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A timely paper to discuss before Halloween!



O que este artigo faz?

Excellent, creative, and ambitious paper:

� The authors demonstrate how deep learning (DL) can be
applied to solve dynamic economic models.

� DL can help satisfy long-run boundary conditions, such as
transversality conditions, without explicitly imposing them.

� The machine learning (ML) concepts that are shown to be
relevant for this result are inductive bias, the double descent
phenomenon, minimum norm, and Sobolev norm.

� ML-based methods e¤ectively approximate solutions in
macroeconomic models with multiple steady states, bubbles,
and explosive trajectories.



Connection to ML literature
Inductive Bias
= A preference for a simpler model when �tting a general model
with limited observations.

� In essence, inductive bias guides how an algorithm selects
among the many possible models or solutions that are
consistent with the observed data.

� Since learning from data alone does not provide enough
information to choose a unique model, the algorithm relies on
certain built-in biases or preferences. These biases help the
model favor one solution over another, ideally leading to
better generalization on new, unseen data.

� Inductive bias helps prevent over�tting by pushing the model
toward simpler or more general solutions that are more likely
to generalize well to unseen data.

� Types of Inductive Bias:
� Occam�s Razor, Smoothness Bias, Bias Toward Flat Solutions



Connection to ML literature
Double descent phenomena
= An unexpected behavior in ML models, particularly in
overparameterized models such as deep neural networks.
� In classical ML, with a few parameters, the model under�ts
the data, and with too many parameters, it over�ts by
capturing noise in the training data. ) a U-shaped curve in
terms of generalization error

� In the double descent phenomenon, this degradation in
performance does not continue inde�nitely.
�After an initial increase in error (over�tting), as the number
of parameters grows further, the model�s performance
improves again.
�This results in a second descent in the error curve )
"double descent".

� This phenomenon is especially pronounced in neural networks,
where models with billions of parameters can outperform
simpler models, as they avoid the traditional over�tting issues.



Connection to ML literature
Sobolev norm
= A mathematical tool used to measure both the value of a
function and the size of its derivatives.

� It helps assess the smoothness of a function by taking into
account not just the function�s values but also its gradients.

� The authors consider this norm in the context of penalizing
"non-smooth" or "explosive" solutions to functional
equations.

� In dynamic economic models, the objective is often to �nd
solutions that not only satisfy the functional equations but
also respect boundary conditions like transversality (i.e.,
solutions that do not "explode" over time).

� The Sobolev norm becomes useful here because it penalizes
functions with large derivatives, e¤ectively discouraging steep
or explosive trajectories that violate economic assumptions
about long-run stability.



Comments

� More complex applications are needed

� Not importance of checking transversality condition (TVC)

� Non-smooth problems

� Relation to Turnpike Theorem

� A salt of grain about neural networks



Comment 1: More complex models are needed I

� Applications Studied: Two Canonical Models
�A linear asset pricing model with bubbles.
�A neoclassical growth model with multiple steady states
(including a steady state where TVC is violated and two
steady states, each with its own domain of attraction).

� These applications are too simple to draw broad conclusions
about the usefulness of double descent and inductive bias in
DL.

� In particular, for high-dimensional models, it is unclear
whether an over�tted DL model would even be
computationally feasible.

� Additionally, would over�tting a¤ect the predictions of
high-dimensional models in the same way as it a¤ects
low-dimensional models?



Comment 1: More complex models are needed II

� Adding more examples and clarifying certain technical aspects
could strengthen the contribution.

� More complex (and more interesting) macroeconomic
examples to consider would be large-scale New Keynesian
models, Krusell-Smith models (1998) with distributional
dynamics or climate change models.

� The paper does not discuss many computational details.
However, they are important for the overall performance of
the DL solution method.

� For example, in large-scale new Keynesian models with
distributions, one neural network is not enough.



Comment 2: How important is it to check TVC? I

� Solution algorithms di¤er in their degrees of instability /
stability.

� Stability depends on many choices: type of regression,
integration method, approximation function, ...

� For example, early versions of PEA (Marcet, 1998) were
highly unstable.

� But next generation stochastic simulation algorithms, SSA
(e.g., generalized SSA of Maliar et al. 2011) is highly stable.

� Question: Do we really need to check TVC if a solution
algorithm is stable?



Comment 2: How important is it to check the TVC? II

Maliar and Maliar (2003): moving bounds in PEA

:::



Comment 3: Inductive bias and non-smooth problems I

� Inductive bias in neural networks seems to work in smooth
problems.

� How smooth do these problems need to be?
� Is it possible to characterize technical conditions for solution
smoothness?

� For example, many orthogonal polynomials (like Chebyshev
polynomials) are applied to smooth problems, and
approximation theory provides bounds on the derivatives of
approximation functions. Can we establish similar bounds in
this context?

� Will it be possible to require smoothness of the Sobolev norm
in models with large shocks or with uncertainty in general?



Comment 3: Inductive bias and non-smooth problems II

� Many interesting economic problems are not smooth.
� These include default models, models with occasionally
binding constraints, discrete choice models, etc.

� Will encouraging the selection of solutions with small
functional norms still be e¤ective in these cases?

� Further research is required to explore this question.



Comment 4: Relation to Turnpike Theorem I

Turnpike Theorem: If we are interested in the behavior of
in�nite-horizon non-stationary economy during some initial number
of periods � , we can accurately approximate the in�nite-horizon
solution by solving the �nite-horizon model.



Comment 4: Relation to Turnpike Theorem II

Argument in the paper: "inductive bias favors transition
dynamics that tend toward the turnpike without explicitly
characterizing it, given that the turnpike trajectory is the unique
path that does not diverge."

Figure 1 Figure 3



Comment 4: Relation to Turnpike Theorem III
� Turnpike Theorem holds under certain assumptions (see
Maliar, Maliar, Taylor and Tsener, 2020). It allows to analyze
non-stationary models.

� My guess is that the DL method based on inductive bias
would not work for non-stationary models or for the models
with complex roots and backward stability:

see Maliar and Taylor (2021).



Comment 5: Grain of salt about neural networks

� Neural network is a promising approximator but has a large
number of parameters and is highly non-linear.

� There are some analytic results on local convergence of neural
networks but convergence is not guaranteed.

� Stochastic optimization is magical but its convergence rate is
lower and not guaranteed.

� Own experience points to the fact that neural networks are
very di¢ cult to work with:

� Maliar, Maliar and Winant (2021) show how to use DL for
solving Krusell-Smith (1998) model.

� Gorodnichenko, Maliar, Maliar and Naubert (2021) use it to
solve a new Keynesian model with distributions.



Other comments

� The Sobolev norm is just one of many ways to measure
function smoothness. A numerical comparison of di¤erent
norms would be valuable.

� There is limited discussion on potential risks of using
inductive bias in practice. For instance, under what conditions
might the ML model fail to meet long-run boundary
conditions or produce inaccurate results?

� The paper notes that the solutions generated by ML methods
are "almost stable," implying that periodic retraining may be
necessary to prevent divergence in the long run. How often
should we retrain?

� Some of the more technical aspects (the precise role of
functional norms in ML models or the implications of the
double descent phenomenon) could bene�t from further
elaboration.



Thank you!


