1− T )]

[
ρv

r sin (w)

1 +
(
ρv

r

)2 − 2
(
ρv

r

)
cos (w)

]]
(172)
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7.6 Additional Figures

We include additional figures in this appendix. Appendix 7.6.1 includes additional figures for the model with

the contemporaneous Phillips curve. Appendix 7.6.2 includes a figure for the model with the forward-looking

Phillips curve.

7.6.1 Contemporaneous Phillips Curve

Figure 4: Real Interest Rate Change: Contemporaneous Innovation

Notes: The figure shows the pass-through of a one-unit contemporaneous innovation to the monetary policy shock.

The figure partitions λ (horizontal axis), ϕπ (vertical axis) space into a region where the solution is indeterminate

or the indirect effect is positive (grey region) and a region where the indirect effect is negative (colored region). The

colors of the different contours indicate the proportional pass-through of a one-unit monetary policy contemporaneous

monetary policy innovation to the real interest rate. For example, a value of 0.9 means that, following a one-unit

positive innovation, the real interest rate increases by 0.9 units.
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Figure 5: Indirect Effect Regions

Notes: The figure plots ϕNIE
π (∞) and ϕNIE

π (0) as functions of λ. The lines partition λ (horizontal axis), ϕπ (vertical

axis) space into regions of positive and negative indirect effects with each line corresponding to a different innovation

horizon, T . For a fixed value of λ, ϕπ values above a given line result in a negative indirect effect while values of

ϕπ below the line result in a positive indirect effect. The blue line is for an innovation in the distant future (i.e.

ϕNIE
π (∞)). The orange line is for a contemporaneous innovation (i.e. ϕNIE

π (0)).
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7.6.2 Forward Looking Phillips Curve

Figure 6: Real Interest Rate Change: Contemporaneous Innovation

Notes: The figure shows the pass-through of a one-unit contemporaneous innovation to the monetary policy shock.

The figure partitions λ (horizontal axis), ϕπ (vertical axis) space into a region where the solution is indeterminate

or the indirect effect is positive (grey region) and a region where the indirect effect is negative (colored region). The

colors of the different contours indicate the proportional pass-through of a one-unit monetary policy contemporaneous

monetary policy innovation to the real interest rate. For example, a value of 0.9 means that, following a one-unit

positive innovation, the real interest rate increases by 0.9 units.

7.7 Consumption Gap Derivation

Using the budget constraints of the two types of households, we can write the consumption gap, Γt, as

Γt =

(
1− δW

)
WtN

U
t + 1−δ

1−λDt + TU
D,t + TU

W,t −
(
1− δW

)
WtN

K
t − TK

D,t − TK
W,t

(1− δW )WtNU
t + 1−δ

1−λDt + TU
D,t + TU

W,t

(173)
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Next, use the definition of TK
D,t, T

K
W,t, T

U
D,t, T

U
W,t andDt and denote the numerator asN0,t and the denominator

as D0,t. Starting with the numerator, N0,t, we have

N0,t =
(
1− δW

)
WtN

U
t +

1− δ

1− λ
Dt +

(
1 +

τλ

1− λ

)
δDt +

(
1 +

τWλ

1− λ

)
δWWtNt

−
(
1− δW

)
WtN

K
t − (1− τ) δDt −

(
1− τW

)
δWWtNt (174)

=
(
1− δW

)
WtN

U
t +

1− δ

1− λ
(Yt (1− Ξt)−WtNt)

+

(
1 +

τλ

1− λ

)
δ (Yt (1− Ξt)−WtNt) +

(
1 +

τWλ

1− λ

)
δWWtNt

−
(
1− δW

)
WtN

K
t − (1− τ) δ (Yt (1− Ξt)−WtNt)−

(
1− τW

)
δWWtNt (175)

=
(
1− δW

)
WtN

U
t +

1− δ

1− λ
(Nt (1− Ξt)−WtNt)

+

(
1 +

τλ

1− λ

)
δ (Nt (1− Ξt)−WtNt) +

(
1 +

τWλ

1− λ

)
δWWtNt

−
(
1− δW

)
WtN

K
t − (1− τ) δ (Nt (1− Ξt)−WtNt)−

(
1− τW

)
δWWtNt (176)

=
(
1− δW

)
WtN

U
t +

1− δ

1− λ
((1− Ξt)−Wt)Nt

+

(
1 +

τλ

1− λ

)
δ ((1− Ξt)−Wt)Nt +

(
1 +

τWλ

1− λ

)
δWWtNt

−
(
1− δW

)
WtN

K
t − (1− τ) δ ((1− Ξt)−Wt)Nt −

(
1− τW

)
δWWtNt (177)

Divide by WtN
U
t

N0,t =
(
1− δW

)
+

1− δ

1− λ
((1− Ξt)Mt − 1) (1− λΩt)+(

1 +
τλ

1− λ

)
δ ((1− Ξt)Mt − 1) (1− λΩt) +

(
1 +

τWλ

1− λ

)
δW (1− λΩt)

−
(
1− δW

)
(1− Ωt)− (1− τ) δ ((1− Ξt)Mt − 1) (1− λΩt)−

(
1− τW

)
δW (1− λΩt) (178)

Multiply through by (1− λ)

N0,t = (1− λ)
(
1− δW

)
+ (1− δ) ((1− Ξt)Mt − 1) (1− λΩt)+

(1− λ+ τλ) δ ((1− Ξt)Mt − 1) (1− λΩt) +
(
1− λ+ τWλ

)
δW (1− λΩt)

− (1− λ)
(
1− δW

)
(1− Ωt)− (1− λ) (1− τ) δ ((1− Ξt)Mt − 1) (1− λΩt)

− (1− λ)
(
1− τW

)
δW (1− λΩt) (179)

Combining terms we have

N0,t =τ
W δW+

[1− (1− τ) δ] [(1− Ξt)Mt − 1] [1− λΩt] +[
(1− λ) (1− δw)− λτW δW

]
Ωt (180)
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Now turn to the denominator, D0,t

D0,t =
(
1− δW

)
WtN

U
t +

1− δ

1− λ
Dt +

(
1 +

τλ

1− λ

)
δDt +

(
1 +

τWλ

1− λ

)
δWWtNt

=
(
1− δW

)
WtN

U
t +

1− δ

1− λ
((1− Ξt)−Wt)Nt+(

1 +
τλ

1− λ

)
δ ((1− Ξt)−Wt)Nt +

(
1 +

τWλ

1− λ

)
δWWtNt

=
(
1− δW

)
Wt +

1− δ

1− λ
((1− Ξt)−Wt) [λ (1− Ωt) + (1− λ)] +(

1 +
τλ

1− λ

)
δ ((1− Ξt)−Wt) [λ (1− Ωt) + (1− λ)] +(

1 +
τWλ

1− λ

)
δWWt [λ (1− Ωt) + (1− λ)]

Now divide through by WtN
U
t

D0,t =
(
1− δW

)
+

1− δ

1− λ
((1− Ξt)Mt − 1) (1− λΩt)

+

(
1 +

τλ

1− λ

)
δ ((1− Ξt)Mt − 1) (1− λΩt) +

(
1 +

τWλ

1− λ

)
δW (1− λΩt) (181)

Next, multiply through by (1− λ)

D0,t =(1− λ)
(
1− δW

)
+ (1− δ) ((1− Ξt)Mt − 1) (1− λΩt)+

(1− λ+ τλ) δ ((1− Ξt)Mt − 1) (1− λΩt) +
(
1− λ+ τWλ

)
δW (1− λΩt) (182)

Grouping together terms, we have

D0,t =
{
(1− λ)

(
1− δW

)
+
(
1− λ+ τWλ

)
δW
}
+

{1− δ (1− τ)λ} ((1− Ξt)Mt − 1) (1− λΩt)−{
1 +

(
τW − 1

)
λ
}
δWλΩt (183)

Constants/composite parameters

ψ1 ≜ D0, (1− (1− τ) δ)−N0 (1− δ (1− τ)λ) (184)

ψ2 ≜ D0

[
(1− λ)

(
1− δW

)
− λτW δW

]
+N0λ

(
1−

(
1− τW

)
λ
)
δW (185)

θ1 ≜

[
1 +

(
1− Ω

1− Γ

)(
σ

φ

)(
ψ2 − ψ1λ (M− 1)

D2
0

)]−1(
ψ1 (1− λΩ)

D2
0

)
(186)

θ2 ≜

[
1− σ

[(
λ

1− λΩ

)(
1− Ω

1− Γ

)
−
(

σλ

1− λΓ

)]
θ1

]−1

(187)
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7.8 Complex Roots Derivation

Geometric sum of sine terms

∞∑
k=0

(ρv
r

)k
sin (wk) =

1

2i

[ ∞∑
k=0

(ρv
r

)k
eiwk −

∞∑
k=0

(ρv
r

)k
e−iwk

]
(188)

=
1

2i

[
1

1−
(
ρv

r

)
eiw

− 1

1−
(
ρv

r

)
e−iw

]
(189)

=
1

2i

[
1−

(
ρv

r

)
e−iw −

(
1−

(
ρv

r

)
eiw
)(

1−
(
ρv

r

)
eiw
) (

1−
(
ρv

r

)
e−iw

) ] (190)

=
1

2i

[ (
ρv

r

) (
eiw − e−iw

)
1−

(
ρv

r

)
eiw −

(
ρv

r

)
e−iw +

(
ρv

r

)2
eiwe−iw

]
(191)

=

[ (
ρv

r

)
sin (w)

1 +
(
ρv

r

)2 − (ρv

r

)
(eiw + e−iw)

]
(192)

=

[ (
ρv

r

)
sin (w)

1 +
(
ρv

r

)2 − 2
(
ρv

r

)
cos (w)

]
(193)

Geometric sum of cosine terms

∞∑
k=0

(ρv
r

)k
cos (wk) =

1

2

[ ∞∑
k=0

(ρv
r

)k
eiwk +

∞∑
k=0

(ρv
r

)k
e−iwk

]
(194)

=
1

2

[
1

1−
(
ρv

r

)
eiw

+
1

1−
(
ρv

r

)
e−iw

]
(195)

=
1

2

[
1−

(
ρv

r

)
e−iw +

(
1−

(
ρv

r

)
eiw
)(

1−
(
ρv

r

)
eiw
) (

1−
(
ρv

r

)
e−iw

) ] (196)

=
1

2

[
2−

(
ρv

r

) (
eiw − e−iw

)
1−

(
ρv

r

)
eiw −

(
ρv

r

)
e−iw +

(
ρv

r

)2
eiwe−iw

]
(197)

=

[
1−

(
ρv

r

)
cos (w)

1 +
(
ρv

r

)2 − (ρv

r

)
(eiw + e−iw)

]
(198)

=

[
1−

(
ρv

r

)
cos (w)

1 +
(
ρv

r

)2 − 2
(
ρv

r

)
cos (w)

]
(199)
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